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Abstract. — Let K be a number field and S be a finite set of places of K. We study
the kernels X2

S of maps H2pGS ,Fpq Ñ ‘vPSH2pGv,Fpq. There is a natural injection
X2

S ãÑ BS , into the dual BS of a certain readily computable Kummer group VS{pKˆqp,
which is always an isomorphism in the wild case. The tame case is much more mysterious.
Our main result is that given a finite X coprime to p ą 2, there exists a finite set of places
S coprime to p such that X2

SYX
»
ãÑ BSYX

»
� BX Ðâ X2

X . In particular, we show that in
the tame case X2

Y can increase with increasing Y . This is in contrast with the wild case
where X2

Y is nonincreasing in dimension with increasing Y . For p “ 2 we prove a slightly
weaker unconditional result. With mild hypotheses we prove the full theorem for p “ 2.

Let K be a number field and S be a finite set of places of K. Denote by KS the maximal
extension of K unramified outside S, and set GS “ GalpKS{Kq. Given a prime number p,
letX2

S be the Shafarevich group associated to GS and p: it is the kernel of the localization
map of the cohomology group H2pGS,Fpq:

X2
S :“X2

pGS,Fpq “ ker
`

H2
pGS,Fpq Ñ ‘vPSH

2
pGv,Fpq

˘

,

where GS acts trivially on Fp and Gv is the absolute Galois group of the maximal extension
of the completion Kv of K at v.
Set

VS “ tx P Kˆ, pxq “ Ip as a fractional ideal of K;x P Kp
v @v P Su

and BS “ pVS{pKˆqpq
_. Clearly pKˆqp Ă VS and S Ă T ùñ VT Ă VS. It is well-

known that X2
S is closely related to BS. Namely, in the wild case, when S contains

all the places above p and all archimedean places, by the Poitou-Tate duality Theorem
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one has X2
S » BS. See for example [5, Chapter X, §7]. It is important to note that

algorithms exist to compute BS via ray class group computations over K, so in the wild
case one can, at least in theory, compute dpX2

S, the dimension of this space. For the
more general tame situation, one only has the following injection (due to Shafarevich and
Koch, see for example [3, Chapter 11, §2] or [5, Chapter 10, §7])

X2
S ãÑ BS.(1)

Short of computing GS itself, we know of no algorithm that computes dpX2
S in the tame

case.
Let us write KSppq{K as the maximal pro-p extension of K inside KS, and put
GSppq “ GalpKSppq{Kq. It is an exercise to see that the quotient GS � GSppq induces
the injection X2

S,p ãÑ X2
S, where X2

S,p :“ ker pH2pGSppq,Fpq Ñ ‘vPSH
2pGv,Fpqq. As

H2pGvppq,Fpq » H2pGv,Fpq (see for example [5, Chapter VII, §5, Proposition 7.5.8]),
we can take Gv instead of Gvppq.
The Shafarevich group X2

S is central to the study of the maximal pro-p quotient GSppq
of GS, in particular when S is coprime to p: obviously, one gets
dpH

2
pGSppq,Fpq ď

ÿ

vPS

dpH
2
pGv,Fpq ` dpX2

S ď
ÿ

vPS

δv,p ` dpX2
S ď |S| ` dpVS{pKˆ

q
p,

where δv,p “ 1 or 0 as Kv contains or does not contain the pth roots of unity. This
is sufficient to produce criteria involving the infinitess of GSppq (thanks to the Golod-
Shafarevich Theorem).
Using (1), one can force X2

S to be trivial (see the notion of saturated set S in §1.2),
which can also yield situations where GSppq has cohomological dimension 2. See [4] for
the first examples and [6] for general statements.
Before giving our main result, we make the following observation: given p a prime number,
and two finite sets Y and X of places of K, one has:

X2
YYX,p ãÑX2

YYX ãÑ BYYX � BX Ðâ X2
X Ðâ X2

X,p(2)
where the middle surjection follows as VYYX Ă VX . We only consider the case where the
finite places X and Y are coprime to p. Here we prove:

Theorem A. — Let p ą 2 be a prime number, and let K be a number field. Let X be a
finite set of places of K coprime to p. There exist infinitely many finite sets S of finite
places of K, all coprime to p, such that:

X2
SYX,p »X2

SYX » BSYX » BX ¨

Moreover such S can be chosen of size |S| ď dpBH.

The case p “ 2 involves an exceptional situation.

Definition 1. — The situation is called exceptional if p “ 2 and if one simultaneously
has:
paq ζ4 R K,
pbq Oˆ

K X´4K4 ‰ H,
pcq X contains no real place, and for every prime p P X one has ζ4 P Kp.

Observe that if there is a prime p|2 of K with odd ramification index, pbq fails.
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Theorem B. — Take p “ 2. Let X be a finite set of places of K coprime to 2. Suppose
the situation not exceptional. Then the conclusion of Theorem A holds.
In the exceptional case, one only has:

d2BX ´ 1 ď d2X2
SYX,2 “ d2X2

SYX “ d2BSYX ď d2BX ¨

Set m :“ dpBH. From [5, §10.7.2], we have the exact sequence
0 Ñ Oˆ

K{pO
ˆ
K q

p
Ñ VH{Kˆp

Ñ ClKrps Ñ 0
so m “ dpClK ` dpOˆ

K .
As mentioned above, the computation of X2

S is very difficult in the tame case. Indeed,
the only examples we know of where the map X2

H,p ãÑ BH is not an isomorphism are
those in which we know the relation rank of GHppq by knowing the full group itself. In
all our computations p “ 2 and GHppq is one of Z{2, Z{2ˆ Z{2 and Q8. Using Theorem
A, one may give situations where the value of |X2

S| is known without being trivial. As a
corollary, we get

Corollary A. — Suppose p ą 2. Then there exist infinitely many finite sets S0 Ă S1 Ă

¨ ¨ ¨ Ă Sm of finite places of K all coprime to p, such that for i “ 0, ¨ ¨ ¨ ,m, one has
X2

Si,p
»X2

Si
» pZ{pqm´i.

For p “ 2, the result holds if either paq or pbq of Definition 1 fails.

Remark. — We will see that the sets Si can be explicitly given by applying the Chebotarev
density Theorem in some governing field extension over K. As we will use X “ H, (c)
of Definition 1 is not relevant.

Notations
´ We fix a prime number p and a number field K.
´ Put K1 “ Kpζpq and K2 “ Kpζp2q, where ζp2 is some primitive p2th root of unity, and
ζp “ ζpp2 .
´ We denote by OK the ring of integers of K, by Oˆ

K the group of units of OK, and by
ClK the class group of K.
´ We identify a prime ideal p Ă OK with the place v it defines. We write Kv for the
completion of K at v and Uv for the units of the local field Kv; when v is archimedean,
put Uv “ Kˆ

v .
´ One says that a prime ideal p is tame if #OK{p ” 1pmod pq, which is equivalent to
µp Ă Kv, that is δv,p “ 1.
´ If S is a finite set of places of K, we denote by KSppq{K (resp. Kab

S ppq{K) the max-
imal pro-p extension (resp. abelian) of K unramified outside S, and we put GSppq “
GalpKSppq{Kq (resp. Gab

S ppq “ GalpKab
S ppq{Kq). For S “ H, we denote by H :“ Kab

Hppq
the Hilbert p-class field of K.
´ By convention, the infinite places in S are only real. Let us write S “ S0 Y S8, where
S0 contains only the finite places and S8 only the real ones. Put δ2,p “

"

1 p “ 2
0 otherwise

´ The set S is said to be coprime to p, if all finite places v of S are tame; it is said to be
tame if S is coprime to p and S8 “ H.
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´ Put VS “ tx P Kˆ, pxq “ Ip as a fractional ideal of K;x P Kp
v @v P Su. Note Kˆp Ă VS

for all S.

1. Preliminaries

1.1. Extensions with prescribed ramification. — Let p be a prime number.
1.1.1. Governing fields. — We recall a result of Gras-Munnier (see [1, Chapter V, §2,
Corollary 2.4.2], as well as [2]) which gives a criterion for the existence of a totally ramified
Z{p-extension at some set S (and unramified outside S). Put K1 :“ Kpζpq and consider
the governing field L1 :“ K1p p

a

VHq. The extension L1{K1 has Galois group isomorphic to
pZ{pZqr1`r2´1`δ`d, where d “ dpClK.
Given a place v of K coprime to p, we choose some place w|v of K1 above v, and we
consider σv P GalpL1{K1q defined as follows:
´ if v corresponds to a tame prime ideal p, and P to w, then P is unramified in L1{K1,

and we set σv “ σp “

ˆ

L1{K1

P

˙

corresponding to the Frobenius elements at P in

GalpL1{K1q;
´ if v corresponds to a real place (when p “ 2), then σv is the Artin symbol at w:
σvp
?
εq “ ε if

?
ε is positive at w, and ´

?
ε otherwise.

While σv does in fact depend on the choice of w (and thus P), it is easy to see, using that
L1 :“ K1p p

a

VHq and VH consists of elements of K, not K1, that a different choice changes
σv by a nonzero multiple in the Fp-vector space GalpL1{K1q. This is all we need when
invoking Theorem 1.1 below. By abuse, we will also call the σv’s Frobenius elements.

Theorem 1.1 (Gras-Munnier). — Let S “ tv1, ¨ ¨ ¨ , vtu be a set of places of K co-
prime to p. There exists a cyclic degree p extension L{K, unramified outside S and totally
ramified at each place of S, if and only if, for i “ 1, ¨ ¨ ¨ , t, there exists ai P pZ{pqˆ, such
that

t
ź

i“1
σai
vi
“ 1 P GalpL1{K1

q.

Remark 1.2. — In fact, Theorem 1.1 is presented in a slightly different form in [1],
the difference coming from the real places (and then only for p “ 2). Indeed, one starts
with the following: for a real place v, in our context we speak of ramification, and in the
context of [1] Gras speaks of decomposition. Hence the governing field in [1] is smaller
than L1 and the condition he obtains did not involve σv for v P S8 (in fact, in his case
these σv are trivial). But the proof is the same, we can follow it without difficulty due to
the fact that for v P S8, one has: Uv{U 2

v “ Rˆ{Rˆ2 » Z{2Z; see Lemmas 2.3.1, 2.3.2,
2.3.4 and 2.3.5 of [1].

1.1.2. Extensions over the Hilbert p-class field of K that are abelian over K.— As noted
in the beginning of Chapter V of [1], the result about the existence of a degree-pe cyclic
extension with prescribed ramification can be generalized in different forms. Let H be
the Hilbert class field of K. In what follows, we only need the existence of a degree-p2

cyclic extension of H, abelian over K, with prescribed ramification.
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Now we follow the strategy of [1, Chapter V, §2, d)]. Since we will focus on the case
where the set of ramification contains only finite places, we use the notation p instead
of v. Take Σ a finite set of tame places of K (not necessarily satisfying the congruence
Nppq ” 1pmod p2q when p P Σ). Put B “ GalpKab

Σ ppq{Hq.
By class field theory, we get

1 ÝÑ pB{Bp2
q
_ ρ
ÝÑ

à

pPΣ
pUp{pUpq

p2
q
_
ÝÑ

`

ιpOˆ
K q
˘_
ÝÑ 1,

where ι : Oˆ
K ÝÑ

à

pPΣ
Up{pUpq

p2 is the diagonal embedding. Observe that Up{pUpq
p2
»

Z{p2 if and only if ζp2 P Up.
A cyclic degree-p2 extension M of H, abelian over K and unramified outside Σ is given
by a character ψ of B{Bp2 of order p2 as follows:
Given ψp P pUp{pUpq

p2
q_ for all p P Σ, there exists a character ψ of B{Bp2 such that

ψ|Up “ ψp if and only if,

@ε P Oˆ
K ,

ź

pPΣ
ψppιppεqq “ 1,(3)

where ιp : Oˆ
K Ñ Up{pUpq

p2 . As M{H is totally ramified at at least one prime ideal, at
least one ψp has order p2.
Using Kummer theory, we rephrase (3) with the following governing field (see [1, Chapter
V, §2, d)]):

L “ K2

ˆ

p2
b

Oˆ
K

˙

,

where K2 “ Kpζp2q. For the clarity of the exposition, let us develop this correspondence.
For p P Σq, denote by Ep “ tε P Oˆ

K , ε P pU
ˆ
p q

p2
u. We then have

1 ÝÑ Ep{pO
ˆ
K q

p2
ÝÑ Oˆ

K{pO
ˆ
K q

p2
ÝÑ ιppO

ˆ
K q ÝÑ 1.

Lemma 1.3. — For p “ 2 assume that ζ4 P K. Let ε P Oˆ
K X pK2qp

2. Then ε P pOˆ
K q

p2.

Proof. — One knows that for p ą 2, K X pK2q
p2
“ Kp2 (see [1, Chapter II, Theorem

6.3.2]).

For abelian groups M,N contained in a larger group, it is an elementary fact that
MN{N » M{pM X Nq. Set M “ Oˆ

K and N “ pK2ˆqp
2 so when p ą 2 or when

ζ4 P K for p “ 2

Oˆ
K pK2ˆ

q
p2
{pK2ˆ

q
p2
» Oˆ

K{pO
ˆ
K X pK2ˆ

q
p2
q » Oˆ

K{pO
ˆ
K q

p2
.

Modding out by Ep and noting Ep Ě pO
ˆ
K q

p2 , we see

Oˆ
K pK2ˆ

q
p2
{EppK2ˆ

q
p2
» Oˆ

K{Ep(4)
so by Kummer duality,

ιppO
ˆ
K q
_
»
`

Oˆ
K{Ep

˘_
» GalpL{K2

p p2aEpqq¨(5)

Lemma 1.4. — Take p “ 2, and let p be a tame prime such that ζ4 P Kp. Let ε P
Oˆ

K X pK2q4. Then ε P pU ˆ
p q

4.
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Proof. — If ε R pOˆ
K q

4, one knows that ε “ p1 ` ζ4q
4y4 with y P K (see [1, Chapter II,

Theorem 6.3.2]) which implies x P pKpq
4 when ζ4 P Kp.

Hence Lemma 1.4 shows that (4) and (5) also hold when ζ4 P Kp.
For each prime p P Σ let us choose a prime P|p of K2, and denote by σp the Frobenius of
P in GalpL{K2q. As before, σp depends on P|p only up to a power coprime to p.
By Lemmas 1.3 and 1.4 (applied to Kp), the Galois group GalpL{K2p p2aEpqq is generated
by σp. Observe that the dual of the inertia group at p in B{Bp2 is isomorphic to

ker
´´

Up{pUpq
p2
¯_

�
`

ιppO
ˆ
K q
˘_
¯

,

where
`

ιppO
ˆ
K q
˘_

» GalpL{K2p p2aEpqq “ xσpy. Then there is a generator χp of
´

Up{pUpq
p2
¯_

which is sent to σp.

Let us write ψp “ χ
ap
p . Then via the Kummer duality map, equation (3) implies

ź

pPΣ
σ
ap
p “ 1.(6)

We show this is an equivalence. For the reverse, suppose (6) holds. Then it im-
plies the relation

ź

pPΣ
θp “ 1 in

´

Oˆ
K pK2qp

2
{pK2qp

2
¯_

, where θp is a character of

Oˆ
K pK2qp

2
{pK2qp

2 associated to σ
ap
p , and trivial on EppK2qp

2
{pK2qp

2 ; then θp can be
taken in

´

Oˆ
K pK2qp

2
{EppK2qp

2
¯_

»
`

Oˆ
K{Ep

˘_
»
`

ιppO
ˆ
K q
˘_. Now as χp is sent to σp, one

deduced that θp “ χ
ap
p . To conclude, set ψp :“ χ

ap
p ˝ ιp P

`

Oˆ
K{pO

ˆ
K q

p
˘_, then

ź

pPΣ
ψppεq “ 1

for every ε P Oˆ
K , and then recover relation (3).

We want to apply this discussion in the following context.
Let S be a finite non-empty set of tame places of K where each prime p (corresponding to
v P S) is such that Nppq ” 1pmod p2q. We are interested in the existence of a degree-p2

cyclic extension Kq{H, abelian over K and unramified outside Σ :“ S Y tqu, such that
Kq{H has degree p2 and for which the inertia degree at q is exactly p and for some prime
in S the inertia degree is p2.
The above discussion allows us to obtain the following:

Proposition 1.5. — Let p ą 2. There exists a degree-p2 cyclic extension Kq{H, abelian
over K, unramified outside S Y tqu, for which the inertia degree at q is exactly p, if and
only if, there exists aq P pZ{pqˆ, and bp P Z{p2Z, p P S, such that

σ̂aqq
ź

pPS

σ
bp
p “ 1 P GalpL{K2

q,(7)

where
σ̂q “

"

σq if Npqq ı 1pmod p2q

σpq if Npqq ” 1pmod p2q
,

with at least one bp P pZ{p2Zqˆ. When p “ 2 the result holds if we assume that ζ4 P Kq.

Remark 1.6. — Infinitely many such sets exist by the Chebotarev Density Theorem.

The case p “ 2 involves an exceptional situation.
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Lemma 1.7. — Assume Oˆ
K X´4K4 “ H. Let ε P Oˆ

K X pK2qp
2. Then ε P pOˆ

K q
p2.

Proof. — As in the proof of Lemma 1.4, one has ε P pOˆ
K q

4 or ε “ p1` ζ4q
4y4 with y P K

(see [1, Chapter II, Theorem 6.3.2]). The second case would imply that ε P ´4K4 which
is absurd by assumption.

Assume now Oˆ
K X´4K4 “ H. By Lemma 1.7 the Kummer radical of L{K2 is isomorphic

to Oˆ
K{pO

ˆ
K q

2, and the isomorphism (4) still holds. Then we can follow the discussion
before Proposition 1.5 by observing that the main difference is: one only has Ep Ă

Oˆ
KXpKppζ4qq

4, meaning that GalpLp 4
a

Oˆ
K q{K2p 4

a

Epqq contains the decomposition group
of p, but may be larger. Let σ1p be a generator of GalpL{Kp 4

a

Epqq.

Proposition 1.8. — Suppose Oˆ
K X´4K4 “ H. Take q such that ζ4 R Kq.

There exists a degree-4 cyclic extension Kq{H, abelian over K, unramified outside SYtqu,
for which the inertia degree at q is exactly 2, if and only if, there exists aq P pZ{2qˆ, and
bp P Z{4Z, p P S, such that

pσ1qq
aq
ź

pPS

σ
bp
p “ 1 P GalpL{K2

q,(8)

with at least one bp P pZ{4Zqˆ.

Example 1.9. — Take K “ Q, p “ 2 and p “ p3q. Then the governing extension is
Qpζ8q{Qpζ4q, in which p splits. But here Ep “ t1u, and GalpQpζ8q{Qpζ4, 4

a

Epqq “ xσ
1
py »

Z{2, showing the difference between σ1p and the Frobenius σp. Take now the prime 5
which is inert in the governing extension. Proposition 1.8 applies: there exists of a cyclic
degree-4 extension of Q, unramified outside t3, 5u, totally ramified at 5 and having inertial
degree 2 at 3,

1.2. Saturated sets. — Take p and K as before, and let S be a finite set of places of
K, coprime to p.

Definition 1.10. — The S set of places K is called saturated if VS{pKˆqp “ t1u.

Recall the following equality due to Shafarevich (see for example [5, Chapter X, §7,
Corollary 10.7.7]):

dpGS “ |S0| ` |S8|δ2,p ´ pr1 ` r2q ` 1´ δ ` dpVS{pKˆ
q
p,(9)

showing that dpGS is easy to compute when S is saturated.

Proposition 1.11. — Let S and T be two finite sets of places of K coprime to p. Sup-
pose S is saturated. Then
´ if S Ă T , then T is saturated;
´ for every tame prime p R S, one has dpGSYtpu “ dpGS ` 1.

Proof. — The first point is due to the fact that VT Ă VS, and the second point is a
consequence of (9) along with the first point.

Theorem 1.12. — A finite set S coprime to p is saturated if and only if, the Frobenii
σv, v P S, generate the whole group GalpK1p p

a

VHq{K1q.
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Proof. — ‚ Suppose the Frobenii generate the full Galois group. By hypothesis, for each
degree-p extension L{K1 in K1p p

a

VHq{K1, there exists a place v P S such that v is inert
in L{K1 (when v P S8, v is ramified in L{K1). Let us take now x P VS: then every v P S
splits completely in K1p p

?
xq{K1. As K1p p

?
xq Ă K1p p

a

VHq, one deduces that K1p p
?
xq “ K1,

and then x P pK1qp. As rK1 : Ks is coprime to p, one finally obtains that x P pKˆqp, so
BS “ t0u.
‚ If S is saturated, then for every finite set T of tame places of K with T X S “ H, one
has dpGSYT “ dpGS ` |T | by Proposition 1.11. Then by the Gras-Munnier criterion, one
has xσv, v P Sy “ GalpL1{K1q.

Corollary 1.13. — The finite set S coprime to p is saturated if and only if, for every
finite set T of tame places of K, there exists a cyclic degree p-extension of K unramified
outside S Y T but ramified at each place of T .

Proof. — ‚ If S is saturated, then by Theorem 1.12 the Frobenii σv, v P S, generate
GalpL1{K1q, and the result follows from Theorem 1.1.
‚ Suppose that S is such that for every finite set T of tame places of K, there exists a
cyclic degree p-extension unramified outside SYT and ramified at each place of T . Then
by Theorem 1.1 and the Chebotarev density theorem, GalpL1{K1q “ xσv, v P Sy. By
Theorem 1.12, S is saturated.

1.3. A spectral sequence. — Let S and T be two finite sets of places of K coprime
to p. Consider the following exact sequence of pro-p groups

1 ÝÑ HS,T ÝÑ GSYT ppq ÝÑ GSppq ÝÑ 1.(10)

Definition 1.14. — Put
XS,T :“ HS,T {rHS,T ,HS,T sHp

S,T ,

and
XS,T :“ pXS,T qGSppq

“ HS,T {rHS,T ,GSppqsHp
S,T .

Recall that as GSppq is a pro-p group, then FpvGSppqw is a local ring.

Lemma 1.15. — The abelian group XS,T is a compact FpvGSppqw-module (with con-
tinuous action) that can be topologically generated by dpXS,T generators. Moreover,
dpXS,T ď |T |.

Proof. — The first part follows from the topological Nakayama’s lemma. For the second,
the fact that GSppq acts transitively on the inertia groups Iw of w|v P T in X pS, T q
implies

t
à

i“1
FpvGSppqw� xIw, w|v P T y “ XS,T ,

where t “ |T |. Taking the GSppq-coinvariants, we obtain Ftp � XS,T .

Applying the Hochschild-Serre spectral sequence to (10), one gets:

Lemma 1.16. — Let S, T be two finite sets of places of K coprime to p. Then one has :

0 ÝÑ H1
pGSppq,Fpq ÝÑ H1

pGSYT ppq,Fpq ÝÑ X_S,T ÝÑX2
S,p ÝÑX2

SYT,p.
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Furthermore, the cokernel of the natural injection X2
X,p ãÑ BX is noncreasing in dimen-

sion as X increases.

Proof. — The Hochschild-Serre spectral sequence gives the exact commutative diagram:
H1pGSppq,Fpq �

�
// H1pGSYT ppq,Fpq // X_S,T // H2pGSppq,Fpq //

��

H2pGSYT ppq,Fpq

��

‘vPSH
2pGv,Fpq �

�
// ‘vPSYTH

2pGv,Fpq

Chasing the trangression map X_S,T
tg
ÝÑ H2pGSppqq to the right gives that its image lies

in X2
S,p whose image to the right lies in X2

SYT,p. We now have the diagram
0 // H1pGSppq,Fpq // H1pGSYT ppq,Fpq // X_S,T //X2

S,p
//

� _

��

X2
SYT,p� _

��

BS
// // BSYT

where the bottom horizontal map is surjective as the inclusion VSYT {pKˆqp ãÑ VS{pKˆqp

is immediate from the definition of VX . The second result follows.

Corollary 1.17. — If the natural injection X2
X,p ãÑ BX is an isomorphism, then for

any set Y we have X2
XYY,p

»
ãÑ BXYY

Let us give an obvious consequence of Lemma 1.16.

Lemma 1.18. — Suppose that H1pGSppq,Fpq » H1pGSYT ppq,Fpq, then X_S,T ãÑ X2
S,p.

If moreover S Y T is saturated then X_S,T »X2
S,p.

Proof. — If S Y T is saturated then VSYT {pKˆqp “ t1u, which implies that BSYT “ t0u.
Hence, by (1) X2

SYT “ t0u, and the same holds for X2
SYT,p. The result follows by Lemma

1.16.

Remark. — An important consequence of Lemmas 1.16 and 1.18 is that elements of
X_S,T can give rise to elements of X2

S,p. The former can be found via ray class group
computations. We thus have a method of producing independent elements of X2

S,p. If we
find dpBS such elements, we have established X2

S,p
»

ãÑ X2
S

»
ãÑ BS, and thus computed

dpX2
S.

2. Proof of the results

2.1. A key Proposition. — Let p be a prime number. Let K be a number field and let
X be a finite set of places of K coprime to p. The proof of Theorem 1.1 is a consequence
of the following proposition.

Proposition 2.1. — There exist (infinitely many) pairs of finite sets of tame places S
and T of K such that:
piq T YX is saturated and dpGTYX “ dpGX ;
piiq dpGSYTYX “ dpGSYX ;
piiiq |T | ď dpClK ` r1 ` r2 ´ 1` δ and |S| ď r1 ` r2 ´ 1` δ;
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pivq for each prime q P T , with at most one exception if we are in the situation of
Definition 1, there exists a degree-p2 cyclic extension M of KH , abelian over K,
unramified outside S YX Y tqu where the inertia group at q is of order p.

Put F0 “ K1p p
a

VHq, L0 “ K1p p
a

Oˆ
K q, K2 “ Kpζp2q, L1 “ K2p p2a

Oˆ
K q, F1 “ K2p p

a

VHq,
and F “ LF0 “ K2p p2a

Oˆ
K ,

p
a

VHq. Put G “ GalpF{K1q.

Proof. — (of Proposition 2.1.)
Given a tame prime p of OK, we choose a prime P|p of F, and we consider its Frobenius
σp :“ σP in the Galois group GalpF{K1q and its quotients. In the diagram of part b) below
all extensions are abelian so, as mentioned earlier, σP is well-defined up to a nonzero scalar
multiple in GalpF{K1q and that is all we need. In part a), GalpF{K1q need not be abelian,
but the three drawn squares in the diagram are abelian and it is in these squares where
we study the Frobenii, so again they are well-defined up to a nonzero scalar multiple. All
extensions in both diagrams are Galois.
Put EX “ xσp|F0

, p P Xy Ă GalpF0{K1q the subgroup of GalpF0{K1q generated by the
Frobenii of the primes p P X. Put mX “ dpVH ´ dpEX .
a) Assume first that F0 XK2 “ K1. When p “ 2, one has K “ K1 “ K2, and then ζ4 P K.

L “ K2p p2
b

OˆKq F

K2 L1 “ K2p p

b

OˆK q F1 “ K2p p
a

VHq

K1 L0 “ K1p p

b

OˆK q F0 “ K1p p
a

VHq

We choose S and T as follows:
´ let T be any set of primes q whose Frobenii σq in G are such that the restriction in

GalpF0{K1q forms an Fp-basis of a subspace in direct sum with EX : in other words,
GalpF0{K1

q “ xσq|F0
, q P T y

à

EX ,

and xσq|F0
, q P T y “

à

qPT

xσq|F0
y.

´ let X̃ be those places of X whose Frobenii lie in GalpF{F1q and let S be any set of
primes p whose Frobenii σp in G form in direct sum with the Frobenii in X̃ a basis
of GalpF{F1q.

As GalpF1{K1q has exponent p, we see for each q P T , σpq P GalpF{F1q. Observe also
that if σq|K2 is not trivial (which is equivalent to #OK{q ‰ 1 pmod p2q), then σpq is the
Frobenius at P in GalpF{F2q; otherwise σpq is the p-power of the Frobenius at Q | q in
GalpF{F2q.
By Theorem 1.12 the set T Y X is saturated. Moreover thanks to the condition on
the direct sum for the Frobenius at p P T , by Theorem 1.1, there is no cyclic degree-p
extension of K, unramified outside T YX and totally ramified at any nonempty subset
of places of T : thus dpGTYX “ dpGX , and piq holds.

10



Moreover as each place of S splits completely in the governing extension F0{K1, then
again by Theorem 1.1, dpGSYTYX “ dpGSYX , and piiq holds.
The condition on S gives relation (7) in GalpF{F1q Ă GalpF{L1q for the set S Y X̃ Y tqu,
q P T . After taking the quotient of this relation by GalpF{Lq, we obtain by Proposition
1.5 that for each prime q P T , the existence of a degree-p2 cyclic extension Kq{H, abelian
over K and unramified outside SYXYtqu for which the inertia at q is of order p, proving
pivq.
piiiq is obvious.

b) Assume now that that K2 Ă F0.
Let Ai, i “ 1, ¨ ¨ ¨ , d be ideals of OK, whose classes are a system of minimal generators
of ClKrps, and let ai P Oˆ

K such that paiq “ Ap
i . Put A “ xa1, ¨ ¨ ¨ , adyKˆp{pKˆqp Ă

VH{pKˆqp. Note K1p p
a

VHq “ K1p
p
?
A, p

a

Oˆ
K q.

As F0{K1 and K2{K1 are abelian p-extensions, the containment K2 Ă F0 implies K1 “ K.

L “ K2p p2
b

OˆK q F

L0 “ K1p p

b

OˆK q F0 “ F1 “ K1p p
a

VHq

K2 K2p p
?
Aq

K1 K1p p
?
Aq

When p ą 2, take T and S as in case a).

Now take p “ 2. One has K2 “ K2p 4
a

Oˆ
K q X K2p

p
?
Aq. Indeed by Kummer theory the

intersection is characterized by elements ε P Oˆ
K and x P A such that xε “ α2 with

α P K2. If α R K1, since rK2 : K1s “ 2, we get K2 “ K1pαq “ K1p
?
xεq. By uniqueness of

the Kummer radical, one has xε “ ´y2 with y P K1, and then pxq “ pyq2 which implies
x P A trivial; in other words, ε P pK2q2, proving that the intersection is trivial.
We first choose T as in case a) by noting that, with perhaps one exception, the primes
p P T can be chosen with norm equal to 1 modulo 4. Observe that there is no exception
if the Frobenius of at least one place of X is not trivial in K2{K1. We then choose S as
in case a).
For each place p P T for which ζ4 P Kp, as in case a), we can apply Proposition 1.5.
Suppose now that there is one prime p P T such that ζ4 R Kp. And assume Oˆ

K X´4K4 “

H. Due to the remark regarding the linear disjunction, every element g P GalpL{L0q can
be lifted in GalpF{F0q. Then, by Proposition 1.8, one can use the same strategy as in
case a).
In conclusion, we have proved that if one of the conditions paq, pbq, pcq of the exceptional
situation fails then pivq of Proposition 2.1 applies for every q P T .

Remark 2.2. — Observe that one can take T such that |T | ď mX “ dpVH ´ dpEX .
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2.2. Proof of Theorem A and Theorem B. — Suppose p ą 2 or when p “ 2, one of
the conditions paq, pbq, pcq of the exceptional situation fails. Let S and T as in Proposition
2.1. As X Y T is saturated, by piq of Proposition 2.1 and (9), one obtains |T | “ dpBX .
Moreover, S Y X Y T is also saturated and in particular, BSYXYT » X2

SYXYT,p “ t0u.
With piiq of Proposition 2.1, we see that dpBSYX “ |T | so piq and piiq imply: BSYX » BX .
Now let us take the spectral sequence of the short exact sequence

1 ÝÑ HSYX,T ÝÑ GSYXYT ppq ÝÑ GSYXppq ÝÑ 1
to obtain by Lemma 1.16:
1 Ñ H1

pGSYXppq,Fpq Ñ H1
pGSYXYT ppq,Fpq Ñ X_SYX,T ÑX2

SYX,p ÑX2
SYXYT,p “ t0u.

Hence, X_SYX,T »X2
SYX,p. Now pivq of Proposition 2.1 implies that dpXSYX,T ě |T |, and

as obviously dpXSYX,T ď |T |, we finally get dpX2
SYX,p “ |T |.

Hence dpX2
SYX,p “ |T | “ dpBSYX “ dpBX . Thanks to (2), one has

X2
SYX,p »X2

SYX » BSYX » BX .

This completes the proof of Theorem A.
Suppose now p “ 2 and we are in the exceptional situation of Definition 1. Let us choose
v0 a place of K such that v0 is inert in K2{K (or ramified if v0 is real). Set X 1 “ XYtv0u.
The situation with such X 1 is then not exceptional (condition pcq fails), then by the
previous result, we get the existence of a set S 1 such that:

X2
S1YX 1,2 »X2

S1YX 1 » BS1YX 1 » BX 1 .

Set S “ S 1 Y tv0u. The previous isomorphisms can be reformulated as:
X2

SYX,2 »X2
SYX » BSYX » BX 1 .

To conclude, let us observe that d2BX ´ 1 ď d2BX 1 ď d2BX .

2.3. Proof of Corollary A. — When paq or pbq of the exceptional case fails take
X “ H, otherwise take X “ tpu where p is a prime such that ζ4 R Kp. We then avoid
the exceptional situation.
Let us choose S and T as in proof of Proposition 2.1. Let us write T “ tp1, ¨ ¨ ¨ , pmX

u,
where mX “ dpBH ´ dpEX . Put S0 “ S YX and, for i ě 0, Si`1 “ S YX Y tpiu. Here,
as dpGSi

“ dpGSmX
, the spectral sequence shows that

Z{p ãÑX2
Si,p

ÝÑX2
Si`1,p

,(11)

in particular dpX2
Si,p

ď dpX2
Si`1,p

` 1. After noting that dpX2
SmX

,p “ 0 (the set X Y T

is saturated) and that dpX2
S0,p “ |T | “ mX , then we conclude that dpX2

Si,p
“ mX ´ i.

Observe also that (11) induces:
Z{p ãÑX2

Si
ÝÑX2

Si`1
,

and as before dpX2
Si
“ m´ i. The isomorphisms X2

Si,p
»X2

Si
’s become obvious.

We have proved:

Corollary 2.3. — One has X2
Si
» pZ{pqmX´i.

Take X “ H to have Corollary A. To be complete, observe that when X “ tpu, one has
mX “ m´ 1.
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3. Examples

In this section we give a few examples of fields K and sets S such that in the diagram
X2

H ãÑ BH � BS Ðâ X2
S,

the two maps on the right are isomorphisms. Here p “ 2, and the three examples we give
are not exceptional situations.
In our first two examples we show the left map is not an isomorphism. Thus we give
explicit examples where X2

X increases as X does, in contrast to the wild case.
In the third example we establish

X2
H ãÑ BH

»
� BS

»
Ðâ X2

S,

but do not know whether dpX2
H ă dpX2

S. Indeed, we suspect equality in that case.
In the examples below, pi refers to the ith prime of K above the rational prime p as
MAGMA presents the factorization. All code was run unconditionally, that is we did not
use GRH bounds for computing ray class groups.

Example 1. — Let K be the unique degree 3 subfield of Qpζ7q and let p “ 2. Then one
can easily compute that K has trivial class group and, since K is totally real, dpBH “

dpO
ˆ
K{O

ˆ2
K ` dpClKr2s “ 3. Clearly GH “ teu and dpX2

H “ 0 so X2
H ãÑ BH has

3-dimensional cokernel. Set S “ t371, 1811, 2931u and T “ t3071, 3111, 3491u. One com-
putes dpH1pGT ,F2q “ 0 so T and S Y T are saturated. The 2-parts of the ray class
groups for conductors S Y T and S are pZ{4q3 and pZ{2q3 respectively, so the the map
H1pGS,F2q Ñ H1pGSYT ,F2q is an isomorphism and dpX_SYX,T ě 3. As dpX2

S ď dpBS ď

dpBH “ 3, we see dpX2
S “ 3.

Example 2. — Let K be the unique degree 3 subfield of Qpζ349q and let p “ 2. Here K
has class group pZ{2q2 and is again totally real, so dpBH “ dpO

ˆ
K{O

ˆ2
K ` dpClKr2s “ 5.

One computes the class group of the Hilbert class field of K is trivial so GH “ Z{2ˆZ{2
and has three relations. Thus dpX2

H “ dpH
2pGH,F2q “ 3 so the map X2

H ãÑ BH has 2-
dimensional cokernel. Set S “ t7011, 28571, 31691u and T “ t3671, 3971, 4011, 4091, 4491u.
One computes dpH1pGT ,F2q “ 2 so T and SYT are saturated. The 2-parts of the ray class
groups for conductors SYT and S are Z{4ˆpZ{8q2ˆZ{16ˆZ{32 and pZ{2q5 respectively,
so the the map H1pGS,F2q Ñ H1pGSYT ,F2q is an isomorphism and dpX_SYX,T ě 5. As
dpX2

S ď dpBS ď dpBH “ 5, we see dpX2
S “ 5.

Example 3. — Let K “ Qrxs{pfpxqq where fpxq “ x12`339x10´19752x8´2188735x6`

284236829x4 ` 4401349506x2 ` 15622982921. This polynomial is irreducible and K is
totally complex with small root discriminant and has class group pZ{2q6. The field K has
been used as a starting point in finding infinite towers of totally complex number fields
whose root discriminants are the smallest currently known. Set
S “ t72, 111, 431, 473, 673, 971u, T “ t51, 131, 191, 192, 231, 232, 233, 291, 311, 611, 1491, 1494u.

As K is totally complex,
dpBH “ dpO

ˆ
K{O

ˆ2
K ` dpClKr2s “ 6` 6 “ 12 “ #T.

One computes dpH1pGT ,F2q “ 6 so T and S Y T are saturated. The 2-parts of the ray
class groups for conductors SYT and S are pZ{4q5ˆpZ{8q4ˆpZ{16q3 and pZ{2q11ˆZ{8.
respectively, so the the map H1pGS,F2q Ñ H1pGSYT ,F2q is an isomorphism. From this
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data one can only conclude dpX_SYX,T ě 11. On the other hand, for every v P T one
computes the 2-part of the ray class group for conductor S Y tvu has order at least 215 ą

214. As the latter quantity is the order of the 2-part of the ray class group with conductor S,
we get #T “ 12 independent elements of X_SYX,T so dpX2

S ě 12. As dpBS ď dpBH “ 12,
we have dpX2

S “ 12. We suspect that in this case dpX2
H “ 12.
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