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ARTICLE INFO ABSTRACT

Keywords: ‘When investigating materials to be utilized, attention inevitably focuses on their resistance over
Service life the service life. Despite the popularity of amorphous polymers, ranging from their applications in
P°]1ymers structural components to their ability to increase the toughness of biocomposites, the investiga-
Failure

tion of their short- to long-term resistance has been considerably limited to date. Here, an

Ratchetin . . . " .
Modelingg improved testing equipment and model are proposed to describe the resistance of amorphous
Experantation polymers under cyclic loadings. Two failure mechanisms are considered for the low- to high-cycle

regimes: plastically induced and fatigue, and a history dependent fatigue damage model and a
plastic evolution law with a relaxed shear resistance are proposed. Against state-of-the-art
models, the proposed model is able to simulate the experimentally observed ultralow- to high-
cycle failure and service life under torsional and multiaxial loads. The experimental and model
results are similar, suggesting that the model is a capable tool for simulating costly and time-
consuming tests. Interestingly, the predicted progress of material failure with plastic deforma-
tion was found to resemble the observed development of accumulated void volume. The failure
(void volume) development strongly influenced the onset and growth of tertiary cyclic creep and
thus, the entire service life. The amorphous structure also appeared to effectively resist failure
under torsion.

1. Introduction

Amorphous glassy polymers (where glassy refers to the solid-state below the glass transition temperature T,), as we know them
today, have been used since the 1950s. The most commonly used amorphous polymers are polystyrene (PS), poly(methyl methac-
rylate) (PMMA), and polycarbonate (PC) (Buschow, 2001). Their widespread consideration in research and development is due to their
favorable properties (e.g., cheap price, impact toughness, and optical clearness); therefore amorphous polymers currently represent
highly important technological materials in structural components (windows, sporting goods, vehicles, etc.), aeronautic equipment (e.
g., the cockpit canopy of the Lockheed Martin F-22 Raptor fighter), packaging, electronic ionic conductors, and printed surface
coatings (using additive manufacturing) (Adams et al., 1998; Kang and Kan, 2017; Lei and Wu, 2019; Wang et al., 2016). Their
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characteristics can be further improved with additives such as coupling agents and impact modifiers (Buschow, 2001; Kang and Kan,
2017). Hence, amorphous polymers are also used as ingredients to improve the toughness of biopolymers and bulk metallic glasses
(BMGs) (Adams et al., 1998; Park et al., 2019; Sun et al., 2016) and to heal damaged materials (Patrick et al., 2016). However, all these
applications may suffer from failure under cyclic loading processes. Because the concurrent failures of engineering components under
cyclic fatigue loads can result in horrific accidents (e.g., the air disaster of China Airlines Flight 611) and tremendous financial losses, it
is worth investigating and testing the fatigue resistance of materials. However, such tests are costly and time-consuming, and thus, it is
also worth developing capable models to simulate resource-intensive tests and even to develop more resistant materials and their
manufacturing (Frankberg et al., 2019).

Although amorphous polymers have a vast number of applications, to date, little work has been conducted on their modeling and
simulation under multiaxial and long-term cyclic loadings (Bennett and Horike, 2018; Lu et al., 2016). The Boyce-Parks-Argon (BPA)
constitutive model is suitable for predicting the large deformation of amorphous polymers and may be the most distinguished model in
the field (Boyce et al., 1988). The microstructure is described by the eight-chain model as illustrated in Fig. 4(a). However, this model
is elastic-viscoplastic and thus is limited by its inaccurate predictions of the peak yield strain, unloading response, creep, and recovery
observed in corresponding tests (Barriere et al., 2019; Dreistadt et al., 2009; Holopainen and Wallin, 2012). Considering the cyclic
deformation behavior, the most advanced and recent models are suitable solely for (semi-)crystalline polymers exhibiting
elastic-viscoplastic (Qi et al., 2019), hyperelastic-viscoplastic (Garcia-Gonzalez et al., 2017; Shojaei and Volgers, 2018), or
viscoelastic-viscoplastic behavior (Colac and Dusunceli, 2006; Haouala and Doghri, 2015), to mention only a few. Considering
amorphous polymers, both viscoelastic and viscoplastic elements are required to accurately predict the yield stress and strain, soft-
ening, static creep/recovery (Holopainen, 2013), shape/area of the load loops, cyclic creep (ratcheting), and thus the cyclic defor-
mation behavior (Barriere et al., 2020; Chen et al., 2015). Nevertheless, only a few models include both these elements, despite being
demonstrated under solely 1D loads (Anand and Ames, 2006; Barriere et al., 2019; Janssen et al., 2008; Jiang et al., 2015; Krairi et al.,
2019). Notable work has been performed to describe the development of fatigue failure by mechanical tests (Lu et al., 2016) and
molecular dynamics simulation (Bao et al., 2020), but these studies were restricted to low-cycle fatigue (LCF) loads.

Experiments have shown fractographic details that the hypothesis that plastic deformation in localized shear bands is a precursor to
initial cracking (James et al., 2013). The plasticity of amorphous polymers has been experimentally (macroscopically) measured by the
yield strain observed prior to strain softening (Anand and Ames, 2006; Barriere et al., 2019; Jiang et al., 2015). The models capable of
governing the macroyielding and development of viscoplastic deformation (i.e., the models suitable for investigating macroscopic
structures) can be categorized as follows: [A] models in which the microstructure is replaced by the isotropic intermolecular resistance
(Boyce et al., 1988; Engqvist et al., 2016; Holopainen and Wallin, 2012), [B] models in which the microstructure is described by
internal variables related to the free volume (loosely packed regions in the material) (Anand and Ames, 2006; Barriere et al., 2019;
Jiang et al., 2015), and [C] models based on internal variables related to entanglement-based microstructures (Jiang et al., 2020; Wang
et al., 2019). A promising model for the rate- and temperature-dependent macroyield behavior of amorphous polymers was recently
proposed by Jiang et al. (Jiang et al., 2020) (group C) based on subentanglement (SE) and topological entanglement (TE) micro-
structures (see Fig. 4(b)). Micro-/nanostructural approaches based on the evolution of the free volume (Bowman et al., 2019) (group B)
and on crazing (changes in the fibril/chain disentanglement) (Venkatesan and Basu, 2015) (group C) tend to explain the origin of
plasticity through molecular dynamics simulation. Clearly, crazing is generated in regions of high void volume (Venkatesan and Basu,
2015), i.e., the void volume and initiation of plastic deformation through crazing are interconnected. Fatigue failure in amorphous
polymer structure has also been shown to develop through the mechanism of cyclic fracturing of fibrils (Ravi Chandran, 2016), leading
to accumulated void volume fraction and cracking (James et al., 2013).

The viscoelastic-viscoplastic model introduced in Barriere et al. (Barriere et al., 2019) has been shown to be accurate under various
multiaxial, long-term cyclic loading processes (Barriere et al., 2020), and it was applied in this research. However, this model is also
limited in that it underestimates the shear ratcheting strain, especially that prior to rupture. The model’s rigidity in shear is due to the
applied eight-chain model (Boyce et al., 1988), which has been shown to be rather rigid under shear loads (Boyce et al., 1995; Wu and
Giessen, 1993). On this basis, an improvement of the model is proposed.

In addition to the plastically induced failure, material also shows a farigue damage mechanism (James et al., 2013; Ravi Chandran,
2016). Modeling the fatigue resistance of amorphous polymers is still beyond the ability of the research community, and no main
consensus can be found from the literature (Ravi Chandran, 2016). The majority of the research has concentrated on low-cycle fatigue
(Krairi and Doghri, 2014; Lu et al., 2016), and regarding longer service lives and ratcheting, the research has been focused on uniaxial
cyclic loadings (Barriere et al., 2019; Holopainen et al., 2017; Kanters et al., 2016; Krairi et al., 2019; Wang et al., 2016; Xi et al., 2015).
The experimentation and modeling to detect crack growth in tiny zones (not applied at the macroscopic/component level) have also
frequently been restricted to uniaxial loading conditions (Hughes et al., 2017; James et al., 2013; Ravi Chandran, 2016). Interestingly,
according to the vast majority of fatigue data, the stress-life (S-N) curves and fatigue crack growth curves of polymers show similar
shapes to those of metals regardless of their microstructure (Ravi Chandran, 2016).

A fundamental fatigue damage model for predicting service lives of polymers under different stress levels and modes was proposed
in Barriere et al. (Barriere et al., 2020) (contrast to cycle-counting approaches, movement of the endurance surface and damage
evolution are defined in terms of stress increments, not of stress cycles.). However, also this models lacks in that it cannot take the
loading history into account and is therefore limited to low plastic loadings. On this basis, a unified fatigue model capable of predicting
fatigue damage from the ultralow-cycle regime (fewer than one hundred cycles) to the high-cycle regime (more than 100,000 cycles) is
proposed, and the capability of the model to simulate the tests is demonstrated. The entire model was programmed by using the Intel®
Fortran application and was also used in a user-defined material subroutine (UMAT) in the Abaqus/implicit finite element program
(Abaqus, 2014). For a comparison of the results, also the damage model introduced by Lemaitre and Chaboche (Lemaitre and
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Fig. 1. Initial and final finite element meshes under monotonic loading (a). Distribution of damage and the von Mises stress (prior to rupture) based
on the JC model and the Lemaitre-Chaboche model (Lemaitre and Chaboche, 1999) using remeshing (b). Increase in the von Mises stress under
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cyclic loading at 100 and 500 cycles (c). Damage in the specimen’s web at 500 cycles (d). Effect of impurities on the fatigue damage based on the
Holopainen et al. model (Holopainen and Barriere, 2018) (e). Experimentally observed regions of impurities (grey/black regions in the upper inset)
and calculated damage in the corresponding RVE (grey/black/white regions in the lower inset) and in the entire specimen at 100 cycles (red re-
gions). The final rupture in the test specimen is also shown. (For interpretation of the references to color in this figure legend, the reader is referred
t‘o the web version of this article.)

Chaboche, 1999) (the [1 — D] concept) coupled with the established Johnson-Cook (JC) material model was implemented in the
Abaqus.

The monotonic and cyclic tests covered uniaxial tension, torsion, and their multiaxial combinations. Based on the results of both
testing and modeling, the influences of the mean stress, stress amplitude, loading rate, load path, and loading history on the cyclic
deformation behavior (ratcheting) and service life are demonstrated, and the relationship between the model variables and micro-
structural changes is addressed.

2. Methods
2.1. Influence of geometrical and material imperfections

In addition to experimental observation (X-ray tomography and Werth video-check) of the defects of test specimens, simulations
were utilized already at the beginning of the study to obtain test specimens without weaknesses. Consider first the simulated devel-
opment of damage (0 < D < 1) in an imperfect test specimen. Analysis of entire structural components for long service lives requires a
great deal of computational resources. Therefore, the analysis is done in practice using either a simple approach for the whole structure
or an advanced approach only for the most stressed portion of the structure.

Considering first a simple approach for the entire specimen. The isotropic ductile damage model introduced by Lemaitre and
Chaboche (Lemaitre and Chaboche, 1999) (the [1 — D| concept) was coupled with the well-known empirical viscoelastic-plastic
Johnson-Cook (JC) material model (Abaqus, 2014), and the coupled model was implemented in Abaqus/Explicit (Abaqus, 2014;
Cherouat et al., 2018). The adaptive remeshing procedure used by Cherouat et al. (Cherouat et al., 2018) was applied to polymers for
the first time in this work. The remeshing was conducted with linear tetrahedra elements. The idea of remeshing is that the initially
imperfect mesh is constantly updated to monitor the development of plastic deformation (crazing) zones based on the previously
updated deformed mesh of the specimen. The updating of the mesh is based on an adaptive methodology implemented in the Optiform
mesher package (Cherouat et al., 2018). When the damage variable D reaches its maximum (at integration points), the corresponding
elastic modulus becomes zero, and the corresponding element is considered fully damaged and thus eliminated. A new boundary and
new domain mesh are then generated. A small nonsymmetry in the initial element mesh, as shown in Fig. 1(a), reflects a small initial
imperfection in the geometry or material of the specimen.

Consider a monotonic, static uniaxial tension increasing from zero to the rupture of an imperfect specimen at a strain of 0.14. The
JC model parameters E = 2100 MPa, v = 0.38,A = 40 MPa, B =17 MPa, n = 0.42 (plastic hardening), C = 0.025 (viscosity), and the
damage model parameters Yo = 0.0012 MPa, y = 2.0, and @ = # = 1.0 were fitted to this data. The corresponding parameter symbols
are used in Cherouat et al. (2018). The development of damage and the von Mises stress distribution prior to rupture of the specimen is
shown in Fig. 1(b). According to the [1 — D] modeling concept applied, the von Mises stress eventually vanishes in the most damaged
region, implying that the material can no longer withstand the load.

Based on the same initial mesh as under the static load, a cyclic tension-compression loading (with a sinusoidal waveform) was also
simulated; the stress ratio R = —1 (denoting the ratio between the smallest and largest stress), frequency f = 5 Hz, and the maximum
stress of 24.3 MPa were used. The von Mises stress first increases in certain regions, as shown in Fig. 1(c), and ultimately vanishes due
to the fully developed damage, which development is similar to that observed under the static load.

Although the applied model with the remeshing concept (Cherouat et al., 2018) is robust, it seems to overestimate service life; when
extrapolating damage based on the development during 500 cycles (Fig. 1(d)), the service life attains the value of 60,000 cycles, while
the measured service lives, although observed for R = 0.1 (tensile ratcheting), correspond to approximately 20,000 cycles. Hence, the
damage development is sensitive to initial imperfections and is localized around them. Therefore, particular attention has been paid to
test specimen quality, the matter of which is discussed below. Moreover, the JC constitutive model and the damage model used are
purely empirical and do not include the specific features of amorphous microstructure observed under various long-term loading
conditions.

Considering next a microstructural based approach for the most stressed portion of the specimen. The failure of amorphous
polymers is closely interconnected to their microstructure and is due to the nucleation of microdefects or inhomogeneities, which
result in considerable local inelastic deformations (Lugo et al., 2014; Poulsen et al., 2005; Ravi Chandran, 2016). Based on the
micromechanically-based viscoelastic-plastic constitutive model and the fatigue damage model (Holopainen and Barriere, 2018), the
influence of such inhomogeneities on fatigue damage in a representative volume element (RVE) is shown in Fig. 1(e) (simulated by
Abaqus/implicit (Abaqus, 2014)). The mesh consisted of linear hexahedra elements. A load frequency of f =5 Hz, a maximum stress of
97% of the peak yield stress (60 MPa, the highest stress observed before softening under displacement-control (Dreistadt et al., 2009)),
and a stress ratio R = 0.1 (sinusoidal waveform) were applied. First, the fatigue damage was calculated for the entire specimen. Then,
the applied load along the top region and the right lateral side of RVE was taken from an analysis of the entire specimen (Holopainen
and Barriere, 2018). The focus of this study was the surrounding PC, i.e., the fatigue damage of inhomogeneities was not taken into
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consideration and they were considered to be elastic. The finite element simulation of the RVE demonstrates that damage evolves in
the vicinity of the inhomogeneities and attains its threshold for crack opening therein, while the majority of the material does not
appear to be as much damaged. This finding conforms to our experimental observations in that the macroscopic ratcheting de-
formations show a rapid increase only when majority (90%) of the fatigue life (service life determined based solely on the fatigue
failure) has been attained. Therefore, damage does not notably influence the macroscopic stress response during the fatigue life, i.e.,
fatigue damage and stress can be considered uncoupled, cf. (Holopainen and Barriere, 2018).

The predicted fatigue life becomes about 500 cycles which is rather close to the measured life, almost 600 cycles. However, the
applied fatigue damage model results in an almost linear development of damage up to rupture (Holopainen and Barriere, 2018),
which is quite unrealistic. The model is also based on a phenomenal description of viscoelasticity, unrelated to amorphous micro-
structural changes, and the plastic evolution law (Boyce et al., 1988), which is quite inaccurate for predicting the transient yield peak
and thus the shape of the strain loops under cyclic loads (Anand and Ames, 2006; Barriere et al., 2019). Therefore, a more sophisticated
model is proposed based on microstructural changes, and this model is discussed below.

2.2. Manufacturing of specimens

A thermoplastic mold with specific die cavities (based on ASME standard) was manufactured for the tensile and torsion test
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Fig. 2. Injection molding press equipped with a torsion test specimen mold (with a 22 mm screw diameter, 30.4 cm® maximal injection volume,
160 MPa maximal injection pressure, and 450 "C maximal injection temperature) (top left). The injection unit is on the right side. Shear rate vs.
shear stress and temperature for diry PC: 260 °C (black), 280 °C (blue), 300 °C (green), 320 °C (yellow) (top right). Design (a) and dimension (mm)
(b) of the torsion specimen. The testing setup (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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specimens (see Fig. 2, top left). The injection tests were realized with a dry polycarbonate (Lexan® 223R granulate, with a density of
1.2 g/cm?, was provided by Sabic) held at 130 °C for four hours. The mold temperature was controlled by a water cooling/heating
system from the ambient temperature to the mold temperature. The mold was maintained at 80 °C during the injection. The injection
temperature comprised of the three heating zones of the injection nozzle (entrance 305 °C, middle 300 °C, and injection 295 °C). The
injection pressure was set to 65 MPa. The specimens were cooled at ambient temperature.

The shear rate vs. shear stress and temperature from 260 °C to 320 °C, which responses describe the polymers’ capability for in-
jection molding, were measured using a standard capillary rheometer with a die cavity of 1 mm in diameter and 16 mm in length, see
Fig. 2(top right). The so-called pseudoplastic behavior was observed, and to product test specimens without significant external de-
fects, the runner and gate size of the mold were increased. It can be concluded that the PC applied is prone to temperature and thus is
rather challenging to inject. However, after the said improvements were made, a large set of torsional and tensile tests specimens (over
one hundred) were manufactured without significant external defects. Using differential scanning calorimetry (DSC), it was also
verified that the injected specimens had the same physical properties as the granulate.

The geometry of the injection-molded tensile specimens is demonstrated in Fig. 1(top) in compliance with the standard (type IV
specimen) (ASTM, 2003). A more detailed account of the geometry is given in Barriere et al. (Barriere et al., 2020). The geometry of the
torsional specimens was determined according to the standard (ASTM, 2002) and is shown in Fig. 2(a-b). This specimen geometry,
with the smaller inner diameter of 9 mm, was used to prevent untimely buckling under torsion. Because the test results are susceptible
to flaws in the specimens, particular attention was paid to the quality of the specimens. The flaws were analyzed with X-ray to-
mography and Werth video-check. The high quality of the final shape was further verified by employing optic 3D metrology (Alicona
analyzer). The confirmed surface faults were under 0.03 mm. The effect of the faults on the test results can be interpreted to be
infinitesimal because the inaccuracies they caused in the cross-section and outer radius (6 mm) of the gauge section are only 1.1% and
0.5%, respectively.

2.3. Tension tests

The tests were conducted by employing an Instron® Electropulse E10000 machine having a displacement capacity of + 30 mm and
a load capacity of 10 kN:

- Displacement-controlled quasi-static tests at the strain rates of ¢ = 0.001, 0.01, and 0.1 s ! until rupture;

- Cyclic force-controlled tests at f = 5 Hz (sinusoidal) until rupture at R = 0.1 and 0.5. The maximum stress values were 37.5, 50, 75,
90, and 97% of the peak yield stress, 60 MPa.

- Cyclic force-controlled two-step tests at R = 0.1 and f = 5 Hz applying two different consecutive load spectra with maximum stress
levels of 54 MPa and 30 MPa and vice versa.

The first test set was designed to observe the tensile yield strain and stress, the peak yield stress and the corresponding strain, and
softening at large strains. Representative stress vs. strain curves are given in the preceding study (Barriere et al., 2020). The elastic
modulus becomes E = 2100 MPa (strain ¢ = 0.02 and stress ¢ = 42 MPa), and the peak yield stress and strain vary between 60...63
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Fig. 3. The Ashby chait for the relation between the yield stress and Young’s modulus of different materials (Cubuk et al., 2017).
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MPa and 0.05...0.07 depending on the strain rate. The value of E complies with the Ashby chart shown in Fig. 3, indicating the relation
between the yield stress oy and the Young’s modulus E: 6, = Eey = E(0.029 — 0.003) = 54 MPa (Cubuk et al., 2017). The second test
set was designed to study the effect of the mean stress and the stress amplitude on the ratcheting deformation and service life. The last
test set was used to investigate the influence of loading histories on the remaining service life. The force F and the corresponding axial
elongation u were recorded by the testing machine. In addition, the axial elongation was measured by an extensometer, as detailed in
Table 1, and the results of the machine and extensometer were similar. The extensometer, glued onto the surface of the specimens to
avoid slipping, was capable of all the tests up to the breakage of the specimens. The strain was calculated as ¢ := u/L, where L is the
gauge length of the extensometer applied. The nominal stress o := F/A has been chosen because it is easy to measure and calculate:
measured force F divided by the original cross-sectional area A. The error in relation to the true Cauchy stress is small because the
cyclic strains are relatively small (less than 10% as is depicted in Fig. 7.). Measurements of the cross-sectional area before and after the
tests further showed that the change in the area remains small.

2.4. Torsion tests

The load cell capacity and the maximum angle of the testing machine applied were 4+-100 Nm and 135°, respectively. The following
tests using force control were conducted:

- Quasi-static torsional tests using the torque speed 1 Nms ! until rupture;
- Cyclic tests at f =1 Hz (sinusoidal) and R = 0.1 until rupture when the maximum shear stress values were 30%, 50%, 65%, 75%,
82.5%, and 90% of the ultimate shear strength, 40 MPa.

The first test set enabled the ultimate shear strain and strength to be evaluated. Representative stress vs. strain curves are given in

the preceding study (Barriere et al., 2020). Despite the standard applied (ASTM, 2002) is aimed at metals, the dimensions of the
specimen and conventions were directly adjustable for polymers and the testing machine used. In addition, the torsion angle was
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Fig. 4. Idealized chain network structure according to the 8-chain model (Boyce et al., 1988) (a) and to the Jiang et al. model (Jiang et al., 2020)
(b). The base vectors Ny 2,3 are the principal directions of the plastic deformation, the dimension of the undeformed element is aq, and 7 denotes the
plastic chain stretch (Holopainen and Barriere, 2018). A 3D confocal laser scanning microscopy surface image showing bundles of joined shear
bands (James et al., 2013) (c). The width of the region is about 200 pm. Initial proposal for r (dashed), the inspected values (circle), and the final
smooth curve according to (3) (solid) (d). Effects of g and b (demonstrated by the arrows that indicate an increase in gy and b) on the shear
ratcheting strain (e). Growth of the fatigue crack length in PC single-edge notched tension (SENT) specimens (Ravi Chandran, 2016) (f).
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Table 1
Details regarding the test equipment.
Test ASTM-standard Extensometer Capacity of extensometer Data acquisition (Hz)
Monotonic tension D638-03 Instron 2620.601 5 mm, i.e., 20% strain 20
Creep and recovery D2990-01 Instron 2620.601 5 mm, i.e., 20% strain 1
Cyclic tension D2990-01F Instron 2620.601 5 mm, i.e., 20% strain 1000
Monotonic torsion E2207 MTS 632.68F 127, i.e., 3% shear strain 15
Cyclic torsion E2207 MTS 632.68F 127, i.e., 3% shear strain 200
Cyclic tension-torsion E2207 MTS 632.68F 2.5 mm, i.e., 10% strain; 10

12°, i.e., 3% shear strain

 Not applied to the loading.

measured by the extensometer presented in Table 1. The extensometer was securely glued onto the surface of the specimens to avoid
slipping. The shear strain and stress were defined as: y = d,8/2L, and 7 = 16T/z(d,” — d;*)(d, + d;), where @ is the angle in radians, T
denotes the torque, d, =12 mm and d; = 9 mm are the outer and inner diameters, respectively, and L, =40 mm is the gauge length of
the specimens.

2.5. Combined tension and torsion tests

This test set was conducted to investigate the influences of different multiaxial load paths on the ratcheting deformation and service
life of amorphous polymers. The different load-controlled load paths are depicted in Fig. 9. The duration of each cycle was 20, i.e., the
frequency of 0.05 Hz was applied. The applied standard, including the details of the tests, is given in Table 1. The torsional test
specimens were used, and the axial force, axial elongation, torque, and torsion angle were recorded by the testing machine. The torsion
angle and axial elongation were also measured by the extensometer. The axial stress was calculated as 6 = 4F/xz(d,> — d;®).

2.6. Errors

To ensure the reliability of the results, each test was performed at least twice. The closest test result to the mean curve is applied and
shown in the following figures. Considering the primary and secondary cyclic creep stages under uniaxial tension and pure torsion, the
maximum standard deviation (SD) 0.0004 and 0.0022 in the ratcheting strains were observed when the maximum stress level 75% of
the ultimate tensile and shear strengths was applied. These SDs correspond to less than 2% and 6% of the measured ratcheting strains.
Another data which differs the most from the used data is shown in Figs 7(b) (tension) and 7(f) (torsion). Furthermore, the maximum
SD under multiaxial loads was observed when the butterfly-type load (maximum stress level 50%) was applied, see Fig. 11(f). The
maximum SD before the tertiary creep stage is 0.001 which corresponds to less than 10% of the measured ratcheting strains. During the
tertiary creep stage, error between the data and model prediction is larger. However, the errors can be considered low enough for the
model development. Moreover, in all loading cases, no increasing trend of error could be observed during the primary and secondary
creep.

Fig. 8 further shows that the deviation between the fatigue lives is generally small. The largest deviation appeared under tension
when R = 0.5, see Table 2. The extreme variation is due to the maximum stress level used, which is almost equal to the tensile strength,
60 MPa. Under torsion, the deviation of the fatigue lives was observed the smallest (less than 10%), and only the closest test result to
the mean curve is depicted for the clarity of the figure.

The subsequently proposed model for the simulation of the data per se is unique without variation of the results. However, the least-
squares fittings to obtain the requisite model parameters result in some errors (performed by Matlab’s Curve Fitting Toolbox™). This
computation error in relation to data error in the model development is considered small. On the determination of this computation
error, it is referred to the Numerical Recipes series (Press and Teukolsky, 2007, Chapter 15).

3. Modeling of amorphous polymer behavior
3.1. Improved prediction of plastic deformation
The microstructural-based BPA model (Boyce et al., 1988) and the Anand and Ames model (Anand and Ames, 2006) represent the

two key state-of-the-art approaches for investigating macroscopical material domains and entire structures. These two models are both
based on the distinguished Haward and Thackray model (Haward and Thackray, 1968), which has been supplemented by a few

Table 2

Deviation of the measured fatigue lives under uniaxial tension (R = 0.5).
Gmax [MPal: 59.4 58.2 54 45 30 22.5 15
SD/min(N) %: 67 <1 10 <1 22 8 <1
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internal state variables, enabling the prediction of large plastic deformations in three dimensions. Since the Anand and Ames model
can accurately predict the transient yield peak that is typical of amorphous polymers (due to the change in local free volume char-
acterizing the change in the internal state during yielding), this model was used as the basis of this research.

According to the thermodynamically correct Anand and Ames model, the evolution of plastic deformation is modeled by the
following power-law type strain rate:

£ 1/my
o -
e (.s'(') — 1/3(1.’1) 20 )

where Vo, Mg, and « denote the material parameters, s(!) is an internal state variable (representing the molecular resistance to plastic
shear flow (Anand and Ames, 2006)), I = tr (6 —f) = tr (6) = tr (6) is the first invariant indicating pressure (8 is the traceless deviatoric
backstress (Anand and Ames, 2006; Barriere et al., 2019)), and () = 4/tr (6'2) /2 is the equivalent reduced stress. The notation tr

denotes the tensor trace. Plastic deformation is suppressed under compression: micro-cracks are opened in tension and partially closed
in compression (Anand and Ames, 2006; Cherouat et al., 2018). However, the plastic strain rate (1) has not been designated for torsion
and multiaxial loads and is rather inaccurate under such load conditions (Barriere et al., 2020). Therefore, the following improved
model is proposed (the changes are highlighted in green):

7

s —1/3aly + 1 (1. ;o)

AP = o )Mo= 0 @)
where f is the function representing additional molecular resistance to plastic shear flow; ay, where k = 1...8, are material parameters
(positive); and I, = 1/2((tr&)* —tr (6°)) is the second invariant. Based on the available experimental data, the two different values 7}
=y for tension/compression and 7 = 7 for shear i # j, where i,j = 1,2,3, are considered sufficient under multiaxial loads. The
viscoplastic flow rule is given by D'P = (P4, /7\!) 4775, /(1)) /2, where &, and &, include the diagonal and non-diagonal components
of & (Barriere et al., 2019). The equivalent rate of the plastic deformation for the evolution of the internal, scalar variables s in (1) and

@ (free volume) (Barriere et al., 2019) is given by y'? = 2tr((D"P)2).

The function f targets at improving the accuracy of evolution of the plastic deformation in (2) under different stress levels and
modes. The required form of f was found to be quite complex and, after trial and error, the initial values of f were found from the
fittings to the measured ratcheting strains under torsion, see Fig. 4(d). Then, the function was split into the two parts r = r; +r,
representing relaxation away from the initial state (generated during the manufacturing process, and the fatigue loading is small
enough to return the initial state after unloading) and growth, respectively. The initial response of r from zero was modeled as

d(ry +4)

d]g = _C(FI +A)’ C> 07

and the integration results in In(ry +A) = —CI; + B, where A = r; i + 1, £y min = abs(min(r)), is a parameter to keep the logarithm
real. The parameters B = In(f; p;,) and C = B/I> min are taken from the conditions (I = 0) = 0 and £, (I = Iomin) = F1 min- Finally,

CI. CI.
F1=¢€ 7'(lv"—l,mm_e 7'lr"—l‘min)

when the transformation r; - r; + 1 was used.

Based on the data, the development of r, after the relaxation stage was approximated by r, = Coe ©2f(I,) — C,, where f =I5 is a
suitable estimate. The value of C4 is obtained from the condition £; 1in = £ min and the values of C; and C3 from the conditions dr, /dI»
=8> 0, when 5 = F3 iy, a0d £ (Iz = Iymax) = Famax- Choosing & suitably, C3 = 0.005, C4 = £y iy, and Cs = exp(Calomax) (Fomax +
C4)/(— Iy max) = 3E — 5. Finally the expression

F= 976”12 ( - Fmin(‘1 - 87CI12))US’75[’1,MH + (C2676312]§ - C4)Izmin5 <l max ?

where Cy + C; = C,Cy << C; (an order of magnitude smaller), was found and is shown in Fig. 4(d) (dashed curve). The initial drop
was observed mandatory to capture cyclic creep under torsion. However, this proposal for f is not smooth and includes £,;, and £,.x
which are difficult to determine. Therefore, based on the initial f proposed, a smooth function

r=e “'h( —a (] —e 21)) + age "‘:'2._’2,

(the term —a; (1 —e j2) is for the initial drop) was first determined for torsion and then it was enhanced for the combined torsion and
tension (a function of both I; and I5). The final form is

F=e¢ b ((azyse“‘*j‘lg - (15,5) (] — e’ﬂ%) —a (1 - e’iz) + asiz). (3)
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It is assumed that I; = \/E and I, = \/IE are better estimates than I; and I, under compression; the influence of I; in the denominator

of (2) is considered enough. Under torsion, I, = —(r — ,6‘12)2 ~ —7? (fatigue loads), and this approximately also holds under combined

tension and torsion since then I, = off; — 3/4;9%1 —(r— ﬁlz)z, and the backstress component f,, in relation to ¢ remains small under
the relatively small strains (Holopainen, 2013), observed under ratcheting loads. The material parameters used are ay, wherek =1,4,7,
8. In addition, for y}? (axial deformations, s =1 = o) and 7}* (shear, s = 2 = 1), defined above, the parameters o, and as 5, where s
= 1,2, are different, i.e., the total number of parameters k becomes eight. The constant £ = 10> MPa * in the third term (in
parenthesis) is a sufficiently small number for the function r to be smooth at small stresses.

The function f is demonstrated in Fig. 5(a). To improve predictions, r tends to restrain the evolution of plastic deformation (2) at
high shear stresses and enhance it when the shear stress is low (r is lowered). The function ¢ is a composition of five components, each
with a targeted purpose. The magnitude of £, in the intermediate- to large stress region, is controlled by the first exponent function and
the second term in the first parenthesis. The exponent function of I; for uniaxial loads and the quadratic function of I for shear loads
were observed to be the most relevant forms to predict data and the molecular resistance. The first exponent function limits the
magnitude above all at high shear stress levels and therefore @y << a4. The last linear term fine-tunes the growth of r. When a shear
load increases from zero, f rapidly reduces to agl, — a7 (1> and .f!'f’fg are close to zero) representing the minimum additional mo-
lecular resistance to plastic shear flow.

When modeling cyclic torsion up to rupture, it was observed that the free volume ¢ is dominant, and the constant parameters g, and
b, which are used in the preceding models to predict uniaxial deformation behavior (Anand and Ames, 2006; Barriere et al., 2019), are

insufficient and thus are replaced by nonlinear functions. Therefore, the saturation value 5 of the variable s in (1) is modified to be
§(1) = Ssv(l + b(1y, I3: by 3(505‘/ - 99(901- I, 1s; gy )) >0, e

where s, and ¢, are the original model parameters and by, where k =1,...,4, and g, where k = 1...6 are additional parameters
(determined from torsional and multiaxial tests). The evolution of the free volume is defined as (Barriere et al., 2019)

@ = gu(s“) /sw = l)}'f”” >0,
where

0= (e (s ) -9 (1 )0

and g, where k = 1, ..., 6, are material parameters. The constant ¢ = 10~> MPa~* is a sufficiently small number for the function g, to be
smooth at small stresses. The function g, was determined based on the similar phases as for r. As shown in Fig. 5(b), the predicted rate
of the development of free volume (described by the dominant function gp) is at its highest at a relatively low shear stress, and it then
rapidly reduces despite an increase in stress. Similar growth peak is not provided under uniaxial tension, when g, approaches the
constant value g5 — g4 > 0 for adjusting softening (Anand and Ames, 2006; Barriere et al., 2019). The effect of g, on the shear
ratcheting behavior is demonstrated in Fig. 4(e): the function g, controls primarily the deformation before rupture (tertiary cyclic
creep). From the view of the polymeric microstructure, the function g limits the free volume, and thereby captures the highly
nonlinear behavior of finite chain extensibility, i.e., entropically constrained stretching affected by the plastic deformation.

The first exponent function and the term I, /g5 in (5) controls the magnitude of gy, evolution of the free volume, and consequently,
the saturation value (4) and the variable s) which influences the plastic deformation according to (2). The lower the value of g, the
greater is the saturation value and the variable s(!) restraining the plastic deformation according to (2). As mentioned above, the plastic

(a) (b) (c)
107 5 ‘ 2500 - - : . _
8
4 2000
6
? 4 3 1500 -
| b
= 2 g0 5 1000 +
w o
1 500 1
D
'4 0, i — ui 0‘ . ‘
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Fig. 5. Evolution of the proposed function r (a). Solid and dashed curves are for 6 =0 MPa and ¢ = 10 MPa (multiaxial load). Evolution of g; and b
for the free volume (b and c). Solid and dashed curves are for ¢ = 20 MPa and ¢ = 30 MPa.The symbols ¢ and 7 indicate the axial and shear stresses
(Cauchy), respectively.
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deformation is caused by crazing (changes in the fibril/chain disentanglement), i.e., the first component of g, describes stabilized
crazing on average when the shear stress is high. The initial growth of g, at low shear stresses is lowered by the constant g4 as well as it,
under multiaxial loads, is reduced by the composition (1 —g213)I», i.e. finite chain extensibility is reduced under multiaxial loads. The
quadratic format of I; was observed the most relevant for capturing data and thus, the putative chain extensibility. The divisor in the
parenthesis reduces the magnitude of g, in the intermediate- to large stress region as demonstrated in Fig. 5(b).

The effect of free volume on the molecular resistance and plastic deformation is further strengthened by the function b in (4)
defined as

b—e b (1 +b31,272)72 / by +bre >0, (6)

where by,k =1,...,4, are material parameters. The function b was determined based on the same phases as for r (similar shapes).
Under uniaxial loads, b = b; (constant) adjusting the peak yield stress and softening (Anand and Ames, 2006). The function b is
demonstrated in Fig. 5(c) and its effects on the ratcheting behavior are demonstrated in Fig. 4(e): the function b controls the primary
and secondary creep. In accordance with the function f, the function b tends to restrain the evolution of plastic deformation (2) at high
shear stresses (high b increases the saturation value (4) and the variable s)) and enhance it when the shear stress is low. When a shear
load increases from zero, b rapidly reduces to zero (by the last term) when Y =5, in (4) and the development of the plastic
deformation resistance s1) is suppressed. The growth of b under different stress combinations is controlled by the first exponent
function and the second term in the parenthesis, where the quadratic formats of I; and I, were observed the most relevant for pre-
dicting data for the plastic deformation influenced by the free volume.

As is demonstrated in Fig. 5(a—c), the functions f, b, and go approach the values used in the Anand and Ames model (Anand and
Ames, 2006) as the shear stress decreases to zero (and ;'/}J? in (2) approaches 77 in (1)). Thereby, the number of additional parameters
needed in the functions r, b, and g, is reduced to 16. Although this number of parameters may seem large (original 18 + added 16 =
34), almost the same number is needed in the closest state-of-the-art models to model the uniaxial loading alone (Anand and Ames,
2006; Jiang et al., 2015; Krairi et al., 2019). Generally speaking, introducing additional parameters to an existing constitutive model
makes the modified model more flexible. In addition, the proposed functions f (additional molecular resistance limiting the evolution
of the plastic deformation), go (evolution of the free volume), and b (influence of the free volume on the molecular resistance) are
essential for modeling the measured cyclic plastic creep under different stress levels and modes. After trial and error, the proposed
functions f,go, and b are essentially based on the exponent functions which are typically used to describe various natural phenomena
such as creep and strain recovery after unloading (e.g., viscoelastic Maxwell and Kelvin-Voigt models) in solid mechanics (Sadd, 2018).
A further discussion with connections to the polymer microstructure concerning the effect of the functions r, go, and b is given in
Section 4.

3.2. Calibration of the viscoplastic model

The majority of the constitutive model parameters has already been used in the previous model (Barriere et al., 2019), and they all
are given in Table 3 (the first 18 parameters were calibrated to one monotonic and one cyclic uniaxial data). Notably, the predicted

Table 3
Constitutive model and fatigue model parameters for the PC used.

Elastic and viscoelastic parameters

-6 0

Parameter E v Vo a my s@ ca x 10 P sat 2
MPa 51 MPa MPa MPa MPa
Value ... 2000 0.44 0.031 0.204 0.19 12 4.5 2500 8000
Viscoplastic parameters
Parameter so my Cr N hy b & Sev Pev
MPa MPa MPa MPa
28.0 0.037 14.0 1.65 3500 600 0.014 26.5 0.0013
a; x 10* azq x 10° g x 10° ay s 52 az ag by x 10%
MPa 2 MPa 3 MPa? MPa ! MPa MPa MPa MPa! MPa 2
7.7 13 1.8 0.6 2.0 1.0 3.5 0.015 7.0
bs x 10° by g x 10° & x 10* g3 84 gs g x 10%
MPa—* MPa* MPa—* MPa~2 MPa? MPa~*
7.0 1.8 2.6 3.0 0.65 0.346 0.36 7.0
Fatigue model parameters
Parameter 6o a C Kx10° Ly Lo 4 c Q
Unit ... ... ... MPa MPa~! MPa~!
Value ... ... ... 3.5 0.075 2.7 5.0 150 149 6000 0.03 0.0054
Parameter Q, x 104 Ls Ls &2 A x 1010 q
Unit e ve e MPa—2 MPa MPa MPa
Value ..v viv v 2.5 33 74 1600 1.2 2.45

11



T. Barriere et al. International Journal of Plasticity 147 (2021) 103106

ratcheting strains are sensitive to the exponent parameter mg, which is calibrated to one cyclic data for ratcheting deformation
(Barriere et al., 2020). Under uniaxial loads, the functions go and b approach the constant values gs — g4 > 0 and b = b, respectively,
determined from a monotonic uniaxial test. The greater the difference gs — g4 and the value of by, the greater is softening (Anand and
Ames, 2006).

The preliminary values of the additional parameters ax,k =1,4,7,8,a25 and ass,s = 1,2, 8.,k =1,...,4,6, and by,k =2,...,4,
were determined during the development of the improved model for the observed nonlinear torsional and multiaxial ratcheting. The
parameters a,,&;, and b, are used to restrain the growth of the corresponding functions r, g, and b under large stresses, respectively,
and the parameters as ¢, @7, &2, and g4 are then used to define their initial developments under small stresses. The remaining parameters
g, &, 0y, 83,86, b3, and by are used to define the growth of the functions in the intermediate- to large stress region. Since the first
exponent functions of r,gp, and b limit the growth above all at high shear stress levels, it is required that a; << a4,8; << g3, and b,
<< by. It was also required that as << a7 and az s << a5 (to reach the minimum of ), bg << b, (to limit the growth of b), and also g,
<< gz and g, << g4 for g to be positive. The proposed functions have their minimum and maximum values. Considering pure shear or
torsion (under multiaxial loads, examination of extreme values is more complicated and does not produce anything more that the
parameters are positive). Then the derivative dg/dI, is approximately

—aif +ag % O,

i.e., r < ag/a;. The minimum of b under shear loads is close to I, /b4 and this value in db/dl, = —byb + 1/bs Z 0 (b < 1 /b,by4) yields b,
< 1/T,. The maximum of g, under shear loads is approximately e &% (T, /g3 —g4) and the derivative dgy /dT> is

—&180 + 87""%/33 ~ 0,

when finally g, (I —gags) = g11o = 1 (1> >> g3g4), i.€., g < 1/I>. After few iterations, it was concluded that g, < g < g < 0.001 and
bs < by < 0.001.

As has been discussed in the preceding section, many parameters have a physical interpretation and meaning and they can be
determined from targeted tests taking the proposed constraints into account. The final values of a;, a7, as,81,83,84, b3, and by (eight
parameters for shearing) were defined by least squares fitting of the targeted torsion data (R = 0.1) at different maximum stress levels
of 30%, 50%, 75%, and 82.5% of the ultimate shear strength (40 MPa). The remaining eight parameters, a, 1,@:5,@4,051, 052,82, 8,
and bs for multiaxial loads, were fitted using least squares fitting to the data corresponding to combined tension and torsion (the
squared and butterfly-type loads) when the maximum stresses were 30% and 50% of their strengths.

In summary, the number of additional parameters is 16, and their values were determined from eight tests. Based on the best
understanding, the additional model parameters should be determined in the order just presented: first for torsion and then for
multiaxial loads with the increasing stress levels. For the feasibility of the model in an industrial context, the possibility of using
artificial intelligence in the calibration procedure would be of interest to study in future (Jung et al., 2020).

3.3. Improved prediction of the fatigue life

A unified fatigue model that is suitable for both high cycle fatigue (HCF) and LCF regimes under various loading modes is proposed
here. This continuum-based fatigue model is an extension of the Ottosen et al. model (Ottosen et al., 2008) for HCF of metals, whose
model is based on the concept of an evolving damage variable and an endurance surface moving in stress space. The center of the
endurance surface is defined by the backstress quantity a. The prerequisite is the existence of an asymptotical extreme of lifetime, i.e.,
the endurance limit, and the fatigue under this limit is extinguished. The endurance limit of amorphous polymers is the threshold
below under which no plasticity-controlled failure will occur (Pastukhov et al., 2020). As a result, the endurance limit does not depend
on the processing conditions or the thermomechanical history and therefore can be used as a design parameter. Unlike in most
important approaches for fatigue (cycle-counting and cumulative damage approaches), in this approach, the damage evolution and
movement of the endurance surface are determined in terms of stress increments, not in terms of stress cycles (Frondelius et al., 2019;
Ottosen et al., 2008). Therefore, this approach is well suitable for random 3D loadings.

To account for the loading history under plasticity-inducing loads and to simulate fatigue under torsion and multiaxial loads more
accurately, the Ottosen et al. model (Ottosen et al., 2008) was modified. The endurance function (1) in Ottosen et al. model was
replaced by (the changes are highlighted in green)

1
B=—(G+ag(l;a c)+ygulle; Ls, Ly, 02) + g1y, 12 Q, Qp) — 60), ()
an

where & is the equivalent reduced stress (Barriere et al., 2020; Ottosen et al., 2008),

g\tsb=a(l —ch)I,

gu :L}C'—Lz;((:+? (cxp(_‘fzg) —l)), &= \/E/ru, and
2 4

gm = Qulil, — OF.
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The invariants I1,I»,1;, and I, were presented previously, and 7, (40 MPa) is the ultimate shear strength. The original fatigue model
parameters needed are o, (endurance limit under the fully reversed load as R = —1 Ottosen et al. (2008)) and a (slope of the Haigh
diagram as R = —1 Ottosen et al. (2008)). The additional parameters needed are ¢, Q, Q, L3, L4, and 95.

It is required that # > 0 when the damage evolves (Ottosen et al., 2008). In the endurance function (7), the linear relation al; in the
Ottosen et al. model (Ottosen et al., 2008) is replaced by the sum of the nonlinear functions g, gn, and gy to reduce f and thus, damage
under heavy normal and shear stresses and under their combinations (LCF) respectively, see Fig. 6(a). The LCF damage in amorphous
polymer structure has been shown to develop through the mechanism of cyclic fracturing of fibrils (Ravi Chandran, 2016), leading to
accumulated void volume fraction and cracking (James et al., 201 3). Therefore, on the microstructural basis, the proposed functions g,
g, and g describe a reduced accumulation of the void volume fraction on average under different loading modes (LCF).

The first invariant I; in the function g reduces f# and thus, fatigue damage under compression: micro-cracks are opened in a tensile
state, whereas they are partially closed in a compressive state. The function gy has the asymptote L3£ > 0 as { is small (8 and damage
increase in the HCF region) and (Ls — L4){ < 0 as { is large (LCF region, Lz < Ls), see Fig. 6(a). The curvature d, determines how
rapidly the asymptote alters. A possible increasing effect of I in gy and # under mixed tension-compression is small (Q, << Q). A
comparison of the endurance functions according to the proposed model and the original fatigue model (Ottosen et al., 2008) is shown
in Fig. 6(a) (before a has been accumulated, being yet small in relation to the stress). It turns out that the endurance function # must be
asymptotically reduced at high stresses (LCF region) to accurately reproduce the fatigue life. This feature is in line with the experi-
mental observations, and the modified model encompasses a large range of mean stresses, as shown in Fig. 6(b).

The basis of improving the endurance function is the well-established Gerber’s rule (1874) for metals, which is modified for
polymers to be

[}
oa:m(l—(.(?) ), (8)

where o, is the peak yield stress (negative in compression). The parameters used are {; = 1.5 and ¢, = 1.3 (in the original Gerber’s rule

(1874), ¢; = 1.0 and ¢, = 2.0). The endurance surface § = 0 under uniaxial loads simplifiestos, =0 1 — g =06 | — ao, + ay(ow)?

cf. (Ottosen et al., 2008) (where 6, =0 1 — aoy), where @; = ac and o 1 is the fatigue strength as R = —1 (equals to o, as fatigue stops

generating). The comparison between this 1D endurance surface and Gerber’s rule (8) shown in Fig. 6(b) reveals that they are close in

tension, but the linear term ao,, (al; in three dimensions) is mandatory under compression to obtain sufficiently large fatigue strengths:

it is assumed that the fatigue strengths under compression are considerably greater than those under tension. The endurance function

(7) further includes the functions gy and g for shear and multiaxial loads, respectively (they vanish under uniaxial loads).
Moreover, to include the loading history in the fatigue damage model in the LCF regime, the term
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Fig. 6. Finite element simulations for tension and torsion (top). In the torsional specimen’s web, pure shear prevails and thus, LE = LE12.
Endurance function g according to the proposed model (green) and the original model (Ottosen et al., 2008) (black) (a). Function gy (divided by the
endurance limit 64) used in f is also shown (pink). Stress amplitude vs. mean stress (Haigh-diagram) for 60,000 cycles using the proposed model
(black solid) and the modified Gerber’s rule (8) (dashed) (b). Markers » denote the data points. In one dimension, g (6m;a,a1) = aoy, — @ (r.rm)z. The
Haigh-diagram for the endurance limit (dashed) by the modified Gerber’s rule is also shown. Two-step loading (c¢). The inset presenting the lower
curve shows the cyclic loading from high to low. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 7. The 30th, 300th, and 3000th loops under uniaxial tension when f =5 Hz and R = 0.1 (a). The green and black colors mean the model results
and data. Ratcheting strains (b). The markers e mean data. The maximum stresses used are 50%, 75%, 90%, and 97% of the peak yield stress, 60
MPa. Ratcheting strains when f = 5 Hz and R = 0.5 (c). The maximum stress levels are 50%, 75%, and 90%. Torsional test (black) and model
(green) results for the maximum stress 75% of the ultimate shear strength (f = 1 Hz and R = 0.1) (d). The 30th, 10,000th, and 19,000 (before
collapse of the specimen) cycles are shown. The loops for 50% (e). The 30th, 10,000th, 40,000th, and 49,100th (before collapse) cycles are shown.
Shear ratcheting responses for the maximum stresses 82.5%, 75%, 65%, 50%, and 30% of the ultimate strength (f). The marker 4 in figures (b)
(tension) and (f) (torsion) indicates another data which differs the most from the used data.
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v d e,
D” = /V& (exp(ﬂ")eef‘f) >0 (9

with €'F := [&Zdt and &F = /2/3tr (D*P)?), where g and .#" are material parameters, and D'® = D*? + D" (D™ is the viscoelastic
rate of the deformation (Barriere et al., 2019)), is added to the expression of damage evolution. It is assumed that the damage growth
gradually increases with e.. If the trend is inverse (Praud et al., 2017), one can use In(e.F) in (9). The [1 — D] damage concept by
Lemaitre and Chaboche (Lemaitre and Chaboche, 1999) is applied; i.e., the entire development of fatigue damage (0 < D < 1) is given
by

Dzﬁ/(l —D)+ D", where ﬁ:chp(f(ﬁ;L”lq,B))ﬁz 0
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Fig. 9. Load paths applied in the load-controlled multiaxial tests. The symbols ¢ and ¢ denote the shear and axial stresses, respectively.

represents the LCF-HCF regime (excluding loading histories). The model parameters are K, L, L, 9, and the function f, extending the
damage model to LCF regime, has been introduced in Barriere et al. (2020).

Numerical solution algorithm is discussed in Holopainen and Barriere (2018). As noted in the Section 2.1, the two systems of
equations for the fatigue model and the constitutive model are regarded as uncoupled, i.e., fatigue damage D is calculated
retrospectively.

3.4. Calibration of the fatigue model

Since the tensile specimens used are not aimed at compression, the initial values of the HCF parameters o, and a (for the stress ratio
R = — 1) were determined from uniaxial tensile tests: the maximum stress at 25% of the peak yield stress 6, = 60 MPaasR = 0.1 and
the maximum stress at 37.5% as R = 0.5 (for both, N ~ 60,000). Moreover, a uniaxial test with a maximum stress of 37.5% (N = 20,
000,R = 0.1) was used to define the remaining HCF parameters C, K, and L, applying least squares fitting, while 69 and a were slightly
reduced. Then, the LCF parameters .4, q, Ly, and & were fitted to the uniaxial test (R = 0.1) with a maximum stress of 90%, while C, K,
and L, were yet slightly amplified. In the fourth stage, the parameter ¢ < a was extracted from the uniaxial test with the R = 0.5 and the
maximum stress of 90%. Then, the parameter Q was adjusted to the torsion test where the maximum shear stress was 75% of the
ultimate shear strength. Finally, the parameters Qp, L3, L4, and 9, were extracted from data for the squared load paths with maximum
stresses of 50% and 30% (defined below). It was required that Ly > L3 and Q; < Q to attain the asymptotes of g and g, respectively.

The total number of fatigue model parameters was 15, and their values were determined from eight tests. All the fatigue model
parameters are given in Table 3. Although the number of parameters seems to be high, simpler empirical models (Lemaitre and
Chaboche, 1999) cannot accurately reproduce fatigue lives from the LCF region to the HCF region under different loading modes owing
to the complex ratcheting behavior arising from amorphous microstructure.

4. Results

Based on the proposed model, the distributions of axial strain (after 60 cycles when 6 = oy,;,,f =5 Hz, R = 0.1, and the maximum
stress is 90% of the peak yield stress, 60 MPa) and shear strain (after 50 cycles when 7 = 7.i,,f = 1 Hz, R = 0.1, and the maximum
shear stress is 50% of the ultimate shear strength, 40 MPa) in high-quality tensile and torsion specimens without notable imperfections
are shown in Fig. 6 (simulated by Abaqus/implicit). As can be assumed from the geometry of the specimens, as described by the
standard ASTM D638 (ASTM, 2003), the responses in the specimens” gauge section or web are homogeneous. This outcome allows us
to perform the forthcoming simulations in a single material (integration) point representative of the specimen’s web. This is a sig-
nificant advantage when modeling long service lives.

4.1. Plastic failure mechanism in amorphous structure

The applied concept of free volume in the material represents loosely packed regions around polymer chains with a reduced chain
density at the nanoscale and microscale (Anand and Ames, 2006; Losi and Knauss, 1992). The concept of the free volume has been used
to successfully describe several polymeric phenomena, such as anisotropic hardening at large strains and creep behavior (Anand and
Ames, 2006; Bowman et al., 2019). An increase in the free volume has frequently been connected to the nucleation, growth, and
coalescence of tiny voids on the polymer chain network (Bowman et al., 2019) and has been used to model damage (Francis et al.,
2014). Therefore, the free volume has an asymptotical upper limit. The experiments processed by quenching (rapid cooling at an
ambient temperature, as used in this research) show a greater amount of free volume compared to the experiments processed by slowly
cooling specimens in a furnace (Anand and Ames, 2006). The growth of the free volume has been reported to be strongest at crack tips
(e.g., around impurities) where crazing occurs and microscopic cracks initiate (Holopainen, 2014). The development of microcracks
leads to the occurrence of shear bands, as illustrated in Fig. 4(c), and finally, through crazing, to the formation of macrocracks (James
etal., 2013; Poulsen et al., 2005). The upper limit of the free volume is assumed to represent the initial formation of macrocracks, when
the free volume is still low (Anand and Ames, 2006). The development of microcracks to macrocracks is illustrated in Fig. 4(f). This
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accelerating crack growth explains the increasing (plastic) ratcheting deformation prior to rupture (tertiary cyclic creep) shown e.g., in
Fig. 7(f).

As has been demonstrated in Fig. 5(b), the predicted development of the free volume (in terms of the dominant function gp) under
torsion shows that the weakest regions (initial plastic zones) in the material rapidly enlarge during loading, whereas the remaining
packed regions take significantly more time to enlarge. Interestingly, this characteristic resembles the observed development of the
void number density resulting in accumulated void volume (Bowman et al., 2019). The development of the free volume vs. micro-
structural changes is discussed below in the Multiaxial loadings section. Because the model is based on the stress invariants, the
development of the free volume is similar under unloading, although in reverse. This is partly correct, assuming that the tightly packed
regions partially reopen when the load is removed. Therefore, the development of the free volume is represented by its average during
each cycle.

4.2. Tension results

Damage to a material restricts the service life and is known to be a function of the stress history. Consider the two different
consecutive load spectra shown in Fig. 6(c). The internal state at the beginning of the second load spectrum depends not only on the
present damage but also on the previous damage and the hardening state (Chaboche and Lesne, 1988). The two-step loading histories
are described by the following numbers: n; and n, denote the number of load cycles of two different load spectra at the maximum stress
levels of 54 MPa and 30 MPa (R = 0.1,f = 5 Hz) from high to low, and vice versa from low to high. The number n; represents the
number of prestressing cycles and n, represents the number of cycles of remaining life. The number of cycles N, denotes the service life
when solely the latter loading has been applied. The measured values of N, under the high and low loads are 4000-5000 and 11,
500-15,000 cycles, respectively. The proposed model is able to capture the observed service lives under the high-to-low and
low-to-high loads well: the most presentative data points in Fig. 6(c) fall within the predicted ranges.

Fig. 7 (a) further shows hysteresis loops when the maximum stress is near to the peak yield stress of 60 MPa (close to the ultimate
tensile strength observed under force-controlled tests). The hysteresis loops exhibit evident ratcheting strain (also termed cyclic creep)
as the load ranges between its maximum and minimum values (Holopainen et al., 2017; Jiang et al., 2015; Kang and Kan, 2017). The
ratcheting strain ¢, is defined as the mean value of the minimum strain ey, and the maximum strain e, in each cycle. In the sub-
sequent figures, the predictions end when full damage (D = 1) is reached. The best fits between the data and predictions based on the
variations in the maximum and minimum stresses of the two percentages are presented.

Considering the ratcheting at the highest load level in Fig. 7(b), the experimental response quickly grows and becomes greater than
the model response after 100 cycles. The intense growth of the measured ratcheting strain is owing to a mechanism of brittle failure,
such as the scission of the polymer chains (Vernerey et al., 2018), not completely governed by the plasticity model and the fatigue
damage model proposed. The applied high loading also results in the increase in temperature, affecting a small softening of the
material. At the lower stresses, as demonstrated in Fig. 7(b, ¢), the model predicts the ratcheting strains and service lives accurately.
The experimental and model results in Fig. 7(b, ¢) also reveal the following:

ratcheting strain ¢, increases with amplitude and R (mean stress);

¢; increases with R and mean stress, even with a lower stress amplitude, even though

- & increases with a higher stress amplitude as the maximum stress is approximately equal to the peak yield stress; and (at fixed
maximum stress)

the service life grows along with R.

The measured and predicted time-to-failure vs. maximum stress responses for uniaxial tension are shown in Fig. 8. It can be
concluded that the proposed model accurately predicts short- to long-term ratcheting and service lives under different uniaxial loads.

4.3. Torsion results

The torsional ratcheting strain y, is defined as the mean value of the minimum and maximum shear strains y,;, and y,,,,, respec-
tively, in each cycle. First, consider the highest maximum stress level at 90% of the ultimate shear strength, 40 MPa. As with that under
tension, the observed ratcheting strain exhibits a prompt increase, which behavior is caused by an abrupt material failure and a small
rise in temperature, affecting softening. Due to this rapid failure, the test specimen broke at about 60 cycles, whereas the model shows
a service life of 100 cycles.

Consider then the maximum stress levels of 75% and 50%. The predicted loops up to 10,000 cycles are similar to the experimental
ones, as shown in Fig. 7(d, ). As failure starts to affect, the measured ratcheting strain increases, the stiffness of the material decreases,
and the area of the hysteresis loops grows (indicating a drop in mechanical energy). The model cannot predict the last two charac-
teristics since the stress and the fatigue damage are regarded as uncoupled, and consequently, on the microstructural basis, the
predictions comply with permanent chain deformation rather than polymer chain breakage. On the other hand, as shown in Fig. 7(d,
e), the chain breakage and the loss of mechanical energy actually commence once the majority of the service life (over 90%) has been
passed. Although the shape of the predicted load cycles prior to rupture may differ from that observed, the model, however, accurately
predicts the ratcheting strains and service lives, as shown in Figs. 7(f) and 8.
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4.4. Multiaxial loadings

To describe multiaxial loadings in one dimension, the equivalent stress and strain are defined as

Ooqy = 4‘)0'2 + (\/51)2 and eeqy == 1/ €2 + (y/\/g)z,

respectively (Lu et al., 2016). Additionally, the shear ratcheting strain y, defined above is replaced by the equivalent ratcheting strain
Yo =1/ V3.

The load paths applied are illustrated in Fig. 9. First addressing the details of the squared load path shown in Fig. 10(a), the strain
responses in Fig. 10(c) reveal that the original model based on the plastic evolution rule by (1) underrates the shear strain and ex-
aggerates the uniaxial strain. The predictions according to the improved rule (2) in Fig. 10(b) clearly evidence improvement in the
model result. Due to the quite long-lasting holding time used (the duration of cycles is 20 s), the test also services to detect some static
creep (at the maximum stresses) and recovery (at the minimum stresses). It is striking that neither the test results nor the model show
marked creep or recovery under torsion, while they both are marked under tension. This result indicates that the amorphous polymer
structure will resists creep and recovery under torsion (shear).

As shown in Fig. 10(d), the backstress &, that defines the center of the endurance surface in the model (Barriere et al., 2020; Ottosen
et al., 2008), remains quite small in relation to the stresses that define the endurance surface. A similar result is also observed in certain
aluminum alloys (Lindstrom et al., 2020). The corresponding developments of the free volume and fatigue damage D are shown in
Fig. 10(e); it is the fatigue damage that finally determines the service/fatigue life. Despite the equally repeated cycles, the damage
gradually increases which is due to the canonical [1 — D] damage concept applied in this approach. This behavior is inherent to ductile
materials and represents in amorphous polymers fracturing of fibrils leading to accumulated void volume fraction and cracking (James
et al., 2013; Ravi Chandran, 2016).

The inset in Fig. 10(e) further shows that damage develops most intensively at the beginning of the load cycles, i.e., during tension,
and is suppressed under torsion when a (defining the center of the endurance surface) increases, cf., Fig. 10(d). The more rapid increase
in damage under tension than that under torsion is also evident from the service lives shown in Fig. 8. When tension is reduced while
torsion remains constant, & continues to slightly increase, and damage again shows an increase. Finally, when torsion and eventually «
are reduced, the growth of damage tails off. Thus, the development of fatigue damage and the backstress a (center of the endurance
surface) are strongly influenced by the applied loading mode, and the amorphous structure seems to well resist fatigue damage under
torsion.

When investigating butterfly-type loading, the macroscopically observed ratcheting strains increase the most during the first tens or
hundreds of load cycles, depending on the maximum stress applied, cf. 11(c). This behavior represents the primary cyclic creep.
Ratcheting deformation (especially shear) also shows a notable increase once 90% of the service life has been passed (tertiary cyclic
creep), see Figs. 11(b-¢) and 7(f) (torsion). It is likely that the free volume also increases most intensively during the primary and
tertiary stages, see Fig. 10(e). Moreover, the impact of the fatigue damage is strongest at the end of the service life, i.e., during the
tertiary stage, Fig. 10(e). The combined development of the free volume and fatigue damage (material failure), defined by (D +¢ /¢.,)
/2, resembles the development of the void volume accumulated by the void number density (Bowman et al., 2019). When the failure
increases during load cycles, the volume of crazing (plastic) regions (corresponding to the void volume fraction) gradually increases.
During the tertiary stage, the volume of crazing finally attains its threshold for the substantial material rupture and failure of the entire
specimen.

On the microstructural basis, as has been mentioned in Section 3.3, the proposed fatigue model functions g, gy, and gy (under
different loading modes) for the reduction of the endurance function and fatigue damage describe a reduced accumulation of the void
volume fraction under heavy loadings (LCF). It was also mentioned in Section 4.1 that the function gy describes the observed, reduced
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Fig. 11. Butterfly-type load path (a). Shear and axial stresses are separated by the dashed and solid curves. Measured (black) and predicted (green)
axial strain vs. shear strain when the maximum stresses are 50% of their strengths (b). The 100th, 1000th, and 2400th (just prior to rupture) cycles
are demonstrated. Predicted shear and axial ratcheting strain responses when the maximum stress levels are 50% (solid) and 30% (dashed) (c). The
markers * and e denote the corresponding data. The symbol 4 indicates another data which differs the most from the used data. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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development of the void number density and the void volume fraction under heavy loadings. Furthermore, the plastic deformation,
through crazing, is generated in regions of high void volume (Venkatesan and Basu, 2015), i.e., the proposed constitutive model
function g, and the proposed fatigue model functions all tend to describe the reduced development of the free volume and plastic
deformation (which is also influenced by the proposed functions ¢ and b) in the LCF region.

4.5. Comparison of the load paths

In all load cases, both the predictions and data show rapidly increasing initial ratcheting strains (primary cyclic creep), which then
progressively reach their stabilized values (secondary cyclic creep) after quite a small number of cycles. Among the three different
multiaxial loadings applied, the butterfly-type load path results in the most intense increase in ratcheting deformation prior to rupture,
i.e., tertiary cyclic creep seems to be enhanced under combined tension and torsion when torsion in relation to the axial stress remains
relatively small during the load cycles. In the model, the tertiary cyclic creep in torsion increases with the function go for the rate of the
free volume, i.e., the free volume (and void volume) significantly affects the shear ratcheting strain prior to rupture. Preliminary tests
with imperfect torsion test specimens, including internal flaws and a larger void volume observed by the X-ray tomography, similarly
showed an earlier tertiary phase and thus a shorter service life. The ratcheting strains also increase with increasing maximum stress,
especially under torsion, and the influence of the mean stress is significant (Lu et al., 2016; Xi et al., 2015).

All the load cases are also compared under the same conditions: the maximum stress level at 50% of the strengths, stress ratio of R
= 0.1, and service life at 90% of the service lives (before the tertiary stage). Although the different load frequencies of f = 5,f = 1, and
f = 0.05 Hz are used under tension, torsion, and the multiaxial loads (squared, butterfly, and rhombic), respectively, the effect of the
frequencies lower than 5 Hz on the ratcheting strains has been found to be small (Barriere et al., 2020). The results (ratcheting strains)
are summarized in Fig. 12(e). It turns out that the differences between the observed and predicted results are small, and that torsional
ratcheting is emphasized (cases 9-16). Thus, the amorphous polymer structure does not tolerate ratcheting in torsion as well as it does
in tension. Despite this characteristic, the amorphous structure appears to resist fatigue damage under torsion well and produces
considerable long service lives. The measured and predicted service lives are summarized in Fig. 12(f). Excluding case 10 for the
highest tension, the service lives are accurately captured: the safety factor (factor that produces a lower life than observed) is less than
1.4 in all cases.

5. Summary

The short- to long-term uniaxial, torsional, and multiaxial deformation behaviors of amorphous polymers were tested and simu-
lated. The effects of the mean stress, stress amplitude, loading rate, loading history, and loading mode on a common PC polymer were
investigated. An improved testing equipment for injection was developed, and the tests were simulated by using an improved
viscoelastic-viscoplastic constitutive model related to plastic flow and the free volume to accurately capture the nonlinear shear and
multiaxial ratcheting behavior. Also, an improved fatigue damage model was proposed to predict fatigue lives under different loadings
more accurately. With the fitted parameters, the proposed approach predicted all the test results well, suggesting that the approach is a
capable tool for simulating costly tests.

It was observed, based on both the tests and model results, that (i) the amorphous polymer structure efficiently resists static creep
and recovery under torsion. However (ii), the amorphous structure shows more ratcheting in torsion than in tension. Despite this
characteristic, the amorphous structure appears to resist failure under cyclic torsion well. It was further observed that (iii) the
ratcheting strains do not increase significantly until 90% of the service life is reached. Therefore, ratcheting behavior is an important
precursory indicator for the drastic failure of engineering components that may cause horrific accidents and immense financial losses.
Furthermore, (iv) the free volume (loosely packed regions of chains) strongly controls the development of plastic deformation and
large ratcheting strains. Since crazing with the localized plastic deformation in the material develops owing to the nucleation of voids
and an increased void volume fraction in regions with a high free volume (Venkatesan and Basu, 2015), crazing can be considered a
precursor to plasticity and is essentially driven by the free volume. Finally, it was observed that (v) the development of the free volume
and fatigue damage (fracturing of fibrils (Ravi Chandran, 2016)) strongly influence the tertiary cyclic creep at the end of the service
life. The combined development of the free volume and fatigue damage was found to be similar to the development of void volume.
Therefore, the service life of PC could be increased by restraining the development of void volume for example by optimizing the
molding (pressure, temperature, and the size of the runner and gate of the mold) and using suitable additives (impact modifiers).

An important goal of future research will be to investigate microstructural changes (e.g., by employing X-ray tomography, positron
annihilation methods or molecular dynamics simulations Poulsen et al., 2005; Venkatesan and Basu, 2015) vs. the development of the
free volume that might correlate with our findings (iv) and (v). The results of this current work can be used to observe failure in
practical structures, thereby allowing serious accidents to be predicted, and to develop more damage-tolerant and self-healing
polymers (Patrick et al., 2016) for cyclic loads.

Data availability

The source data that support the findings of this study are available at https://doi.org/10.1016/j.ijplas.2021.103106. We provide
the source data underlying Figs. 5b, ¢, f, and 8 c.
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Fig. 12. Rhombic load path (a). Predicted (green) and measured (black) responses (b). The 100th, 1000th, and 5000th cycles are demonstrated.
Measured (black) and predicted (green) 3000th loop of the equivalent strain vs. stress (c). Measured and predicted axial and shear ratcheting strains
(thombic) (d). Predicted (green) and measured (black) axial (cases 1-8) and torsional (cases 9-16) ratcheting strains under equivalent conditions
(e). The loading cases 1 and 9 are tension and torsion, and cases 2-8 and 10-16 correspond to the squared, butterfly-type, and rthombic load paths,
respectively. Measured (black) and predicted (green) service lives (f). Loading cases 1-5 correspond to the tensional, torsional, butterfly-type,
squared, and rhombic load paths when the maximum stress level is 50%. Cases 6 to 9 are the same as 2 to 5, but the maximum stress is 30%.
Case 10 is the tensional path when the maximum stress level is 97%. Cases 11-13 are the torsional load paths when the maximum stress levels are
82.5%, 75, and 65%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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