


many thin-film materials, dielectric or metals is ellipsometric measurement [23] [24] [25] [26].
This requires to be able to measure a light beam incident on the sample through several angles,
which may turn out to be complicated experimentally in a cryogenic environment.

In this work, some silver thin films deposited on the QR are investigated and we compare
the refractive index at 1550 nm (telecom wavelength) at both room temperature and cryogenic
temperature, i.e. at about 4 K, through an original method which relies on the specifics of
absorbing mirrors used as a Fabry-Perot cavity. The method is limited to low-thickness absorptive
layers, in conditions where a resonance signal can be observed from the Fabry-Perot cavity. This
fits our experimental requirement of a fixed sample standing in the vacuum chamber, with the
cryo-cooler turned on or off, to probe the room temperature or cryogenic temperature properties
of the thin film. Moreover, measuring the mean refractive index, i.e. averaged over the two
deposited layers as well as over the whole surface that the light acts upon is a drawback for
absolute knowledge over material property; it does, however, fulfill our purpose to have a clear
idea of the equivalent layer for the Fabry-Perot cavity.

Through the measurement of the frequency shift between the transmitted and reflected
peaks [20] [15] and the Full Width at Half Maximum (FWHM) of the transmitted peak (see Fig.
1), it is possible to retrieve the complex refractive index �̃� = 𝑛 − 𝑖𝑘 . We first give details about
the principle of the technique and some estimates of the order of magnitude, then describe the
experimental setup and numerical methods in the next section. The following section displays
the derived refractive indices, followed by an analysis of the different sources of uncertainty.

2. Experiment and Methods

The refractive index is expressed as a 2D quantity, �̃� = 𝑛 − 𝑖𝑘 . The real and imaginary part of the
refractive index can be considered as two independent quantities to retrieve, implying the need
of the two following variables to retrieve them from: the full width at half maximum (FWHM)
and the frequency shift of the resonance Δ 𝑓 . We first remind some results about absorptive
Fabry-Perot cavities, then proceed with details about the method to retrieve �̃� before presenting
the setup used for the measurements.

2.1. Absorptive Fabry-Perot cavity

The Fabry-Perot system is represented within the whole experimental setup in Fig. 2(a) while the
quartz resonator is depicted on Fig. 2(b) and the resonator within its holder is shown on Fig.
2(c). It has been described theoretically [20] [21], from which we use the notation to express
most of the following quantities.

The thin layers of silver are considered to be similar both in thickness and in refractive
index. The refractive index of any layer (quartz is layer 2, silver layer 1 and air layer 0) is noted
�̃� 𝑗 = 𝑛 𝑗 − 𝑖𝑘 𝑗 .

The transmitted intensity is written:

T𝐹𝑃 = Tmax
1

1 + 𝐹 sin2 (𝛿/2)
(1a)

where we used

Tmax =
|𝑇012 |4

(1 − |𝑅210 |2)2
(1b)

𝐹 =
4|𝑅210 |2

(1 − |𝑅210 |2)2
(1c)



Fig. 1. Calculated reflection and transmission curves of an absorp-
tive Fabry-Perot cavity for two 35 nm thick layers of silver deposited
on quartz, with a refractive index �̃� = 0.2997283 − 𝑖10.7355059 taken
fromhttps://www.overleaf.com/project/617aa0824dabff9f3a123407 [23]. The res-
onance is centered close to 1550 nm. The shift in frequency is noticeable here,
Δ𝜆 = 0,35 pm which corresponds approximately to Δ 𝑓 = 45 MHz.

and the reflected intensity can be expressed as:

R𝐹𝑃 = |𝑅012 |2 1 + |𝜁210𝑅210 |2 − 2|𝜁210𝑅210 | cosΔ
1 + |𝑅210 |4 − 2|𝑅210 |2 cos 𝛿

(1d)

with the quantity 𝜁210, which is emerging because of the non-typical Stokes relations, linking the
reflection and transmission coefficients. This quantity is expressed as:

𝜁210 =
𝑅012𝑅210 − 𝑇012𝑇210

𝑅012
= |𝜁210 |𝑒𝑖𝜙210

In Eqs. (1a) and (1d), the phase quantities Δ and 𝛿 appear, and are expressed as:

Δ =2𝛽2 − 𝜙210 − Δ210 (2a)
𝛿 =2𝛽2 − 2Δ210 (2b)

The quantity 𝑇𝑖 𝑗𝑘 (𝑅𝑖 𝑗𝑘) has been repeatedly used in Eq. (1) and represents the transmission
(reflexion) in a medium 𝑗 sandwiched between two semi-infinite planes of media 𝑖 and 𝑘 , and is
written:

𝑇𝑖 𝑗𝑘 =
𝑡𝑖 𝑗 𝑡 𝑗𝑘𝑒

−𝑖𝛽 𝑗

1 + 𝑟𝑖 𝑗𝑟 𝑗𝑘𝑒−2𝑖𝛽 𝑗
(3a)

𝑅𝑖 𝑗𝑘 =
𝑟𝑖 𝑗 + 𝑟 𝑗𝑘𝑒

−𝑖2𝛽 𝑗

1 + 𝑟𝑖 𝑗𝑟 𝑗𝑘𝑒−2𝑖𝛽 𝑗
=
��𝑅𝑖 𝑗𝑘

��𝑒𝑖Δ𝑖 𝑗𝑘 (3b)



where the familiar quantities 𝑡𝑖 𝑗 , 𝑟𝑖 𝑗 and 𝛽𝑖 are:

𝑡𝑖 𝑗 =
2�̃�𝑖

�̃�𝑖 + �̃� 𝑗
(3c)

𝑟𝑖 𝑗 =
�̃�𝑖 − �̃� 𝑗

�̃�𝑖 + �̃� 𝑗
(3d)

𝛽𝑖 =
2𝜋
𝜆0

�̃�𝑖𝑑𝑖 (3e)

with 𝜆0 the vacuum wavelength, 𝑑𝑖 the 𝑖th layer’s thickness. 𝛽𝑖 represents the phase acquired over
a distance 𝑑𝑖 in a medium of refractive index �̃�𝑖 .

From Eqs. (1a), (1d) and (3), the optical refractive index �̃�1 of the silver thin layers influences
the peaks themselves, by modifying both their FWHM and their exact location, in particular with
respect to one another (hence their frequency shift Δ 𝑓 ).

2.2. Method

In Eq. (1a), although 𝛽2 = 2𝜋
𝜆0
�̃�2𝑑 = 2𝜋 𝑓

𝑐 �̃�2𝑑 has a simple linear dependency on the frequency,
Δ210 depends on the refractive indices of the metallic layers in its expression (see Eq. (3b)),
although it barely varies with 𝜆, so that it almost constitutes a constant in the equation over a
wide range of wavelength. For example, varying 𝜆 between 1545 nm and1555 nm only gives a
relative variation of dΔ210 ≈ 2,1 × 10−4. Because we consider small wavelength or frequency
variations from resonance in order to find the FWHM and Δ 𝑓 , the relative variations for Δ210
with the wavelength or frequency will be considered negligible in the following.

In this case, replacing 𝛽2 in Eq. (2b) with its expression from Eq. (3e), the quantity 𝛿 is simply
linearly dependent on the laser frequency:

𝛿 =
4𝜋 𝑓 �̃�2𝑑

𝑐
+ 𝛿0 (�̃�Ag) (4)

where 𝛿0 only depends on the wavelength through the mirrors’ refractive index.

FWHM

According to the transmitted intensity equation Eq. (1a), as well as the previous observation
about the quantity 𝛿 in Eq. (4), the FWHM for the absorptive case is derived by noting that the
shift in frequency from resonance to half the peak’s maximum is written:

𝐹 sin
�
d𝛿2

2

�
= 1

d𝛿
2

≈
√︂

1
𝐹

where the phase shift d𝛿 corresponds to a laser frequency shift from the 𝛿 = 0 condition of the
resonance frequency. Using Eq. (4):

FWHM ≈ 𝑐

𝜋�̃�2𝑑

√︄
1

𝐹 (�̃�Ag) (5)

where the approximation sign holds in the high-reflectivity limit, which is always verified here
experimentally. Let us stress the dependence of 𝐹 on the refractive index of the metallic layer.
Furthermore, although 𝐹 depends on the wavelength, computing it against the wavelength shows,
as for 𝛿, that it only marginally depends on it, for the same reason as that concerning Δ210 before.



Note that although in the regular non-absorptive Fabry-Perot cavity the transmission and
reflection peaks have the same FWHM, in the present case, the reflection peak is dissymetrical
and the FWHM must therefore be considered for the transmission.

𝚫 𝒇

The expression for the reflected intensity is written in Eq. (1d). Contrary to the FWHM,
knowledge about the resonance (i.e. transmission maximum) frequency is necessary to compare
it to the reflection minimum frequency and define Δ 𝑓 from the difference. The difference between
Δ and 𝛿 yields:

Δ − 𝛿 = Δ210 −Φ210 (6)

This quantity as well is almost wavelength-independent.
With 𝜖 = Δ − 𝛿 being nearly constant with respect to wavelength, the optimum of Eq. (1d) can

be found by rewriting it in the following form:

ℜFP = |𝑅012 |2 1 + |𝜁210𝑅210 |2 − 2|𝜁210𝑅210 | cos(𝛿 + 𝜖)
1 + |𝑅210 |4 − 2|𝑅210 |2 cos 𝛿

. (7)

By considering 𝛿 as the variable and all the other quantities as constants, an optimum for the
function exists. This optimum is defined as 𝛿𝑅, and describes the phase for which the reflection
is minimum (see the full expression in Appendix A). Δ 𝑓 is therefore the frequency shift between
𝛿 = 0 and 𝛿 = 𝛿𝑅.

Eq. (4) establishes that 𝛿 linearly depends on the frequency. The shift in 𝛿 is therefore written:

d𝛿 = 4𝜋�̃�2𝑑
d 𝑓
𝑐

(8)

so that Δ 𝑓 corresponds to d𝛿 = 𝛿𝑅, which allows to find the frequency shift:

Δ 𝑓 =
𝑐 𝛿𝑅 (�̃�Ag)

4𝜋�̃�2𝑑
(9)

where we stressed the dependence of 𝛿𝑅 on the refractive index of the mirror �̃�Ag.

2.3. Computational method

Consequentely, Δ 𝑓 (Eq. 9) and the FWHM (Eq. 5) are two experimentally accessible variables
from which to retrieve the actual refractive index. For each value of FWHM (Δ 𝑓 ), there exists a
priori an infinite set of solutions values 𝑛 and 𝑘 that verifies the condition.

We design a python program that computes the FWHM and the Δ 𝑓 over a certain 𝑛 and
𝑘 span for a particular mirror thickness (considered to be equal on both sides). Because the
computational 2D surface of both FWHM and Δ 𝑓 is not a perfect plane over a large 𝑛 and 𝑘
span, it is not possible to resolve it analytically by fitting it to a plane, and trying to do so leads
to erroneous results. Instead, it is more accurate to consider a local numerical approximation
solution, i.e. a couple of 𝑛0 and 𝑘0 can be considered a solution for the FWHM if they verify:

|FWHM(𝑛, 𝑘) − FWHM(𝑛0, 𝑘0) | < 𝜂 (10)

where 𝜂 is an arbitrary precision to be specified for calculation. A visual representation of such
a situation is presented in Fig. 3. Note that these calculations are lead with numpy 128bits
floats; regular 64bits floats is responsible for dramatic numerical rounding errors and making Δ 𝑓
unusable. Indeed, Δ 𝑓 relies on several calculated quantities, which, when rounded, quickly lead
to errors especially when calculating the phase of the reflection minimum at large thickness (see
Eq. 13, with an arccos being particularly sensitive to rounding errors).



Fig. 2. (a) Top view: experimental setup to measure the optical signal from the
Fabry-Perot cavity. The tunable laser is collimated onto the optical table and is
mode-matched to arrive onto the quartz where it gets partially reflected and partially
transmitted through the Fabry-Perot cavity. The reflection and transmission signal are
then measured and superimposed on an oscilloscope along with the voltage ramp used
to modulate the laser’s frequency. (b) Bottom-left view: front face of our quartz, with
typical bridge-like structure to minimize losses near the center, the vibrating part. (c)
Bottom-right view: BVA-like structure (Boîtier à Vieillissement Amélioré) for holding
the quartz, with holes in the holder to allow for the laser beam to pass through. The
metallic layer which typically serves as electrodes is used as mirrors here, with intrinsic
absorption allowing for effects described throughout the main text and permitting 𝑛
and 𝑘 extraction. The refractive indices of the quartz (�̃�2) and silver thin layer (�̃�1) are
noted here.

Each of these two a priori semi-infinite sets of 𝑛0 and 𝑘0 that are solutions, with one for FWHM
and the other for Δ 𝑓 , form a straight line locally (i.e. over a small enough span) . We fit them to
a first order polynomial and calculate their intersection point. This point is the solution of the
problem and gives �̃�1 = �̃�Ag.

2.4. Experimental measurement

The FWHM and the peaks’ frequency shift Δ 𝑓 are measured with the experimental setup
presented in Fig. 2(a).

The laser is a commercially available Koheras AdjustiK, Continuous Wave centered at 1550 nm.
It is power tunable, with a power output up to 120 mW, although an incident power of only



Fig. 3. A typical extraction of sets of 𝑛 and 𝑘 that verifies the experimental value
conditions, for Δ 𝑓 . Similar behaviour is obtained for the FWHM. This produces a
locally linear set of solutions, which are a priori different than the ones for FWHM,
except for their intersection, which therefore leads to the actual value of �̃�Ag. In this
example, the theoretical values of FWHM and Δ 𝑓 for a 35 nm-thick layer of silver
are calculated from [23], �̃� = 0.2997 − 10.7355 𝑗 . This value of �̃� corresponds to
FWHM=1011 MHz and Δ 𝑓 = 45 MHz, 𝜂 = 1 × 10−2 (Eq. 10). The program returns a
fit value of �̃� = 0.2999 − 10.7384, i.e. an error of approximately 7 × 10−4 for 𝑛 and
3 × 10−4 for 𝑘 . Note that the calculation is lead with 128bits numpy floats (see main
text).

5 mW is used for the following measurements. It is also wavelength-tunable (about 1 nm range)
through a piezoelectric input voltage port. A high-voltage ramp (linearly varying) input signal
establishes a frequency sweeping velocity, permitting to transform the time-varying signal into a
frequency-varying signal.

The photodiode Thorlabs PDA20CS(-EC) for transmitted signal measurements is set with
0 dB gain for the 35 nm and 50 nm thickness silver layers and 20 dB gain for the 75 nm layer (see
section 3). The photodiode for the reflection, on the other hand, is a Newport 1611 photodiode,
from which the DC output is retrieved. The photodiodes show a null phase difference when the
laser power is modulated in the absence of a Fabry-Perot cavity, so that the phase difference we
measure between the transmission and reflection peaks corresponds to an actual frequency shift
between the peaks and not an artifact.

The depositions of silver thin films are made through Magnetron Sputtering Technology (MST)
with machine MP500 from Plassys. Silver targets are 101,6 mm (4") in diameter. The deposition
chamber is kept at 0,9 Pa with Argon. The DC sputtering power is 160 W with a deposition
velocity of 130 nm/min.

At the laser’s output in Fig. 2(a), the beam is mode-matched with a set of lenses to reach
the required 71 µm beam size (waist) when it reaches the plane entrance mirror. The system is
aligned by tilting the entrance injection mirror and the customed Thorlabs Polaris mirror holder,
with the QR set inside (see Fig. 2 (b) and (c)). This only allows for an angular tuning range of
about 2° for the input mirror.

The laser beam is then incident onto the QR, which is a plano-convex quartz crystal with
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Fig. 4. Graphical representation of the results displayed in Table 1. The red color
(all the right-most points of the graph) is used for the 300 K points, whereas the blue
color (all the left-most points of the graph) is used for the 4 K points. The error bars
including the thickness uncertainty (see Table 4 and the red bold error bars displayed
in the results Table 1) are taken here.

250 mm curvature radius and 1 mm thickness at the centre. This amounts to a Free Spectral
Range (FSR) of approximately 97 GHz. Since the QR is birefringent, the Beam Splitter (BS)
used to retrieve the reflected signal is non-polarized whereas a 𝜆/2 waveplate is added to control
the incident polarization, so as to select the fast or slow axis of the QR and obtain coupling with
only one of the polarization modes. We stress that the choice of using quartz here is dictated by
the needs for later optomechanical coupling in order to achieve an ultrastable reference resonator,
and that one could chose e.g. a glass substrate instead.

Based on the transmitted and reflected experimental signals, the oscilloscope allows to record
the data and the FWHM and Δ 𝑓 are extracted through a python program that fits these curves
with the theoretical model.

3. Results, Discussion

We present here some results for 𝑛 and 𝑘 for some specific deposition runs, both at room and
cryogenic (4 K) temperature, extracted from experimental values for Δ 𝑓 and FWHM that are
obtained with the setup shown in Fig. 2(a). It is not possible to measure the refractive index at
intermediate temperatures because the cryocooler can only be set to 4 K. When the cryocooler is
turned off, the temperature quickly changes so that there is no time to fine-tune the alignment and
acquire the transmission and reflection measurement.

The measured values are processed, knowing the deposition thickness to obtain their corre-
sponding 𝑛 and 𝑘 , and are tabulated with their respective uncertainty (see following section
for details). Let us stress that each extracted value of 𝑛, 𝑘 , FWHM and Δ 𝑓 correspond to a
single particular deposition. The values are detailed in Table 1 and presented in Fig. 4. The
measurements and method meet the ground requirement of clearly separating between the room
temperature and the cryogenic temperature results, as the wide spread (including uncertainty
bars) between the two results shows.



300K 4K

FWHM

(MHz)

at 300K/at 4K

Δ 𝑓

(MHz)

at 300K/at 4K

Ag35nm
𝑛

0.2518

±7.09%

±5.79%

0.0951

±7.09%

±5.79%

1226
1005

50
20

𝑘

9.8772

±3.39%

±1.19%

9.3608

±3.39%

±1.19%

Ag50nm
𝑛

0.2609

±6.09%

±5.29%

0.1100

±6.09%

±5.29%
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13

𝑘

9.6359

±2.69%

±1.49%

8.8149

±2.69%

±1.49%

Ag65nm
𝑛

0.2330

±5.49%

±4.89%

0.1244

±5.49%

±4.89%

690
500

31
12

𝑘

8.7164

±2.49%

±1.89%

8.1323

±2.49%

±1.89%

Table 1. Table of computations of 𝑛 and 𝑘 with their uncertainty, each for one particular
deposition run. In green (first in order of appearance), the uncertainty taking into
account the deposition thickness uncertainty; in orange (second in order of appearance),
the uncertainty without taking into account the uncertainty on the deposition thickness
(see discussion in section 3.2). These values are extracted from experimental values of
FWHM and Δ 𝑓 (last columns), with the first value appearing in red being the 300 K
value, whereas the value in blue is the 4 K value.

For each thickness, there is a trend for both the real and imaginary parts of the refractive index
to decrease at 4 K with respect to 300 K. The decrease is much more significant for the real part
𝑛 (≈ 40 − 60%) than for the imaginary part 𝑘 (≈ 5 − 8%). This is consistent with the trend found
in the literature (with the data from e.g. [26]). Note that for a given temperature, the index also
varies with the thickness, as widely observed in the literature [4] [18] [23]. Indeed, the refractive
index change as a function of the silver thin film thickness is caused by the change in density of
the film, which in turn may depend on the deposition process.

Our obtained values for 35 nm of silver, for example, vary by about 16% for 𝑛 and 8% for
𝑘 with respect to the values obtained in [23] at 1550 nm wavelength. This is consistent with
what is found in the literature: the refractive index highly depends on the deposition process



and can vary, depending on this parameter, by as much as 60% for 𝑛 and 8% for 𝑘 at 500 nm
wavelength (data from [26]). Comparing values for some 𝑑 ≈ 35 nm thin film at 594 nm from [4]
and [23] permits to see that even though the technique of deposition is evaporation in both cases,
the variation is still large: ≈ 45% for 𝑛 and ≈ 6% for 𝑘 . In view of these orders of magnitude,
and although the wavelength in this work is different, we deem that the difference between the
obtained values and the values found in [23] are in satisfying agreement.

The extraction method we use inherits an intrinsic imprecision from the fact that we consider
the two mirrors as perfectly equal. In addition, we consider the mean refractive index over the
illuminated area corresponding to the same beam waist 71 µm beam-waist on the plane mirror
and on the concave mirror.

We chose to use a 1550 nm wavelength laser to investigate the refractive index for conveniency
and accessible experimental supplies. Nevertheless, the extraction method used in this work can
easily be extended to longer or shorter monochromatic wavelength. Because the technique uses
the optical resonance, the requirement is to be able to sweep the frequency of the source over the
resonance gain. This means that the laser source should be tunable in wavelength and that its
spectral width should be narrower than the Fabry-Perot resonance’s spectral width, in our case in
the order of 500 MHz to 1200 MHz. Furthermore, there should be no intra-silver-layer resonance.
The theoretical limit for this to happen is when 𝑑 = 𝑝 × 𝜆/2, with 𝑝 any natural number, i.e. deep
UV light in this case, so that the technique is usable down to this range of wavelength.

As previously mentioned, the evolution of the optical properties at 4 K go in the desired
direction, i.e. become less absorptive and more reflective, in accordance with literature. For
example, the Fabry-Perot cavity with 35 nm of silver on quartz has a (theoretical) optical finesse
of 80 at room temperature, which grows up to 100 at 4 K. The maximum transmission is almost
doubled, from 1% at room temperature to 1.8% at 4 K. The contrast of the reflection (i.e.
1 − 𝑅min/𝑅max) goes from 18% at room temperature to 65% at 4 K. The maximum absorption
goes from 50% at room temperature to 40% at 4 K. All these quantities are therefore improved at
4 K, although this improvement seems insufficient to actuate an optomechanical coupling with
radiation pressure in our case [15].

3.1. Errors and Uncertainties

We now discuss several types and sources for error and uncertainty in our results. Once all
these sources of error and uncertainty are established, a Monte-Carlo type statistical analysis is
performed to be able to account for the error bars displayed in the previous result section.

Intrinsic and Numerical

To verify the robustness of the method of extraction, a safety check for the validity of its output
𝑛 and 𝑘 is performed. Because 𝑛 and 𝑘 are extracted through the knownledge of FWHM and
Δ 𝑓 , we start from a known 𝑛 and 𝑘 . The expected FWHM and Δ 𝑓 are then calculated through
two different methods: one is the method presented in this paper, the other is a simple iterative
method to find the optimum of the transmission and reflection peaks recursively. They are in
good agreement, so that the possible error from FWHM and Δ 𝑓 calculation is not further taken
into account as a source of uncertainty. These serve as an input of our method.

Table 2 shows the values obtained during this process, where the input 𝑛 and 𝑘 data are taken
from [23]. Columns 1 and 2 display the known values for 𝑛 and 𝑘 . The calculated FWHM and
Δ 𝑓 , in columns 3 and 4, are used to feed the program. This permits to obtain columns 5 and 6
with the 𝑛fit and 𝑘fit. Finally, columns 7 and 8 correspond to the relative error made between the
program output and the original value. Note that these errors and all extracted set of 𝑛0 and 𝑘0
(solutions of the problem) depend slightly on the span of 𝑛 and 𝑘 when running the fit process.
This is explained by the quality of the local linear fit, once intersection points are found between
the computed surface of FWHM and Δ 𝑓 and the actual experimental value (see Fig. 3). For



example, for a 50 nm silver layer, with refractive index 𝑁 = 0.2522 − 10.8507 𝑗 , allowing 𝑛 to be
spanned between 0.24 < 𝑛 < 0.26 and 10.84 < 𝑘 < 10.86 gives the corresponding estimated
error in Table 2, namely 1,4 × 10−3 for 𝑛 and 7 × 10−4 for 𝑘 . Allowing for 0.07 < 𝑛 < 0.32 and
10 < 𝑘 < 12, however, increases this error to 3,9 × 10−3 for 𝑛 and 8 × 10−4 for 𝑘 .

The results displayed in Table 2 show that the numerical extraction procedure provides
satisfactory precision. In particular, the errors made from this source are much smaller than
some other errors shown in this section. They are therefore discarded in the following.

𝑛 𝑘 FWHM Δ 𝑓 𝑛fit 𝑘fit 𝛿𝑛/𝑛 𝛿𝑘/𝑘
Ag20nm 0.3130 10.6052 2841 128 0.3132 10.6747 4 × 10−4 6 × 10−5

Ag35nm 0.2997 10.7355 1011 45 0.2999 10.7384 7 × 10−4 3 × 10−4

Ag50nm 0.2522 10.8507 531 21 0.2512 10.8416 1 × 10−3 7 × 10−4

Ag65nm 0.2047 10.9659 339 13 0.2043 10.9639 9,3 × 10−4 2 × 10−4

Table 2. Table of extracted values for refractive indices from the fit program described
in section 2.2. Starting from known values of refractive indices (columns 𝑛 and 𝑘) taken
from Ciesielski [23], subsequent FWHM and Δ 𝑓 characteristics are calculated and
displayed. The extracted 𝑛fit and 𝑘fit are then displayed. The relative errors are shown
in the last two columns. It tends to show that the errors coming from the numerical
treatment of the data is negligible compared to some other sources of errors discussed
in this section. Note that calculations were lead in python with numpy 128 bit floats
instead of regular 64 bit floats, otherwise erroneous results are returned due to the (lack
of sufficient) numerical precision. Note also that the table is indicative, as changing the
span over which 𝑛 and 𝑘 are swept changes (slightly) the quality of the local linear fit,
hence the relative error displayed here (see main text). Furthermore, when the thickness
increases, the rounding errors also increase because of faster varying-surfaces (hence
worsening the linear fit quality for a constant span, see Fig. 3)

Another numerical error comes from the numerical extraction of FWHM and Δ 𝑓 from the
transmission and reflection curves that are obtained experimentally. This numerical extraction
induces errors on these values, hence subsequently influencing the extracted set of 𝑛 and 𝑘 . The
error on Δ 𝑓 is estimated to be of the order ±4% and the error on FWHM to be on the order
of 3 × 10−3. In the case of a 50 nm layer with characteristic values as in Table 2, this leads to
an estimated upper bound (i.e. error when the Δ 𝑓 and FWHM are both taken higher than their
actual value) for this error of 4.3% for 𝑛 and 1.1% for 𝑘 . The lower bound, on the other hand, is
estimated to be of 5.1% for 𝑛 and 1.3% for 𝑘 .

Optical alignment

The error made from each different optical alignment, i.e. each different realization of the
alignment protocol, is estimated to be on the order of ±5% for Δ 𝑓 and ±1% for FWHM. We
attribute this shift to the fact that the beam waist is of 71 µm, so that any small change of alignment
will probe a slightly different region of the silver layer, hence giving a slighly different averaged
index of refraction. Indeed, there is an approximate 70 µrad freedom on the input mirror setting
to keep a good coupling, which corresponds to an approximate 5 µm change in beam position
upon incidence on the quartz.

Changing the optical alignment procedure from one polarization axis (fast or slow, see setup
description 2.4) to the other on the QR does not modify the results significantly.

Let us stress that one of the requirements that leads to the use of this particular technique is
the experimental impossibility to vary the angle of incidence on the quartz by more than 2°, so



that any optical angular misalignment is contained within a fraction of this quantity. Once again,
taking an example with the 50 nm thick silver layer, this leads to an upper bound error (defined as
in the previous paragraph) of 4.5% for 𝑛 and 1% for 𝑘 . The lower bound, on the other hand, is
calculated to be 5.3% for 𝑛 and 1.1% for 𝑘 . When calculated for 35 nm and 65 nm, the numbers
stay in the same order of magnitude.

Deposition thickness

The deposition thickness uncertainty is estimated to be ±3 nm (corresponding to about 2 s of
deposition time) for any given sample with respect to the nominal thickness value. This is
estimated through depositing the thin films onto a silicon wafer, cleaving it and measuring the
deposited film’s thickness through Scanning Electron Microscopy (SEM).

This fixed uncertainty incidentally implies that it weights more on the smaller thicknesses.
The results are displayed in Table 3.

20 nm 35 nm 50 nm 65 nm

Upper Bound
𝑛 9.2% 5.6% 4.3% 3.6%

𝑘 7.5% 4.6% 3.1% 2.2%

Lower Bound
𝑛 7.9% 6.7% 4.4% 3.7%

𝑘 9.2% 5.4% 3.4% 2.4%

Table 3. Table of errors due to thickness, with an uncertainty of ±3 pm. "Upper bound"
means the set of solutions 𝑛0 and 𝑘0 are calculated for a certain set of FWHM and Δ 𝑓
with a thickness of 𝑥 + 3 nm, whereas the lower bound is the opposite.

Note that the thickness uncertainty, however, has a particular status within the accounted errors.
Indeed, upon evaluation of a particular area’s refractive index, the same systematic error is made
at room or cryogenic temperature. For this reason, we evaluate the uncertainty with and without
this error taken into account in Table 1.

Thickness at cryogenic temperature

Thermal expansion and contraction is a phenomenon which is mostly known and measured for
bulk materials [27], and it does not change much with the heat treatment (annealing) or deposition
conditions [28]. However, the thin-film Coefficients of Thermal Expansion (CTE) are shown to
vary from their bulk counterpart (see [29] [30] [31]), so that the thickness is not only altered by
the temperature, but it is altered in a different pattern than what we are able to calculate, due to
the lack of available data on thermal expansion for silver thin films.

For the needs of calculating an approximative total contraction between room temperature and
cryogenic temperature, we have used the integrated CTEs over the whole range of temperature
for bulk material [32] [33] [34].

This leads to a raw total contraction coefficient (i.e. without taking the thin-layer nature of our
sample) of:

𝛼tot
300K-4K = −4,26 × 10−3 (11)

Fang [30], however, shows that the rough order of magnitude of change in CTE is of about a
factor 1/2 for Ti and Al thin films.

Extrapolating this result to silver, this means that the actual coefficient for contraction 𝛼tot
300K-4K

could be comprised between the previously claimed value, −4,26 × 10−3, and half of this value.



Including the original uncertainty on the deposited thickness as well as the contraction
uncertainty, the total uncertainty on the thickness at cryogenic temperature yields:

Δ𝑑4K =Δ𝑑300K + Δ𝛼tot𝑑300K + 𝛼totΔ𝑑300K (12)

hence for a 50 nm thick layer

Δ𝑑4K ≈3 nm + 7 × 10−2 nm ≈ 3 nm

which can be essentially identified with the uncertainty of the deposited layer itself. This source
of uncertainty is therefore discarded in the following, with the direct consequence that there is no
difference in uncertainty between the room and cryogenic temperature.

3.2. Statistical analysis

In order to analyze the propagation of errors on the different parameters discussed throughout
this session, we perform a Monte-Carlo type analysis. Because there is no obvious analytical
dependence of the extracted 𝑛 and 𝑘 on the different variables fed to the program, in order to
obtain an estimation of the total error made on the extracted set of values for 𝑛 and 𝑘 , the
extraction program is run many times with slightly different values of FWHM, Δ 𝑓 and thickness
𝑑.

We evaluate the error on the FWHM and Δ 𝑓 to be distributed in a Gaussian fashion, that is,
following a so-called normal distribution, by repeating many times the central value numerical
extraction. The amplitude of the error is reported in the previous sections.

The error distribution on the thickness deposition is not directly measurable, because measuring
a statistical error distribution on such deposition would require a large amount of runs and proper
means of measuring the exact deposited thickness. By using the operator’s experience about
the deposition machine and the central limit theorem, however, we consider that all the possible
errors in the process would lead to another normal (Gaussian) distribution.

Once those different sources of uncertainty are taken into account, the extraction program is run
numerous times, by varying the input FWHM, Δ 𝑓 and thickness 𝑑 following a normal distribution,
each centered on their theoretical values and with a deviation dictated by the previously discussed
values: A deviation of 2 nm is taken for the thickness deposition, of 4% for Δ 𝑓 and of 7 × 10−3

for FWHM. These values are selected so that the returned value from their respective normal
distribution barely ever exceeds the nominal error value discussed in the previous sections, which
are all the maximum recorded variations. An example of a distribution obtained by this mean
is presented in Fig. 5. The calculations is lead for 35 nm, 50 nm and 65 nm. The results are
presented and listed in Table 4.

These error, however, account for the uncertainty of the thickness, which is useful when
treating the total uncertainty of the claimed values but lose their interest when treating the relative
uncertainty between the room temperature and cryogenic values. The same systematic error
on the thickness is made between room temperature and cryogenic temperature, as previously
discussed, so that the uncertainties without taking into account the thickness are also calculated
and presented in Table 5. These two Tables 4 and 5 are used to set the error bars in Table 1.

4. Conclusion

We have shown that it is possible to retrieve the refractive index of the metallic layers deposited
on a quartz crystal resonator used as a Fabry-Perot cavity from the FWHM of the transmission
peak and Δ 𝑓 , the frequency shift between the transmission and reflection peaks. We can achieve
a satisfactory uncertainty on the measurement to differentiate the refractive indices between the
room temperature and the 4 K measurement: for a 50 nm layer of silver for example, the refractive



Fig. 5. Monte-Carlo method to evaluate the error on 𝑛 (a) and 𝑘 (b) for a 50 nm-thick
silver layer, taking into account the uncertainties, all of them following a normal
distribution around their expected value: on thickness 𝑑 (deviation ±2 pm), FWHM
(deviation ±7 × 10−3) and Δ 𝑓 (deviation ±4%). The gaussian fit is rather good and
gives a typical deviation of about 6.1% on 𝑛 and 2.7% on 𝑘 , with central values for 𝑛
and 𝑘 equal to their nominal values to within 1 × 10−5 for 𝑛 and 7 × 10−4 for 𝑘 (see
Table 4). Graphs are made with 500 bins on 22650 points.

35nm 50nm 65nm

error on

central value

𝑛 9,9 × 10−3 8 × 10−5 5,4 × 10−4

𝑘 7,6 × 10−3 7 × 10−4 6,9 × 10−4

deviation
𝑛 7.1% 6.1% 5.5%

𝑘 3.4% 2.7% 2.5%

Table 4. Error on central value of 𝑛 and 𝑘 for different deposition thickness, following
a Monte-Carlo type simulation where thickness uncertainty is taken into account. This
permits to give the overall expected uncertainty on values and results for 𝑛 and 𝑘
extraction in the Results section. Note that this uncertainty is valid for both the room
temperature and the cryogenic temperature.

index is found to be �̃�Ag = 0.2609 − 96359𝑖 at room temperature and �̃�Ag = 0.1100 − 8.8149𝑖
at 4 K which is in reasonable agreement with the scarcely available data from the literature.
Although the method we use is limited to a small set of materials with absorptive properties and
small thickness, it brings a good knowledge about the refractive index of the equivalent layer
deposited on both sides of the substrate. It is possible to extend the method to other wavelengths
in order to derive the refractive indices over a wide spectral range.
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35nm 50nm 65nm

error on

central value

𝑛 2,4 × 10−3 3,7 × 10−3 2 × 10−3

𝑘 6,9 × 10−4 7,6 × 10−4 5,5 × 10−5

deviation
𝑛 5.8% 5.3% 4.9%

𝑘 1.2% 1.5% 1.9%

Table 5. Same as Table 4, except that the uncertainty on thickness has not been taken
into account here for the reasons explained in the main text.
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A. Appendix: Expression for 𝜹𝑹

𝛿𝑅 can be shown to yield:

𝛿𝑅 = arccos
� hn

𝐵4 (−2𝐷 − 2)2𝐸2𝑠𝑖𝑛4 (𝜖) − 4(𝐴2𝐸2 − 2𝐴𝐵𝐷𝐸 cos(𝜖)
− 2𝐴𝐵𝐸 cos(𝜖) + 2𝐴𝐸2 + 𝐵2𝐷2 + 2𝐵2𝐷 + 𝐵2 − 2𝐵𝐷𝐸 cos(𝜖)
− 2𝐵𝐸 cos(𝜖) + 𝐸2) (−𝐴2𝐸2 + 2𝐴𝐵𝐷𝐸 cos(𝜖) + 2𝐴𝐵𝐸 cos(𝜖)
− 2𝐴𝐸2 − 𝐵2𝐷2 cos2 (𝜖) − 2𝐵2𝐷 cos2 (𝜖) + 𝐵2𝐸2𝑠𝑖𝑛2 (𝜖)

− 𝐵2 cos2 (𝜖) + 2𝐵𝐷𝐸 cos(𝜖) + 2𝐵𝐸 cos(𝜖) − 𝐸2)
o 1

2

− 𝐵2 (−2𝐷 − 2)𝐸𝑠𝑖𝑛2 (𝜖)
i .

h
2(𝐴2𝐸2 − 2𝐴𝐵𝐷𝐸 cos(𝜖) − 2𝐴𝐵𝐸 cos(𝜖) + 2𝐴𝐸2 + 𝐵2𝐷2

+ 2𝐵2𝐷 + 𝐵2 − 2𝐵𝐷𝐸 cos(𝜖) − 2𝐵𝐸 cos(𝜖) + 𝐸2)
i �

(13)

where 𝐴 = |𝜁210𝑅220 |2, 𝐵 = 2|𝜁210𝑅210 |, 𝐷 = |𝑅210 |4 and 𝐸 = 2|𝑅210 |2.
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