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Abstract—This paper deals with the control-oriented energy-
based modeling of ionic polymer metal composite patches using
multiscale infinite dimensional port-Hamiltonian formulations
and Lagrange multipliers. Inspired by the work of Gou Nishida et
al. 2012, but considering different assumptions, this paper focuses
on the constraints arising from the coupling between the polymer
gel and the compliant mechanical structure of the actuator, under
the quasi-static mechanical assumption for the gel, leading to a
constrained port Hamiltonian system. The geometric structure of
the overall system and the associated energy balance are derived.
The proposed energy-based model of the IPMC actuator allows
deriving controllers via energy-based control design methods with
a clear physical interpretation. The proposed actuator model is
further discretized in space using a structure preserving finite
difference method. The Lagrange multipliers are eliminated using
coordinate projections. Simulations are compared with experi-
mental results. With proper discretization numbers, our model is
consistent with the physical system. Finally, Lagrange multipliers
are exploited to connect the actuator to a 2-dimensional flexible
structure stemming from the modeling of a flexible endoscope.

Index Terms—IPMC actuator, infinite dimensional port Hamil-
tonian system, 2D shell modeling, model discretization.

I. INTRODUCTION

IONIC polymer metal composites (IPMCs) are widely used
as actuators or/and sensors in biomedical and industrial

domains [1], [2], due to their advantages of low-cost voltage,
large deformation, as well as broad bandwidth in comparison
with piezoelectric materials.

IPMCs are composed of an electroactive polymer (poly-
electrolyte gel) whose surfaces are coated with a conductor
such as gold. The working principle is the following: cations
and solvent molecules in the gel transport to the cathode
side of the electrode when an electrical potential difference
is imposed across the two boundaries of the double layer. As
a consequence, the cathode side swells and the anode side
shrinks, entailing a bending effect to the anode side [3].

Based on the aforementioned physical structure and working
principle, various models of such actuators have been proposed
in the literature, mainly sorted into three subclasses: black box
models, white box models and grey box models.
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As initially proposed in [4], [5], the black box model,
which is purely empirical and which focuses only on the
relation between specific inputs and outputs (e.g. voltage and
tip displacement of the IPMC), is simple to establish [6].
However, as it is based on strong assumptions, it cannot be
applied to all types of IPMC, nor to different boundary or
experimental conditions. In contrast to the previous one, the
white box model is established via principles of physics and
chemistry at the molecular level [7]–[9], resulting in a set of
partial differential equations (PDEs). The complexity of such
model makes it difficult to handle from a numerical point of
view and difficult to be validated experimentally.

Different from the two previous models, the grey box model
has been investigated in [10]–[12]. It is formulated according
to physical principles in conjunction with simplified assump-
tions and parameter identifications. It is proven that this kind of
model presents a higher accuracy and wider universality than
the black box model. Meanwhile, it is more preferable than
its white counterpart in terms of the numerical implementation
and the experimental validation. According to the composition
of IPMCs, the model is derived considering three subsystems:
the interface between the gel and the electrode, the polymer
and the mechanical structure. In [12] a control-oriented and
physical-based model of an IPMC actuator using an infinite
dimensional transfer function between the input voltage and
the output endpoint displacement of the actuator is proposed.
The mechanical dynamics is approximated by a second-order
system, which is valid only at low frequencies. With the model
reduction of the infinite dimensional transfer function, an H∞
controller is implemented. This work focuses on the modeling
and control design of a single actuator in a given range of
frequencies.

The proposed approach is different as it aims at providing
a model of IMPC patches suitable for distributed control of
flexible structures. The proposed model has then to cope with
higher frequency modes and to be easy to interconnect with
both elastic beams and thin shell models, the control design
being derived using energy based control design methods in
order to have a better physical interpretation for the con-
troller. Recently, a new type of grey box model has been
proposed in [13] within the framework of port-Hamiltonian
systems (PHSs). This port based modeling expresses the
dynamics of the system through energy exchanges between
its subcomponents. As a result, it is particularly well suited
for the modeling of complex, multiphysical and multiscale
systems via power preserving interconnections. Yet, due to the
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considered assumptions, the model proposed in [13] presents
some important limitations. In [13] a local homogeneity
assumption is considered for the polymer deformation. The
multiscale coupling of the gel with the mechanical structure
is done through the bending moment, locally defined for the
polymer gel, and the structure deformation, globally defined
for the mechanical structure. Furthermore the polymer action
is seen as modifying the internal properties of the mechanical
structure. As a consequence singularities may appear when
the mechanical deformation is homogeneous. In this case, due
to the considered assumptions, the bending moment provided
by the polymer gel is homogeneous and without any effect
on the distributed mechanical structure. On the other hand,
the coupling between the mechanical properties of the gel
(considered as quasi-static) and the mechanical properties of
the actuator structure in [13] is implicit, with conflicting
causalities in the proposed Bond Graph. In this paper we make
the quasi-static behavior of the gel explicit and express the
algebraic constraint arising from the coupling between the gel
and the mechanical structure of the actuator with a Lagrange
multiplier. We also consider the action of the polymer gel on
the mechanical structure as an external distributed bending
moment, avoiding singularities associated with homogeneous
deformations. The discretization of the proposed IPMC model
is structure preserving, such that our discretized model is again
a port-Hamiltonian system. To go much further, a similar
strategy using Lagrangian multipliers is used to connect this
IPMC model to a 2-dimensional (2D) elastic tube stemming
from the modeling of a flexible endoscope.

The paper is organized as follows. Section II establishes the
energy based model of the IPMC as a modular composition
of three subsystems and their multiscale coupling under the
port-Hamiltonian framework. The overall structure of the
system and the associated energy balance are made explicit. In
Section III, the finite difference method on staggered grids is
applied to discretize the IPMC model in a structure preserving
way. Meanwhile, the Lagrange multipliers are eliminated by
projection. Comparisons between simulated and experimental
results are given in Sections IV. In Section V is proposed the
model of a 2D flexible structure stemming from the modeling
of a flexible endoscope actuated by an IPMC patch. In Section
VI are given conclusions and perspectives.

II. MODELING OF THE IPMC ACTUATOR

The IPMC patch under investigation is of length L, width
b and thickness h. Its shape and structure are depicted in Fig.
1.

(a) IPMC patch. (b) IPMC structure [14].

Fig. 1: Shape and structure of an IPMC actuator patch.

This IPMC model is composed of three subsystems: the
electrical system stemming from the modeling of the elec-
trode/polymer interface, the electro-stress diffusion system
stemming from the modeling of the polymer, and the mechani-
cal system stemming from the modeling of the overall mechan-
ical structure deformation, which are at scales of nanometer,
micrometer and centimeter [13], respectively. In this section,
the different subsystems and the way they are coupled are
discussed. The main differences with the model proposed in
[13] lie in the electro-stress diffusion and mechanical models
and the way they are interconnected (cf. subsections B, C, D).

A. Electrical system

Starting with the electrical part, we assume that the volt-
age V is uniformly distributed on the double layers. Ac-
cording to [13], each fractal-like structure on two elec-
trodes is referenced as a virtual coordinate ξ ∈ [0, Lξ]
as marked by a red circle in Fig. 1b, and is represented
by a distributed RC circuit illustrated in Fig. 2. For each
structure, there are innumerable infinitesimal branches, where
R1(ξ) represents the resistance density between two adjacent
branches, and R2(ξ) and C2(ξ) correspond to the resistive
and capacitive impedance densities of each branch, respec-
tively. By taking the variables: f1(ξ, t) = −∂Q(ξ, t)/∂t,

V

R1(ξ)
· · ·

R2(ξ)

C2(ξ)
· · ·

i(0, t)

ξ = 0 ξ = Lξ

Fig. 2: Infinite dimension electrical system.

e1(ξ, t) = Q(ξ, t)/C2(ξ) + R2(ξ)∂Q(ξ, t)/∂t, fr1(ξ, t) =
∂/∂ξ (Q(ξ, t)/C2(ξ) +R2(ξ)∂Q(ξ, t)/∂t), where Q(ξ, t) is
the charge density of each capacitor, one can express the
dynamic function of the circuit in a PHS form: 1(
f1

fr1

)
=

(
0 ∂ξ
∂ξ 0

)(
e1

er1

)
,with er1(ξ, t) = −fr1(ξ, t)

R1(ξ)
. (1)

Assuming that the impedance is infinite, the current at the
endpoint of each fractal structure is zero, namely er1(Lξ) = 0.

According to [15] and [16], the boundary port variables of
(1) can be expressed with respect to the physical boundary
conditions:(

fT∂ξ eT∂ξ
)T

=
(
e1(0) e1(Lξ) −er1(0) er1(Lξ)

)T
=
(
V + Vc e1 (Lξ) −Ie 0

)T
, (2)

where Vc corresponds to the voltage coming from the gel, and
Ie represents the output current.

The Hamiltonian reads Hel =
∫
ξ
Q2/(2C2) dξ. The energy

balance equation is given by:

∂Hel

∂t
=

∫
ξ

∂Q

∂t

T Q

C2
dξ ≤ fT∂ξe∂ξ, (3)

1For the sake of compactness, ∂/∂ξ is denoted as ∂ξ and the symbol t is
omitted in the following context.
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where we have used the integration by parts, (2) and the
dissipation arising from R1 and R2.

B. Electro-stress diffusion system

In this part we are interested into the electro-physical
properties of the polymer and the associated electro-stress
diffusion process occurring in the gel. The gel is composed of
a solid and a liquid phase. The former contains the polymer
network and fixed anions, and the latter includes cations
and water molecules [17]. In the liquid phase, two coupled
phenomena can be distinguished: the electro-osmosis and the
water transport [18]. This will later be modeled using P.G.
de Gennes’ method [19]. The solid phase is assumed to be
at a pseudo-equilibrium state, because the solvent dynamics
is much slower compared to the mechanical dynamics of the
polymer, hence forming a quasi-static electro-stress diffusion
coupling model [13], [18].

This assumption makes the mechanical dynamics of the
gel implicit, such that the radius of curvature of the gel is
addressed with the help of the rotational angle of the patch de-
formation along the x coordinate, i.e. 1/R(x) = −∂θ(x)/∂x,
which leads to algebraic constraints in the coupling between
the electro-stress diffusion system and the mechanical system
associated with the patch deformation.

Here we explain both the solid phase and the liquid phase
modelings in details. The deformation of the solid phase
is assumed to be symmetric (right graph in Fig. 1b). The
curvature R(x) is assumed to be locally homogeneous along
the x direction. Stress tensors are formulated by the curvature
R(x) and the swelling ratio fs(z, x):

σxx(z, x) =

(
K − 2

3
G

)
fs(z, x) +

2G

R(x)
z,

σzz(z, x) =

(
K +

4

3
G

)
fs(z, x)− 4G

R(x)
z,

where K and G are the bulk and shear modulus of the gel,
respectively [18].

The pseudo-equilibrium state of the gel gives the pressure
p as

p = σzz. (4)

In the liquid phase, it is supposed that the gel goes only in
the z direction. This is consistent with the hypothesis of local
homogeneity of R(x) in the solid phase. The conservation law
on the volume leads to [18]:

∂fs(z, x)

∂t
= −∂js(z, x)

∂z
, (5)

where js(z, x) is the flux of solvent.
Different physical models dealing with the coupling be-

tween the ion and water transport have been studied, among
which are the ones developed by Nemat-Nasser [8] and by P.G.
de Gennes [19]. The former one [8] emphasizes the importance
of the electrostatic force over the hydraulic force and the latter
[19] considers that the hydraulic force prevails in the coupling.
Both models are consistent with the experimental results. In
this paper we use the P.G. de Gennes’ model because it is

based on irreversible thermodynamics and is well suited for the
port-Hamiltonian formulation, leading to a natural definition
of the power conjugated flow and effort variables. The model
is formulated as follows:

je = −σe∇ψ − λ∇p, js = −φd
2

η
∇p− λ∇ψ, (6)

where je represents the electrical current density. σe is the
conductance, λ stands for the Onsager’s coupling constant
and ψ is the electric field. φ, d and η denote the water
volume fraction, the effective pore size and the water viscosity,
respectively, whose product φd2/η forms the constant of the
Darcy’s permeability [19].

By combining (4) and (6), one gets:

js(z)=
λ

σe
je +

(
λ2

σe
− φd

2

η

)
∂p

∂z

= −Rg
∂

∂z
(Rffs (z, x)) + 1Z

λ

σe
je + 1ZΦ(x), (7)

with Rg = d
(
φ/η − λ2/

(
d2σe

))
, Rf = d (K + 4/3G),

and Φ(x) =
(
φd2/η − λ2/σe

)
4G/R(x). Rffs can be seen

analogous to a compression force. 1Z is firstly proposed in
[13] and serves for the multiscale coupling. It stands for the
characteristic function of domain z, and distributes uniformly
the boundary values λ

σe
je and Φ(x) into the z domain.

Similar to the electrical system, by defining f2 = −∂tfs,
fr2 = Rf∂zfs, e2 = Rffs and er2 = −Rg∂z (Rffs),
(5) and (7) can then be reformulated in the port-Hamiltonian
framework as:(

f2

fr2

)
=

(
0 ∂z
∂z 0

)(
e2

er2

)
,with er2 = −Rgfr2. (8)

The boundary variables are:(
f∂z
e∂z

)
=
(
er2
(
−h2
)

er2
(
h
2

)
−e2

(
−h2
)

e2

(
h
2

))T
. (9)

Boundary conditions come from the impermeable assumption
that js(±h/2) = 0 [13]. The Hamiltonian associated with
the electro-stress diffusion system is Hem =

∫
z
Rff2

s /2 dz.
The energy balance equation is formulated as ∂tHem =∫
z

(∂tfs · Rffs) dz ≤ fT∂ze∂z , which is similar to the energy
balance equation (3).

Considering that the swelling and shrinking are visualized
at a macro scale, the gel generates locally a bending moment
in the x direction,:

M(x)=

∫
z

(σxx − p) bz dz

=

∫
z

BaRffs(z, x) dz +
Gbh3

2R(x)
, (10)

with Ba(z) = −2Gbz/Rf . This bending moment can later be
divided into two parts, Mx1 and Mx2, reading:

Mx1(x) =

∫
z

BaRffs(z, x) dz, Mx2(x) =
Gbh3

2R(x)
.
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C. Mechanical system

A slightly deformed IPMC actuator can be modeled as a
Timoshenko beam with x ∈ [0, L] under the port Hamiltonian
framework [20]:
f3

f4

f5

f6

 =


0 ∂x 0 −1
∂x 0 0 0
0 0 0 ∂x
1 0 ∂x 0



e3

e4

e5

e6

+


0
0
0
1

M

L
(x, t), (11)

where 2 f3 = − (∂txω − ∂tθ), f4 = ρA∂ttω, f5 = −∂txθ,
f6 = ρI∂ttθ, e3 = GA (∂xω − θ), e4 = −∂tω, e5 = EI∂xθ
and e6 = −∂tθ. ω denotes the longitudinal displacement, ρ is
the beam density, E represents the Young’s modulus, A stands
for the cross section area of the beam, I is the moment of
inertia, and M(x, t) is the distributed bending moment coming
from the gel, formulated by (10).

The boundary port variables are calculated as:(
f∂x
e∂x

)
=

( (
e4(0) e3(L) e6(0) e5(L)

)T(
−e3(0) e4(L) −e5(0) e6(L)

)T
)
. (12)

The Hamiltonian of the beam is Hm =
1
2

∫
x

(
GA (∂xω − θ)2

+ EI∂2
xθ + ρA∂2

t ω + ρI∂2
t θ
)

dx.

Remark 1. Differently from [13] the quasi-static behavior
of the polymer is made explicit in the electro-stress diffusion
system and the contribution of the polymer on the mechanical
structure stemming from the modeling of the patch bending is
considered as a distributed source term.

D. Coupling between the different subsystems

1) Electrical / electro-stress diffusion systems: According
to (7), the interconnection between the electrical system and
the electro-stress diffusion system is made through the bound-
ary variables e1(0), er1(0), and js(±h/2). Given that these
boundary variables are of different scales and are defined in
different independent domains ξ and z, a coupling element,
named boundary multiscale coupling (BMS), has been intro-
duced in [13] to proceed with the interconnection. As depicted

GY BMS

Fig. 3: Bond graph of the coupling between ξ and z, with
Rffs|∂z = Rf

(
fs
(
h
2

)
− fs

(
−h2
))

.

in the bond graph in Fig. 3, the BMS element works as a
differential gyrator. By crossing it, λ

σe
je is multiplied by the

characteristic function 1Z , which represents a uniform dis-
tributed input in the domain z. Conversely, the effort variable
∂ (Rffs) /∂z in the z domain goes through the BMS in order
to be integrated over z and become Rf

(
fs
(
h
2

)
− fs

(
−h2
))

.
The current density je is related to the current Ie by

je =
Ie
Lb
. (13)

2The second-order derivative operator ∂2/ (∂x∂y) is denoted by ∂xy .

Based on the power conservation, Rffs|∂z is transformed into
the voltage Vc via the gyrator GY :

Vc = − λ

σeLb
Rf
(
fs

(
h

2

)
− fs

(
−h

2

))
. (14)

2) Electro-stress diffusion system / mechanical system: At
the macro-scale, the electro-stress diffusion model connects
with the mechanical model through two bending moments
(Mx1 and Mx2) and the angular velocity ∂θ(x, t)/∂t.

The bond graph of the interconnection through Mx1(x) is
shown in Fig. 4 (left column). An additional term Ba

L 1Z
∂θ
∂t is

added into (5) to match the power conservation. This term is
considered in the electro-stress diffusion system as a source
term coming from the mechanical level:

∂fs(z, x)

∂t
= −∂js(z)

∂z
− Ba

L
1Z

∂θ(x)

∂t
.

The coupling through Mx2(x) and Φ(x) aims at describing the
aforementioned algebraic constraints. From the bond graph in
Fig. 4, since Φ(x) acts as a flow source for the electro-stress
diffusion system and Mx2(x) is the output of this system, with
the linear relation

Mx2(x) = Φ(x)Bp,with Bp =
bh3

4

(
φ
d2

η
− λ2

σe

)−1

, (15)

a Lagrange multiplier λL is added to express the associated
constraint and to guarantee the causality of the system, as
presented on the right column of Fig. 4. One gets:

..

..
..

..

..

Fig. 4: Bond graph of the coupling between z and x, through
Mx1 (left column), Mx2 (right column) and ∂θ/∂t.

(
1

Bp
L

)T
λL =

(
Φ Mx2

L

)T
. (16)

Furthermore, the physical constraint associated with the La-
grange multiplier λL is given by:(

1
Bp
L

)(Rffs|∂z
∂θ
∂t

)
= Rffs|∂z +

Bp
L

∂θ

∂t
= 0. (17)

It reveals that the arrow associated with the Lagrange mul-
tiplier in the bond graph (shown in Fig. 4) is an effort
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source with zero flow, such that by passing the ‘0’ junction,
the effort variable Φ remains unchanged, while the flow
variables Rffs|∂z and Bp

L
∂θ
∂t sum to zero, ensuring the power

conservation. This is analogous to an interconnection of two
glued mass-spring systems, where the two masses have the
same velocity and inverse reaction forces. Accordingly, (8)
changes to:(
f2

fr2

)
=

(
0 ∂z
∂z 0

)(
e2

er2

)
+

(
Ba
L 1Z

∂θ
∂t + ∂z1ZλL

0

)
, (18)

closed with er2 = −Rgfr2, boundary variables (9), and
interconnections (16) and (17).

E. The overall system

The three above subsystems (1), (18) and (11), as well as
their boundary variables (2), (9), and (12), can be coupled
through the relations (13), (14) and the Lagrange multiplier
(16) and (17), to get the global system:

f = J e+ ALλL, (19)

with f =
(
f1 fr1 f2 fr2 f3 f4 f5 f6

)T
,

e =
(
e1 er1 e2 er2 e3 e4 e5 e6

)T
,

J =



0 ∂ξ 0 0 0 0 0 0
∂ξ 0 0 0 0 0 0 0
0 0 0 ∂z 0 0 0 −BaL 1Z
0 0 ∂z 0 0 0 0 0
0 0 0 0 0 ∂x 0 −1
0 0 0 0 ∂x 0 0 0
0 0 0 0 0 0 0 ∂x
0 0

∫
Z
Ba
L (·)dz 0 1 0 ∂x 0


,

and AL
∗ =

(
0 0 (·) |h

2
− (·) |−h2 0 0 0 0 −BpL

)
,

such that

AL
∗e = e2

(
h

2

)
− e2

(
−h

2

)
− Bp

L
e6 = 0, (20)

which is similar to the constraint (17). The extended space of
flow variables is defined as F̄ = F ×F∂ , with:

F= F(0,Lξ) ×F(−h2 ,
h
2 ) ×F(0,L)

= L2

(
[0, Lξ]× [0, L],R2

)
× L2

(
[−h

2
,
h

2
]× [0, L],R2

)
×L2

(
[0, L],R4

)
,

F∂ = F∂ξ ×F∂z ×F∂x = R2 × R2 × R4.

Let HN ((a, b);Rn) denote the Sobolev space on the interval
(a, b). The extended space of effort variables is Ē = E × E∂ ,
with:

E = E(0,Lξ) × E(−h2 ,
h
2 ) × E(0,L)

= H1
(
[0, Lξ]× [0, L],R2

)
×H1

(
[−h

2
,
h

2
]× [0, L],R2

)
×H1

(
[0, L],R4

)
,

E∂ = E∂ξ × E∂z × E∂x = R2 × R2 × R4.

Proposition. The linear subset D ∈ F̄ × Ē defined by

D=

{
f
f∂
e
e∂


∣∣∣∣∣f ∈ F , e ∈ E ,

(
f∂
e∂

)
∈ F∂ × E∂ ,

f = J e+ ALλL,AL
∗e = 0, λL ∈ H1([0, L],R),

e1(0) +
λ

σeLb

(
e2

(
h

2

)
+ e2

(
−h

2

))
= V,

er2

(
±h

2

)
+

λ

σeLb
er1(0) + λL = 0,

er1(Lξ) = e3(L) = e4(0) = e5(L) = e6(0) = 0

}
is a modulated Stokes-Dirac structure.

Proof: Equation (19) together with (20) can be reformu-
lated as : (

f
0

)
=

(
J AL

AL
∗ 0

)
︸ ︷︷ ︸

Je

(
e
λL

)
,

The modulated Stokes-Dirac structure is inherent to the skew
symmetry of Je. The skew symmetry of Je lies in the equality
between 〈e1,Jee2〉 and 〈−Jee1, e2〉 with the input, where
〈·, ·〉 denotes the inner product in the Hilbert space. e1 and
e2 are two pairs of effort variables in E . Using integration
by parts, relations of interconnection and boundary conditions
II-E defined in D , we have

〈e1,Jee2〉 = 〈−Jee1, e2〉 − V
∫
x

(
e2
r1(0) + e1

r1(0)
)

dx,

where −
∫
x
e2
r1(0)dx is the output current Itotal along the

IPMC electrodes.

III. MULTISCALE DISCRETIZATION OF THE IPMC
ACTUATOR

We consider now the discretization of the IPMC actuator
model (19). To preserve the port Hamiltonian structure of
the system, which is important for both analysis and control
design, the structure preserving finite difference method on
staggered grids [21] is applied for the discretization in space.
In what follows, ξ and z are local coordinates, while x is
the global coordinate, which rises the assumption that each
point in x possesses one corresponding ξ and z. As a result,
there are Ne (= Nξ ×Nb) elements for the electrical system,
Ng (= Nz ×Nb) elements for the electro-stress diffusion sys-
tem, and Nb elements for the mechanical system.

A. Discretization of the electrical system

Before starting the discretization, (1) has to be reformu-
lated in order to handle its algebraic linear expression in e1.
Therefore, (1) is rewritten as: f1

fr1
f1

 =

 0 ∂ξ 0
∂ξ 0 ∂ξ
0 ∂ξ 0

e1c

er1
e1R

 , (21)

with e1c = Q/C2 and e1R = R2∂tQ = −R2f1.
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The discretization scheme is shown in Fig. 5, where j ∈
{1, · · · , Nb} represents the jth element in the x coordinate,
and h1 is the discretization step along the ξ direction. With

(e1c)0,j
(e1R)0,j

(er1)1,j
(fr1)1,j

(e1c)1,j

(f1)1,j
(e1R)1,j

(er1)2,j
(fr1)2,j

(e1c)2,j

(f1)2,j
(e1R)2,j

...

...
...
...

...

...

...

...

...

...

(er1)Nξ,j
(fr1)Nξ,j

(e1c)Nξ,j
(e1R)Nξ,j
(f1)Nξ,j

ξ

(er1)Lξ,j

h1

x

Fig. 5: Discretization schema of (21).

boundary condition er1(Lξ) = 0, (21) is discretized into: f1d

fr1d
f1d

 =

 0 D1 0
−DT

1 0 −DT
1

0 D1 0

e1cd

er1d
e1Rd

+

 0
g1

0

 e1b, (22)

with f1d =
(
(f1)1,1 · · · (f1)1,Nb · · · (f1)Nξ,Nb

)T
,

fr1d =
(
(fr1)1,1 · · · (fr1)1,Nb · · · (fr1)Nξ,Nb

)T
,

e1cd =
(
(e1c)1,1 · · · (e1c)1,Nb · · · (e1c)Nξ,Nb

)T
,

e1Rd =
(
(e1R)1,1 · · · (e1R)1,Nb · · · (e1R)Nξ,Nb

)T
,

e1b = e1c(0) + e1Rd(0) and the matrices

D1 =


− 1

h1

1
h1

. . . . . .
. . . 1

h1

− 1
h1

 , g1 =


− 1

h1

0
...
0

 ,

where RNb×Nb 3 1
h1

= diag
(

1
h1

)
and 0 is zero matrix of

appropriate size.
The closure equations er1 = −fr1/R1 and e1R = −R2f1

are discretized into:

er1d = Lr1fr1d, and e1Rd = Lr2f1d, (23)

with Lr1 = diag(−1/R1) and Lr2 = diag(−R2).

B. Discretization of the electro-stress diffusion system
Similar to III-A, (18) is recast into:(
f2d

fr2d

)
=

(
0 D2

−DT
2 0

)(
e2d

er2d

)
+

(
D26 g2

0 0

)(
e6d

e2b

)
, (24)

where f2d =
(
(f2)1,1 · · · (f2)1,Nb

· · · (f2)Nz,Nb
)T

,

fr2d =
(
(fr2)1,1 · · · (fr2)1,Nb

· · · (fr2)Nz−1,Nb

)T
,

D26 =
(
−M1 · · · −Mm · · · −MNg

)T
,

RNb×Nb 3 Mm = diag
(
− 2Gb
RfL

(
−h2

2 + (2m−1)h2

2

))
,

e2b =
(
− λ
σe
je − λLd

)
, λLd =

(
λL

1 · · · λL
Nb
)T

, and
matrices

D2 =


1
h2

− 1
h2

. . .

. . . 1
h2

− 1
h2

 , g2 =


− 1

h2

0
...
0
1
h2

 .

The closure equation er2 = −Rgfr2 is discretized into

er2d = Lr3fr2d, with Lr3 = diag(−Rg). (25)

C. Discretization of the mechanical system

For a clamped-free cantilever beam model, with boundary
condition e3(L) = e4(0) = e5(L) = e6(0) = 0, (11) is
discretized into:

f3d

f4d

f5d

f6d

=


0 D3 0 S1

−DT
3 0 0 0

0 0 0 D3

−ST1 0 −DT
3 0


︸ ︷︷ ︸

Jmd


e3d

e4d

e5d

e6d



+


0
0
0
−DT

26


︸ ︷︷ ︸

S2

e2d +


0
0
0

diag(
Bp
L )


︸ ︷︷ ︸

Sλ

λLd, (26)

where fid =
(
f1
i · · · fNbi

)T
, eid =

(
e1
i · · · eNbi

)T
, i =

{3, 4, 5, 6}, and matrices

D3 =


1
h3

− 1
h3

. . .

. . . . . .
− 1
h3

1
h3

 , S1 = −


1
2

1
2

. . .

. . . . . .
1
2

1
2

 .

With the coupling relations (13) and (14), closure equations
(23) and (25), the discretized subsystems (22), (24) and (26)
lead to the global discretized system: ẋ1d

ẋ2d

ẋmd


︸ ︷︷ ︸

ẋd

=

 M2D
T
1 P1 0

M1D
T
1

(
I− Lr2M2D

T
1

)
P2 −ST2

0 S2 Jmd


︸ ︷︷ ︸

Jr

 e1d

e2d

emd


︸ ︷︷ ︸

ed

+

 0
g2

Sλ


︸ ︷︷ ︸

gc

λLd +

 −M2g1

M1

(
DT

1 Lr2M2 − I
)
g1

0


︸ ︷︷ ︸

B

V, (27)

with I the identity matrix of appropriate size,

x1d = Qd, x2d = fsd,

xmd =
(
∂xωd − θd ρA∂tωd ∂xθd ρI∂tθd

)T
,

ed = Ldxd, Ld = diag (1/C2,Rf , GA, 1/ (ρA) , EI, 1/ (ρI)) ,

M1 = g2
λ

σeLb
gT1 Lr1, P1 = M2g1

λ

σeLb
gT2 ,

M2 = −
(
I +D1Lr1D

T
1 Lr2

)−1
D1Lr1, and

P2 = −D2Lr3D2 −M1

(
DT

1 Lr2M2 + I
)
g1

λ

σeLb
gT2 .

The geometric constraint in (20) becomes gTc ed = 0.

D. Elimination of the Lagrange multiplier

The Lagrange multiplier λLd in (27) has to be eliminated in
order to perform the simulation and apply the control strategies
afterwards. The proposed method is based on the coordinate
projection in [22] that preserves the PH structure of the system.
This projection approach has later been improved in [23] to
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get a descriptor formulation in the linear case, which finally
leads to:(

I 0
0 0

)( ˙̃X1

˙̃X2

)
=

(
J̃11 J̃12

gTc M̃
T

)
L̃d

(
X̃1

X̃2

)
+ M̃BV, (28)

where M̃ is the coordinate transformation matrix such that

M̃ =

(
S(

gTc gc
)−1

gTc

)
with S satisfying S · gc = 0.

X̃1 = M̃
(
xT1d xT2d xT3d xT4d xT5d

)T
, X̃2 = M̃xT6d, J̃ =(

J̃11 J̃12

J̃21 J̃22

)
= M̃JrM̃

T , and L̃d = M̃−TLdM̃
−1.

IV. SIMULATION RESULTS AND EXPERIMENTAL
VALIDATION

The experimental set-up is shown in Fig. 6. The IPMC patch
is controlled through a computer equipped with a dSPACE
controller board in order to generate different types of input
voltages. The amplifier is used to regulate the input voltage.
The laser position sensor and current sensor are dedicated to
the measure of the tip displacement of the IPMC and to the
measure of the output current, respectively. The dimension
of the considered Nafion-based IPMC actuator is 45mm ×
5mm×0.2mm, with a density of 1.633×103kg/m3, Young’s
modulus of 9 × 107Pa and Poisson ratio of 0.3. According
to [24], φ = 0.34 and η = 0.010Pa · s. Identified parameters
are listed in Table I, where R1total, R2total and C2total are the
identified resistances and capacitance of the electrodes.

dSPACE Amplifier Current conditioner Position sensor

Current sensor

IPMC

Fig. 6: Experimental setup of IPMC.

TABLE I: Identified parameters.

R1total 460.54 Ω λ 16.6 × 10−9 m2/(Vs)

R2total 3 Ω σe 13.10 1/(Ωm)

C2total 0.021 F d 10 nm

The temporal evolution of the current obtained in the simu-
lation with a step voltage of 1V are depicted and compared to
the experimental one in Fig. 7. The simulations correspond to
four values of Nξ (10, 50, 100 and 200), while both Nz and
Nb fixed to 10. As Nξ increases, the peak response obtained in
simulation approaches gradually the experimental one (marked
by black solid line), while the settling time remains similar.
This evolution is in accordance with the frequency responses
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Fig. 7: Variation of the output current according to different
discretization numbers Nξ, compared with experimental data.

of the transfer functions associated to different values of Nξ.
From the Bode diagram in Fig. 8, the transfer functions have

a similar shape at low frequencies but are slightly different
for the high frequencies. This difference tends to zero when
Nξ tends to infinity. However, one can notice that for the
considered example, the difference is minor for Nξ greater
than 50. The influence of Nz and Nb on the current has also
been investigated but omitted in this paper for the sake of
brevity. Actually, these parameters have a minor effect on the
current responses compared to that of Nξ.

Fig. 8: Bode diagrams for different discretization configura-
tions of the electrical system.

We consider now the consistency between the simulation
and experimental results for the tip deflection of the IPMC
strip. Preliminary works suggest that the deflection does not
change with Nz . Meanwhile, its variation is negligible as soon
as Nξ is greater than 20. As a consequence, the influence of
the discretization number Nb on the mechanical deformation
is demonstrated for : Nξ = 50 and Nz = 10. As shown
in Fig. 9, Nb has a significant influence on the predicted
response: the simulation results of the tip deflection approach
to the experimental ones with the increase of the discretization
number Nb. One can see that Nb = 100 leads to a very
good approximation of the system behavior. This demand of
a large discretization number is mainly due to the applied
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finite differences method, because this method is a direct
approximation of the PDEs, and one needs a great number
of elements to approximate the analytic solutions.
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Fig. 9: Tip deflection of IPMC strip according to different
discretization numbers Nb, compared with experimental data.

The two bending moments generated by the gel are simu-
lated in Fig. 10 for Nξ = 50, Nz = 10 and Nb = 100. Fig.
10a shows the distribution along the beam and the temporal
evolution of the bending moment Mx1, while Fig. 10b shows
those related to Mx2. At each time, the bending moments Mx1

are the same whatever the points along the beam. Nevertheless,
as illustrated by the dashed light blue line in Fig. 10b, Mx2

has a larger value at the clamped point and is equal to zero at
the free end point, which is in accordance with the considered
boundary conditions for the cantilever.

The sum of the Mx1 and Mx2 forms the total bending
moment that applies to the beam model, whose simulation
result is given in Fig. 10c. One can notice a diffusion phe-
nomenon in Fig. 10, as illustrated by the red solid lines. This
diffusion effect of the bending moment explains the back-
relaxation of the displacement in our model, as shown in Fig.
9. Considered as the main drawback of such actuators, this
back relaxation exists in almost all Nafion-based IPMCs. More
thorough studies on this phenomenon are referred to some
recent references, e.g. [25].

A comparison between the experimental and simulation
results in the case of a sinusoidal input voltage of amplitude
1V and frequency of 1Hz is also given in Fig. 11. One can
see the simulation results are consistent with the experimental
ones. It also illustrates that the proposed model copes with the
hysteretic behavior of the actuator.

Fig. 11: Tip deflection of IPMC strip with a sinusoidal input
voltage.

Remark 2. Comparisons have also been carried out between
homogeneous and irregular meshing. The results show that
one can reduce the number of elements near the clamped
side without modifying significantly the behavior of the system.
Furthermore, the order of the overall system can be drastically
reduced using finite elements methods [23] rather than finite
differences.

V. FIRST MODELING OF 2D IPMC ACTUATED STRUCTURE

We consider here a simplified model of a 2D IPMC actuated
structure stemming from the modeling of a flexible medical
endoscope. The conceptual figure of such system is illustrated
in Fig. 12. The endoscope is modeled as a thin elastic shell
in a cylindrical coordinate with three directions X , Θ and α3.
α3 is normal to the reference surface generated by X and Θ
under the assumption that α3/a � 1 (a denotes the cylinder
radius). The IPMC actuator strip is assumed to have bending
deformation only in the radial direction, and the deformation
is supposed to be symmetric. As a consequence, comparing
to the endoscope, the IPMC strip can be simplified as a 1D
string line, as shown in Fig.12b.

A. Thin elastic cylinder shell model in port-Hamiltonian for-
mulation

For linear thin elastic shell structure, there exists several
models under different assumptions [26]. The interested reader
can find in [27]–[29] a detailed review of these models. Among
these models, Love’s theory is mostly applied and based on
the following assumptions:

1) Deformations are small, and Hooke’s law applies.
2) The material of the shell is orthotropic.
3) The cross section of the referenced surface remains un-

stretched.
4) The cross section of the referenced surface remains nor-

mal after deformation, so there is no shear deformation.
5) The rotatory inertia is neglected .
Models using Love’s theory have a distinct inaccuracy when

the wavelength of the bending waves is short compared to
the thickness of the shell, where the shear deformation and
the rotatory inertia become influential [30]. To deal with this
issue, Soedel released the assumptions 4 and 5 of Love’s
theory, and proposed a modified model in [31]. In this section
we use this Soedel’s model for the model of the endoscope.
uXX , uΘΘ and w represent the deformations in X , Θ and α3

directions, respectively. βX and βΘ relate to the rotations of
tangents to the reference surface oriented along the coordinates
X and Θ [32]. According to assumption 3, the displacements
are composed of uXX , uΘΘ, W , βX and βΘ. The relations
between strains and displacements are3:

εXX = ε0XX + α3kXX , εΘΘ = ε0ΘΘ + α3kΘΘ,

γX3 =
∂W

∂X
+ βX , γΘ3 = −uΘΘ

a
+

1

a

∂W

∂Θ
+ βΘ,

γXΘ = γ0
XΘ + α3kXΘ,

3Readers are suggested to [33] and [32] for detailed calculations.
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(a) Mx1 (b) Mx2 (c) Mext

Fig. 10: Simulation results for Mx1, Mx2 and Mext along x-axis and the time (Nξ = 50, Nz = 10 and Nb = 100).

endoscope IPMC actuator

(a)

endoscope IPMC actuator

(b)

Fig. 12: Conceptual figure of endoscope attached with IPMC
actuator.

where ε0XX , ε0ΘΘ and γ0
XΘ are the membrane strains, and

where kXX , kΘΘ and kXΘ are curvature terms that are
formulated as:

ε0XX =
∂uXX
∂X

, ε0ΘΘ =
1

a

(
∂uΘΘ

∂Θ
+W

)
,

γ0
XΘ =

∂uΘΘ

∂X
+

1

a

∂uXX
∂Θ

,kXX =
∂βX
∂X

,

kΘΘ =
1

a

∂βΘ

∂Θ
, kXΘ =

∂βΘ

∂X
+

1

a

∂βX
∂Θ

.

The resultant forces and moments are calculated as:

NXX = Ks

(
ε0XX + νsε

0
ΘΘ

)
,NΘΘ = Ks

(
ε0ΘΘ + νsε

0
XX

)
,

NXΘ = Ks
1− νs

2
γ0
XΘ, MXX = Ds (kXX + νskΘΘ) ,

MΘΘ = Ds (kΘΘ + νskXX) ,MXΘ = Ds
1− νs

2
kXΘ,

QX3 = k′GshsγX3, QΘ3 = k′GshsγΘ3, (29)

where Ks = Eshs/
(
1− ν2

s

)
, and Ds = Esh

3
s/12

(
1− ν2

s

)
,

hs is the thickness of the shell, νs, Es, k′ and Gs denote the
Poisson ratio, Young’s modulus, shear coefficient, and shear
modulus of the cylindrical shell, respectively. The dynamic
equations of the cylindrical shell are given by [31]:

ρshs
∂2uXX
∂t2

=
∂NXX
∂X

+
1

a

∂NXΘ

∂Θ
,

ρshs
∂2uΘΘ

∂t2
=
∂NXΘ

∂X
+

1

a

∂NΘΘ

∂Θ
+

1

a
QΘ3,

ρshs
∂2w

∂t2
=
∂QX3

∂X
+

1

a

∂QΘ3

∂Θ
− 1

a
NΘΘ,

ρsh
3
s

12

∂2βX
∂t2

=
∂MXX

∂X
+

1

a

∂MXΘ

∂Θ
−QX3 +mX ,

ρsh
3
s

12

∂2βΘ

∂t2
=
∂MXΘ

∂X
+

1

a

∂MΘΘ

∂Θ
−QΘ3, (30)

where mX is the external bending moment density.
In order to reformulate the above dynamical equations under

the PHS framework, we define the following flow, state and
effort variables as [34]:

fcy =
∂xcy
∂t

=
∂

∂t



ρshs
∂u
∂t

ρshs
∂W
∂t

ρsh
3
s

12
∂β
∂t

k

A

γ

 , ecy =



∂u
∂t
∂W
∂t
∂β
∂t
M

N

Q

 , (31)

with vectors

u =

(
uXX
uΘΘ

)
,β =

(
βX
βΘ

)
,γ =

(
γX3

γΘ3

)
,Q =

(
QX3

QΘ3

)
,

and second order tensors

k =

(
kXX kXΘ

kXΘ kΘΘ

)
,A =

(
ε0XX γ0

XΘ

γ0
XΘ ε0ΘΘ

)
,

M =

(
MXX MXΘ

MXΘ MΘΘ

)
,N =

(
NXX NXΘ

NXΘ NΘΘ

)
.

The dynamic equations (30) over the 2D cylindrical domain
Ω = [0, Ls] × [0, 2π] can be reformulated into the following
PHS:

fcy = Jcyecy +BcymX , (32)

with

Jcy =


0 0 0 0 Div a

0 0 0 0 −a : div
0 0 0 Div 0 −1
0 0 Grad 0 0 0

Grad a 0 0 0 0
−a grad 1 0 0 0

 ,

a =

(
0 0
0 1

a

)
, Bcy =

(
0T 0

(
1 0

) ¯̄0 ¯̄0 0T
)T
,

where ¯̄0 is a second order tensor of zero, Div and div represent
the divergence operators for tensors and vectors, Grad and
grad denote the gradient operators for vectors and scalars, and
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: is the double dot product for tensors. The time derivative of
the Hamiltonian is formulated as [34]:
dHcy

dt
=

∫
Ω

(
fTcyecy

)
dΩ

=

∫
Ω

(
Div (N)

∂u

∂t
+Grad

(
∂u

∂t

)
: N+ div (Q)

∂W

∂t

+grad

(
∂W

∂t

)
Q +Div (M)

∂β

∂t
+Grad

(
∂β

∂t

)
: M

)
dΩ

=

∫
∂Ω

(
∂W

∂t
(Q · n) + (N : (n⊗ n))

(
∂u

∂t
· n
)

+

(
∂u

∂t
· s
)

(N : (s⊗ n)) + (M : (n⊗ n))

(
∂β

∂t
· n
)

+

(
∂β

∂t
· s
)

(M : (s⊗ n))

)
ds, (33)

with ∂Ω = (0,Θ) ∪ (Ls,Θ) boundaries of domain Ω, ⊗ the
tensor product, n and s the normal and tangent unit vector
with respect to the boundaries, respectively.

With the fact that the shell is closed and in a cylindrical

coordinate, we take n =

(
1
0

)
, and s =

(
0
1

)
, leading to:

∂u

∂t
· n =

∂uXX
∂t

,
∂u

∂t
· s =

∂uΘΘ

∂t
,
∂β

∂t
· n =

∂βX
∂t

,

∂β

∂t
· s =

∂βΘ

∂t
,Q · n = QX3,N : (n⊗ n) = NXX ,

N : (s⊗ n) = NXΘ,M : (n⊗ n) = MXX ,

M : (s⊗ n) = MXΘ,

The boundary port variables are calculated according to the
time derivative of Hamiltonian (33) as:

f∂ =


∂W
∂t

∂uXX
∂t

∂uΘΘ

∂t
∂βX
∂t
∂βΘ

∂t

 (0/Ls,Θ) , e∂ =


QX3

NXX
NXΘ

MXX

MXΘ

 (0/Ls,Θ) .

B. Mechanical coupling between the endoscope and the IPMC
actuator

We assume that the interconnection of the IPMC and the
endoscope is perfect such that the mechanical deformation of
the IPMC is considered as the same as the one of the endo-
scope. The interconnection between the gel and the endoscope
is then written as: ḟs
fr2
fcy

 =

( 0 ∂z
∂z 0

)
Jinter

−J ∗inter Jcy

 e2

Rg∂z (Rffs)
ecy

+ALλL,

where

Jinter =

(
0 0

(
−Baf1z 0

)
0 0 0

0 0 0 0 0 0

)
,

AL =

−∂Z1z0
BcyBpf

 , f =

{
1

X2−X1
, for X ∈ (X1, X2) ,

0, otherwise.

The constraint arising from the coupling is given by

e2

(
−h

2

)
− e2

(
−h

2

)
−Bpf

∂βX
∂t

= 0,

which is similar to (20).
To complete this model, we have to take into account

the coupling between the electrical system and electro-stress
diffusion system (gel) which is exactly the same as the one of
Fig. 3 and is omitted in the interest of space.

VI. CONCLUSION

In this paper a detailed model of an IPMC patch is estab-
lished under the constrained port-Hamiltonian framework. The
Lagrange multiplier method is used to deal with the geometric
constraints arising from the interconnection of the gel with
the actuator electrode. The global system is associated with
a Stokes-Dirac structure, stemming from the expression of
energy balances. The system is discretized by means of the
finite differences method on staggered grids and is further
reduced to a set of differential algebraic equations, for the
purpose of facilitating the numerical simulation and preserving
its geometric structure. Finally, experiments and simulations
are carried out with a step case as well as a sinusoidal case.
It has been shown how to choose different discretization
parameters such that the simulations of the output current
and displacement at the endpoint of the IPMC patch match
with the experimental data. In a second instance, a simplified
model of a 2D flexible structure equipped with an IPMC
patch is proposed. It is shown that one can use the same
interconnection and Lagrange multipliers to derive a physically
consistent model of the overall actuated system. In future
works we first intend to relax the quite stringent assumption
in the 2D case in order to get a more realistic model suitable
for control design for realistic flexible actuated endoscopes.
After considering structure preserving model order reduction
this reduced order model will then be used for energy based
control design.
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