



### Mechanism analysis of liquid - liquid doping and fabrication of high properties of W - Zr(Y)O<sub>2</sub> alloys

#### <u>Fangnao Xiao</u><sup>a, b, c</sup>, Thierry Barriere<sup>a</sup>, Gang Cheng<sup>b</sup>, Qiang Miao<sup>c</sup>

<sup>a.</sup> FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Besançon, France

<sup>b.</sup> INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 rue de la Chocolaterie, Blois Cedex, France

<sup>c.</sup> College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China













Outline



#### Introduction

- Mechanism of liquid-liquid doping
- Microstructure and properties of alloys
- Conclusions and perspectives











2

#### Innovative oxide particles strengthened W alloys







#### Traditional solid-solid / liquid doping processes

- 1. Uneven particle distribution, larger oxide particles;
- 2. Low-temperature and recrystallization embrittlement.

#### Research objectives

- 1. Nanosized oxide particles (< 500 nm) uniformly distributed within W grains;
- 2. Low ductile-brittle transition temperature (< 150 °C) and high recrystallization temperature (> 1400 °C).

UNIVERSITE FRANCHE-COMTE

Developing the Powder Metallurgy













#### 2. Mechanism of liquid-liquid doping processes

EURO PM2 20 VIRTU@L CONGRESS

Existence forms and reaction mechanisms of polytungstate ions





# Developing the Powder Metallurgy

#### Morphologies of precursors synthesized by three different doping processes

![](_page_5_Picture_2.jpeg)

Sol-gel method

![](_page_5_Picture_4.jpeg)

Composite hydrothermal method

![](_page_5_Picture_6.jpeg)

Azeotropic distillation method

![](_page_5_Picture_8.jpeg)

Precursors' morphologies:(a) Microsphere;(b) Loose;(c) Angularity;(d) Sheet.

#### Formation mechanism of doped precursor powders

EURO PM2 20 VIRTU@L CONGRESS

#### 1. Synthetization analysis of h-HATB powder by hydrothermal method

![](_page_6_Figure_4.jpeg)

F. N. Xiao et al., J Alloy Compd. 843 (2020) 156059

**Experimental observation of the synthetization of h-HATB** 

#### Formation mechanism of doped precursor powders

EURO PM2 20 VIRTU@L CONGRESS

#### 2. Synthetization analysis of precursor powder by azeotropic method

![](_page_7_Figure_4.jpeg)

#### Morphologies of W- Zr(Y)O<sub>2</sub> powders reduced after 900 $^{\circ}$ C for 2 h

![](_page_8_Picture_1.jpeg)

Sol-gel method

Developing the Powder Metallurgy

![](_page_8_Picture_3.jpeg)

Composite hydrothermal method

![](_page_8_Picture_5.jpeg)

Azeotropic distillation method

![](_page_8_Picture_7.jpeg)

1. Preserving the precursor' morphologies;

2. More uniformed – size and highly dispersed powders in Fig. b

9 F. N. Xiao et al., J Alloy Compd. 843 (2020) 156059

#### 3. Microstructure and properties of $Z(Y)O_2$ strengthened W alloy<sub>EURO</sub>

Description of innovative liquid – liquid doping process with optimal parameters PIVIZ Z

![](_page_9_Figure_3.jpeg)

UNIVERSITE \*

FRANCHE-COMTě

**CIN S** 

<sup>//</sup>ensmm

#### Microstructure of the advanced material

![](_page_10_Figure_2.jpeg)

UBFC

#### Comparison with state-of-the-art review

![](_page_11_Figure_2.jpeg)

Main characteristic of the advanced W alloys

- 1. The oxide particle are smallest;
- 2. More oxide particles distributed within W grains;
- 3. The distribution of oxide particles are more uniform.

#### References

(a) Present work;

(b) C. J. Wang, J. Refract. Met. Hard Mater. 84 (2020) 105082;

**EURO** 

VIRTU@L CONGRESS

- (c) Y. Shen, J. Nucl. Mater. 455 (2014) 234-241;
- (d) M. A. Yar, J. Nucl. Mater. 412 (2011) 227-232.

#### Comparison of microstructure and properties of ODS-W alloys

utbm

**EURO** VIRTU@L CONGRESS

DES SCIENCES

CENTRE VAL DE LOIRE

APPLIQUÉES

| Doping<br>process   | Sintering<br>Process | Alloy                                       | W grain<br>size (µm) | Oxide<br>size (µm)   | Relative<br>density (%) | Microhardness<br>/HV | Refs.              |                          |
|---------------------|----------------------|---------------------------------------------|----------------------|----------------------|-------------------------|----------------------|--------------------|--------------------------|
| L - L               | SPS                  | W-6vol% Al <sub>2</sub> O <sub>3</sub>      | 3.64                 | >1.0                 | 94.96                   | 347.39               | [35]               |                          |
|                     | SPS                  | W-2.5%ZrO <sub>2</sub>                      | 4.65                 | 2.5                  | 99.6                    | 480                  | [36]               |                          |
|                     | VD                   | W-2.5%ZrO <sub>2</sub>                      | 40-80                | 1.5                  | 98.7                    | -                    | [37]               |                          |
| L - S <sup>a*</sup> | VD                   | W-La <sub>2</sub> O <sub>3</sub>            | 50                   | 3                    | -                       | -                    | [38]               |                          |
|                     | SPS                  | W-0.9wt%La <sub>2</sub> O <sub>3</sub>      | -                    | 2                    | 94                      | 406                  | [39]               | Conclusion               |
|                     | SPS                  | W-1.0%Y <sub>2</sub> O <sub>3</sub>         | 2.3                  | Nanosize<br>(Uneven) | 92                      | 423                  | [40] 1.            | Smallest particles size: |
| S - S               | HIP                  | W-1%La <sub>2</sub> O <sub>3</sub>          | -                    | >5                   | 90.6                    | -                    | <sub>[41]</sub> 2. | Medium properties.       |
|                     | HIP                  | W-Ti- $0.5\%$ Y <sub>2</sub> O <sub>3</sub> | 2-5                  | >1.5                 | -                       | -                    | [42]               |                          |
|                     | SPS                  | W-5%HfO <sub>2</sub>                        | 11.6                 | >5                   | 94.5                    | 440                  | [43]               |                          |
| Novel<br>process    | HIP                  | W-0.5%Zr(Y)O <sub>2</sub>                   | <b>4.67±0.5</b>      | $0.25\pm0.05$        | 96.7 ± 0.2              | 472 ± 10             | Present            | 13                       |

UNIVERSITE BOURGOGNE FRANCHE-COMTE

UNIVERSITE 8 FRANCHE-COMTĕ

![](_page_12_Picture_5.jpeg)

#### Comparison with state-of-the-art review

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

Main characteristic of my prepared heavy W alloy

- 1. The oxide particle are smaller;
- 2.Most  $Zr(Y)O_2$  distributed within W grains;
- 3. The distribution of oxide particles are more uniform.

#### References

- (a) Present work;
- (b) W. M.R. Daoush Mater. Sci. Eng. A. 2016, 47(5): 2387-2395;
- (c) K. H. Lee, J. Alloy. Compd. 2007, 434: 433-436;
- (d) K. Hu, Mater. Sci. Eng. A. 2015, 636: 452-458.

#### Comparison of microstructure and properties of ODS-heavy W alloys

![](_page_14_Picture_2.jpeg)

| Heavy W alloy                                   | Sintering            | RD/%       | Grain      | Particle  | Hardness/              | Refs.                        |
|-------------------------------------------------|----------------------|------------|------------|-----------|------------------------|------------------------------|
|                                                 | process              |            | size/µm    | size/µm   | HV                     |                              |
| W-Ni-Fe-0.3PSZ                                  | 1480 ° C (1h)        | -          | 18         | 0.8       | -                      | [49]                         |
| W-Ni-Fe-1Al <sub>2</sub> O <sub>3</sub>         |                      | 98.3       | 36.8       | 7         | -                      | [52]                         |
| W–Ni-Fe–xY <sub>2</sub> O <sub>3</sub>          | 1485° C(1h)          | 99.1       | 19.5       | 0.6 - 1.3 | -                      | [10]                         |
| W-Ni-ZrO <sub>2</sub>                           | 1500° C(1h)          | 93.5       | ~25        | 3 - 5     | 333                    | [50]                         |
| W-Ni-Fe-Co-Y <sub>2</sub> O <sub>3</sub>        | $1450^{\circ} C(1h)$ | 94.1       | 12         | >0.6      | 425                    | [44] [1 Finer particles:     |
| 94W-4.56Ni-1.14Fe-Y <sub>2</sub> O <sub>3</sub> | 1485° C(1h)          | 99.0       | 15         | 0.65      | -                      | [53]<br>2 Larger grain size: |
| Previous W-ODS                                  | SPS/HIP              | <99.9      | <10        | 1 - 5     | 406 - 480              | [27]                         |
| 93W-4.9Ni-2.1Fe-Zr(Y)O <sub>2</sub>             | 1520° C (2.5h)       | 99.2       | 26         | 0.2 - 1   | 402                    | [47]                         |
| <b>WHA</b> <sub>0.75</sub>                      | 1400° C (2.5h)       | 99.2 ± 0.1 | $25 \pm 2$ | 0.2 - 1   | <b>402</b> ± <b>10</b> | Present                      |

![](_page_14_Picture_4.jpeg)

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

F. N. Xiao et al., J Alloy Compd. 2020, 843: 156059

![](_page_14_Picture_9.jpeg)

#### TEM analysis of HIP sintered W-Ni-Fe-ZrO<sub>2</sub> alloys

![](_page_15_Figure_2.jpeg)

**EURO** 

#### Comparison of properties with state-of-the-art review

EURO PM2 20 VIRTU@L CONGRESS

![](_page_16_Figure_3.jpeg)

#### Mechanical properties of W-Zr(Y)O<sub>2</sub> alloy at high temperatures $_{EURO}$

**Objective:** Arrhenius model was used to identify the compressive behaviours of the W-Zr(Y)O<sub>2</sub> alloy.

$$Z = A [sinh(\alpha\sigma)]^{n}$$

$$\ln Z = \ln A + n \ln [sinh(\alpha\sigma)]$$

$$\ln \dot{\epsilon} = \ln A + n \ln [sinh(\alpha\sigma)]$$

$$AARE = \frac{1}{N} \sum_{i}^{N} \left| \frac{(\sigma_{e}^{i} - \sigma_{p}^{i})}{\sigma_{e}^{i}} \right| \times 100\%$$

$$a = A_{0} + A_{1}\epsilon + A_{2}\epsilon^{2} + A_{3}\epsilon^{3} + A_{4}\epsilon^{4} + A_{5}\epsilon^{5} + A_{6}\epsilon^{6}$$

$$n = B_{0} + B_{1}\epsilon + B_{2}\epsilon^{2} + B_{3}\epsilon^{3} + B_{4}\epsilon^{4} + C_{5}\epsilon^{5} + C_{6}\epsilon^{6}$$

$$Iz = C_{0} + C_{1}\epsilon + C_{2}\epsilon^{2} + C_{3}\epsilon^{3} + C_{4}\epsilon^{4} + C_{5}\epsilon^{5} + C_{6}\epsilon^{6}$$

$$Z \text{ is Strain;}$$

$$\dot{\epsilon} \text{ is strain;}$$

$$\dot{\epsilon} \text{ is strain;}$$

$$\dot{\epsilon} \text{ is strain;}$$

$$\dot{\epsilon} \text{ is strain rate;}$$

$$A, n \text{ and } \alpha \text{ are material constants.}$$

**Conclusion:** The average relative error (AARE) = 3.6 % was calculated to investigate the good prediction accuracy.

0.6

0.6

- 1s<sup>-1</sup>

#### Conclusions

![](_page_18_Picture_2.jpeg)

- 1. Investigation of reaction mechanism and formation mechanism of doped W precursor powders;
- 2. Development of an innovative liquid liquid hydrothermal doping process;
- 3. Fabrication of W alloys having ZrO<sub>2</sub> particles (< 300 nm) within grains;
- 4. Fabrication of the advanced W alloys with high strength and critical failure strain.

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

![](_page_18_Picture_13.jpeg)

19

#### Perspectives

![](_page_19_Picture_2.jpeg)

- 1. Tensile and bending tests at various temperatures (100 ~ 500  $^{\circ}$ C);
- 2. Compressive tests at high temperatures  $(1000 \sim 1400 \ ^{\circ}C)$ ;
- 3. Thermomechanical behaviour of the elaborated W alloys and numerical modelling;
- 4. Extension of the developed method for Y<sub>2</sub>O<sub>3</sub>, La<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> strengthened

W alloy.

![](_page_19_Picture_8.jpeg)

![](_page_19_Picture_9.jpeg)

![](_page_19_Picture_10.jpeg)

![](_page_19_Picture_11.jpeg)

![](_page_19_Picture_12.jpeg)

![](_page_19_Picture_13.jpeg)

![](_page_19_Picture_14.jpeg)

20

![](_page_20_Picture_1.jpeg)

## Thank you for your attention!

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

![](_page_20_Picture_7.jpeg)

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)