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Abstract—As in all distributed systems, having an accurate
access to a global notion of time is vital for a modular robot’s
modules to coordinate their activities and accomplish their goal.
In this paper, we present and compare two methods for clock
skew compensation to enhance the performance of network-
wide time synchronization in modular robots with neighbor-to-
neighbor communication. The first one, Adaptive Rate Search
(ARS), uses a light weight adaptive search method to adapt
the drift rate of local clocks. The second one, combines Linear
Regression with Bayes estimation (LR+) to reduce the accumu-
lative error induced during the propagation of synchronization
messages on large number of hops. We evaluate both methods
with Blinky Block robots: using a real modular robots system
and simulation. The results show that both methods LR+ and
ARS present a significant error reduction compared to least-
square linear regression used in previous state of the art
synchronization protocol for modular robots with neighbor-to-
neighbor communication.

Index Terms—time synchronization, modular robots, dis-
tributed algorithms

I. INTRODUCTION
An autonomous modular self-reconfigurable robot is a

distributed system composed of multiple connected modules
that can communicate to coordinate tasks and rearrange their
connections to change the overall shape of the system to
adapt to a specific application providing versatility and ro-
bustness [1]. Each module has its own sensors and actuators,
computation and communication capabilities and notion of
time. In this paper, we consider homogeneous modular robots
with identical modules that can communicate only with their
directly connected neighbors.

Many applications with distributed control require having
the same notion of a global time at each module. It is required
for various operations and applications in modular robots (e.g.
self-reconfiguration [2, 3], clustering [4], security [5], etc.).
For instance, a self-reconfiguration algorithm in a 2D plane is
proposed in [6]. In this algorithm, modules reconfigure their
shape by forming lines that are translated from the initial
shape to target positions in the goal shape. Another interesting
application is modular shape-changing user interfaces using

modular robots [7] where modules making up the interface are
required to be synchronized to efficiently handle interactions
between humans and the interface.

Unfortunately, local hardware clocks are insufficient to
achieve a global notion of time since the accuracy of hardware
clocks is affected by environmental conditions such as voltage,
temperature, aging, etc. So, they tend to drift apart quasi-
linearly over time even in a perfect environment. Therefore,
each module needs to have an estimation of a common
global time determined by a distributed time synchronization
protocol.

Time synchronization algorithms and protocols have been
proposed for computer networks [8, 9, 10, 11]. In addition time
synchronization has been widely studied in wireless sensor
networks (WSN) that form peer-to-peer networks for resource
constrained devices similarly to modular robots. Many time
synchronization protocols have been proposed for WSNs such
as [12, 13, 14, 15]. As for modular robots, for the best of
our knowledge, the Modular Robot Time Protocol (MRTP)
[16] is the only protocol that has been proposed for time
synchronization in modular robots with neighbor-to-neighbor
communication. It is the most adapted protocol for large modu-
lar robotic systems with low precision hardware clocks that use
low-bitrate neighbor-to-neighbor communication and can form
networks with large diameters. It aims to achieve network-
wide tight synchronization by keeping a small offset between
any local clock and a global reference clock situated at a
reference module. The reference module periodically sends a
synchronization message that propagates hop-by-hop through
a breadth-first communication tree to all modules using a
predictive method to compensate for communication delays.
Modules compensate for clock skew with least-square linear
regression on a window of fixed size containing previously
received synchronization points. However, the performance
of MRTP decreases when the diameter of the modular robot
network increases. The reason is that a small error induced
by non-deterministic delays that can be looked at as the
distance from each synchronization point to the best-fit line is
accumulated which can reduce the efficiency of least-square978-1-7281-8326-8/20/$31.00 ©2020 IEEE



linear regression on large scale modular robots with a network
that spans on large number of hops.

In this paper, we present and compare two new meth-
ods to compensate for clock skew in the aim of enhancing
the performance of MRTP on modular robot networks with
large diameter. The first, Adaptive Rate Search (ARS) is a
lightweight dynamic search method that can provide at any
time the adapted rate of a module’s clock by adjusting its
provided rate value according to the received global time of the
reference module. The second, Enhanced Linear Regression
(LR+), uses a Bayesian approach to reduce the uncertainty
error induced at each hop along the synchronization path by
recursively combining knowledge of a module’s parent with a
module’s local knowledge to calculate an improved estimation
of the global time.

II. SYSTEM MODEL

Each module u is equipped with a read-only hardware clock
Hu. At any time t, Hu can be modeled as:

Hu(t) =

∫ t

0

hu(τ) dτ

Where hu(τ) denotes the hardware clock rate of u at τ . We
denote as G(t) the global time across the system at time t.
G(t) is determined as the hardware clock value of a reference
module chosen by the synchronization protocol. Each module
u maintains a logical clock that provides the value of Gu(t):
an estimation of G(t) determined by the synchronization
algorithm and the skew compensation method. The rate h is
not stable so modules clocks tend to drift apart. The objective
is to synchronize modules clocks using skew compensation
methods to maintain at each module u a minimal relative
synchronization error at real time t: ϵu(t) = Gu(t)−G(t).

III. ADAPTIVE RATE SEARCH

Adaptive Rate Search (ARS), inspired from [17, 15] is
a search method that aims to track and find a dynamic
search value in a given search space which is a real interval
[rmin, rmax] ⊂ R. An ARS proposes a value to the environ-
ment in which it is implemented, then the environment sends
back a feedback that guides the ARS towards the searched
value. In the synchronization context, since hardware clocks
rates tend to drift apart in a quasi-linear fashion, the ARS is
implemented on each module to adapt the speed rate of its
logical clock to reduce the module’s relative synchronization
error ϵu. The logical clock of a module u can be modeled as:

Gu(t) = Gu(tup) + (1 + ru(t))× (Hu(t)−Hu(tup))

Where tup is the last time a synchronization message was
received from u’s parent and ru is the value of the adjustment
of the rate of the logical clock provided by ARSu.

The objective of ARS is to provide at any real time t the
adapted value of the logical clock rate ru(t) of the module
in which it is implemented. In order to adapt the value of
ARS, at each synchronization message reception, a module

u (The ARSu environment) will calculate its clock skew
by subtracting its clock estimate Gu from the clock value
Gp received from its parent p. Then, send a feedback ft
from the set F = {f ↑, f ↓, f ≈} to ARSu. If the skew
is negative, the ARSu will receive the increase feedback
f ↑ and forwards its value r(t) a certain adjustment step
∆ ∈ [∆min,∆max] ⊂ [0, |rmin, rmax|] accelerating the clock
rate of its logical clock Gu. Similarly, if the skew is positive,
module u sends a decrease feedback f ↓ so ARSu can move
back its value to decelerate the logical clock rate. Otherwise,
if the skew is null, module u sends the feedback f ≈ and no
adjustment is made. Then, the logical clock Gu value is set
to the one received Gp.

In order to make the search process more efficient, if an
ARS receives successive feedback in the same direction, the
adjustment is accelerated by increasing the adjustment step
by a factor of λincr. Conversely, when the ARS receives
successive feedback in opposite directions, the ARS value is
oscillating around the target value noted as r∗u. Therefore, the
adjustment step size is decreased by a factor of λdecr to get
closer to the target value.
As shown in [15], if λincr > 1 and λdecr = 1/(1 + λincr),
an ARS will always reach the target value r∗u for any initial
value r0.

IV. ENHANCED LINEAR REGRESSION

Enhanced Linear Regression (LR+) was first proposed in
[18], it combines least-square linear regression with Bayes
estimation. Using least-square linear regression, as in MRTP,
we can model the logical clock of a module u at any time t
as follow: Gu(t) = au(Wt)×Hu(t)+bu(Wt), where au(Wt)
and bu(Wt) are the coefficient of the best-fit line determined
by linear regression calculated on a window Wt containing
the last w synchronization points. They respectively represent
the estimated skew and offset relative to the global time G(t).
However, non-deterministic delays such as the instability of
clock frequency and synchronization message delivery delay
can induce an error that propagates and increases hop by hop
along the synchronization path which negatively affect the
performance of the synchronization algorithm especially in a
modular robot network with neighbor-to-neighbor communi-
cation and a long multi-hop synchronization path.

The non-deterministic error can be looked at as the dis-
tance from each synchronization point to the best-fit line of
regression. It can be described as a Gaussian distribution
with zero mean and a known standard deviation ∼ N(0, σ2).
Consequently, the logical clock value at a module u comes
from a Gaussian distribution with a mean equal to the global
time G: p(Gu|G) ∼ N(G, σ2

u).
Therefore, Bayes theorem can be applied to improve the
estimation of the global time G: p(G|Gu) ∼ N(G′

u, σ
′2
u ).

The prior knowledge of module u’s parent p ∼ N(G′
p, σ

′2
p ),

the local estimation of the global time Gu and the uncertainty
of u’s global time estimation ∼ N(0, σ2

u) are combined
together using Bayes theorem to improve the global time
estimation at module u as follow:



σ2
u =

σ′2
p σ2

u

σ′2
p + σ2

u

and G′
u =

σ2
u

σ′2
p + σ2

u

G′
p +

σ′2
p

σ′2
p + σ2

u

Gu

Initially, at each synchronization round, G′
r = Gr = G

and σr = σ′
r = 1 where r is the reference module. Then, at

each module u, the improved estimation of global time G′
u

is calculated and is sent to its children. Therefore, at each
hop, modules are recursively synchronized with the improved
estimated global time received from their parents until the leafs
modules are reached. Hence, reducing the dissemination error
induced from measurements uncertainty accumulated at each
hop on the the synchronization path.

V. COMPLEXITY COMPARISONS

In this section, we compare the processing and memory
complexity on each module of the three presented skew
compensation methods.

The least-square linear regression (LR) method originally
used in MRTP needs to store w pairs of previously received
synchronization points at each module.

The adaptive rate search method (ARS) needs to store two
values: the multiplier rate and the adjustment step.

The enhanced Linear Regression method LR+ uses at least
the same memory space as LR: w pairs. We can use additional
number n of synchronization records, apart from the ones
used for LR, to calculate the uncertainty σ2 and the improved
global time estimation (see Section VI-D). As for the number
of operations needed, LR+ needs to calculate the global time
estimation, the uncertainty σ2 and the improved global time
estimation.

Overall, ARS is the lightest method with O(1) storage and
processing complexities. The storage and processing com-
plexities of LR and LR+ depend on the window size used
to calculate the global time estimation. Hence, they have a
complexity of O(w).

VI. EVALUATION METHOD AND RESULTS

In this section, we evaluate the improvement that ARS and
LR+ can yield comparing to least-square linear regression used
in MRTP.

A. Hardware System

We implemented both methods LR+ and ARS on top
of MRTP on the Blinky Blocks V1 hardware using C lan-
guage [19]. A Blinky Block can be connected to up to 6
neighbors via magnets and can communicate through serial
interfaces on each face. They have a poor hardware clock
resolution of 1m and an accuracy of 10 000 ppm (parts per
million).

B. Evaluation Method

In order to evaluate ARS and LR+, we alter the MRTP
protocol to use them as skew compensation methods in place
of the originally used least-square linear regression method.
The configuration of MRTP including the synchronization
period and the number of synchronization points for linear
regression where studied in [16]. They show that an optimal

Parameter rmin rmax r0 λincr

Value −10−2 10−2 0 2

Parameter λdecr ∆0 ∆min ∆max

Value 1/3 10−6 10−10 10−3

TABLE I: ARS parameters

performance on Blinky Blocks can be obtained using a window
of 5 synchronization points and a synchronization period of 2
seconds during calibration phase: the phase until the window
of synchronization points is filled, and 5 seconds during run-
time. We use the same configuration for our experiments
while varying the compensation methods between least-square
linear regression (LR) originally used in MRTP and the two
previously presented methods: ARS and LR+.

To calculate the dissemination error, we replayed the experi-
ment depicted in Figure 1 used in [16]. It consists of deploying
two virtual modules on each physical block except the last in
line. The leaf module M2n−1 is hosted on the same physical
block as the time reference module TM = M1 so it can access
the actual global time which allows us to compute the global
dissemination error GM2n−1(t) − G(t) at distance 2(n − 1)
hops. In addition, since the Blinky Blocks uses neighbor-to-
neighbor communication, it is impossible to access the states
of all modules at the same time. So, we conducted simulations
to evaluate network-wide synchronization error.

C. ARS Parameters

We initialize ARS parameters on each module with the
values shown in table I. The optimal values for λincr and
λdecr are set respectively as demonstrated in [15].

D. Impact of the Number of Synchronization Points Used for
Enhanced Linear Regression

In this section we evaluate the impact of the number of
synchronization points used by LR+ to calculate the improved
estimation of the global time on the dissemination error. LR+
needs to store a window of previously received synchroniza-
tion points to calculate the enhanced estimation of global
time G′

u(t) at a module u at each synchronization round. The
optimal window size used in MRTP to calculate Gu(t) is 5
as mentioned in Section VI-B. For LR+, the same number
of synchronization points can be used to calculate G′

u(t).
However, Figure 2 shows that using additional number of
synchronization points reduces the dissemination error. Hence,
for the next sections, we choose 20 as the window size for
storing the last received synchronization points.

Edge of the 
synchronization tree

Virtual module

Physical block

Fig. 1: Virtual line of emulated module on Blinky Blocks
hardware [16]



E. Impact of Skew Compensation Method on Dissemination
Error

The impact of hop distance on global dissemination error
for several number of hops is shown in Figure 3. The error
distribution seems Gaussian and the precision decreases when
the number of hops increases. LR+ provides a better dissem-
ination error comparing to LR and ARS. The dissemination
error using ARS is approximately equal to the one using LR
but its distribution is less spread. Therefore, both ARS and
LR+ are better than LR but using LR+ we can achieve better
precision in terms of difference between reference module
clock and other modules’ clocks since it presents the smaller
dissemination error.

F. Impact of Skew Compensation Method on Network-Wide
Synchronization Error

To evaluate the network-wide synchronization error, we
use VisibleSim [20], a discrete-event simulator for modular
robots systems. We conducted different experiments on a ball
topology [21] with different diameter. All simulations last
two hours. Modules remain unsynchronized during the first
hour and the synchronization starts at the beginning of the
second hour. The reference module is placed at the center of
the topology. We used the same configuration for MRTP and
the same clock model described in [19]. Each 5 seconds the
maximum pairwise synchronization error is recorded.

Figure 4 shows the maximum pairwise synchronization error
in the first 15 min after synchronization starts at the beginning
of the second hour of simulation until the stabilization of ARS.
Figure 5 shows the the maximum pairwise synchronization
error for the rest of the simulation. During the first hour
modules remain unsynchronized. Compared to ARS and LR+,
it is clear that the LR method present the worst precision
that decreases more significantly when the diameter of the
system increases. Both ARS and LR+ present better precision
than LR. ARS requires more time to stabilize than LR+. The

Fig. 2: Impact of Window Size on the Dissemination Error of
LR+ on 10 Hops

Fig. 3: Impact of number of hops on global time dissemination
error.

reason is that, after the first hour the skew between modules
clocks become large, the closest modules to the reference
module receive more accurate time information and send
an accurate feedback to their ARS. Hence, synchronization
using ARS is achieved hop-by-hop. Therefore, both ARS
and LR+ are superior to LR in providing network-wide tight

Fig. 4: Maximum pairwise synchronization error in the first
15 minutes after synchronization starts.



Fig. 5: Maximum pairwise synchronization error after ARS
stabilization.

synchronization especially when the modular robot network
becomes large. Once stabilized, ARS can provide an equal
performance to LR+ in a very light-weight manner. Using
LR+, we can directly achieve tight synchronization but using
more resources. We can choose the best method according to
the application.

VII. CONCLUSION

In this paper, we presented ARS and LR+, two skew com-
pensation methods to enhance the performance of synchroniza-
tion protocol for large-scale modular robots with neighbor-to-
neighbor communication. ARS uses a light-weight adaptive
search method. LR+ combines least-square linear regression
with Bayes estimation to reduce the error accumulated on
the synchronization path. We showed on real hardware that
both methods provide a better dissemination error and in
simulation that the network-wide synchronization error can be
significantly decreased using both ARS or LR+.
In future work, we will test the performance of both methods
on other systems equipped with more accurate hardware
clocks. In addition, we aim to study a new method combining
LR+ and ARS, i.e. using LR+ in the first synchroniza-
tion rounds until modules’ clocks become synchronized then
switch to ARS for more optimized network-wide synchroniza-
tion.
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