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Abstract—The efficiency of spectral clustering and analysis
has been proven in a wide variety of fields. This technique
consists of a two-stages pipeline: i- the data embedding stage
into a Laplacian Eigenmap, ii- the clustering stage based on the
Laplacian Eigenmap. The core operation of the data embedding
is the spectrum extraction using an eigensolver. Therefore, the
accuracy and the performance of the eigensolver can affect both
the quality and the speed of the spectral clustering. In this paper,
we present a comparative study between the computation speed
of a general eigensolver1 algorithm and Jacobi’s algorithm. The
accuracy of the produced clustering is assessed and discussed for
both algorithms. The speed-oriented experiments were performed
on three dense matrices of different sizes, while the accuracy-
oriented experiments were performed on biological sequences.

The results of the experiments showed that computing the
eigenvalues and eigenvectors using Jacobi’s iterative method, is
by far faster than using the general eigensolver. Moreover, the
extracted spectra using Jacobi’s algorithm, produced a slightly
higher clustering accuracy when compared to the ones that were
extracted by the general eigensolver.

Index Terms—Spectral clustering, Laplacian Eigenmap, Data
embedding, Eigensolvers, Biological sequence clustering, Cluster-
ing quality analysis

I. INTRODUCTION

The clustering techniques in general, and the spectral
clustering in particular, play a paramount role in the analysis
of many types of data and graphs. Many types of data that
can be subject to clustering for analysis, such as networks’
traffic [1], [2], maps or structures of power grids [3], text
documents [4], images [5], and biological sequences [6].
However, the key for a successful spectral clustering is
providing an adequate embedding [7].

Spectral clustering [8] requires the input of a pairwise
similarity matrix among the target data. In its initial stage, the
data embedding consists of the computation of the Normalized
Laplacian2 for the similarity matrix, followed by the extraction

1designed to solve the general eigenvalues problem that can have imaginary
solutions

2the Random Walk Normalized Laplacian or the Symmetric Normalized
Laplacian

of the spectrum. The spectrum consists of a matrix holding a
certain number of eigen vectors that correspond to the smallest
eigenvalues. The resulting embedding can be considered as a
representation of the data in an n-dimensional plane where n
is the number of the chosen eigen vectors. The data is then
clustered using a clustering technique such as k-means or a
Gaussian Mixture Model (GMM) while using the resulting
embedding. Therefore, the eigensolver plays a key role in the
embedding process and potentially affects both the quality and
the speed of the clustering.

The remainder of this article is organized as follows. In
Section II, the eigen solving problem is presented along
with a literature review about its proposed enhancements. In
Section III, the experimental protocol is detailed. The results
of the experiments are presented and interpreted in Section IV.
Finally, Section V concludes this paper with a brief discussion
and presents some future perspectives.

II. A LITERATURE REVIEW FOR EIGEN SOLVERS

A. The eigenvalues and eigen vectors
In linear algebra, the eigenvalues and eigen vectors are

involved in a kind of matrix transformation [10]. Equation (1)
shows the general transformation having the form of an n×n
matrix A, where v is an eigen vector and λ is an eigenvalue.

Av = λv (1)

Therefore, the eigenvalues of a matrix A are the possible
solutions of the polynomial equation deriving from (2), where
I is the identity matrix:

|A− λI| = 0 (2)

In the general case, for a matrix A where all the elements are
real values, it is possible to have eigenvalues that are either
real or imaginary. It requires a general eigensolving method for
the calculation of both the real and the imaginary eigenvalues.
Conversely, if i- all the elements of a matrix are real, and ii-
the matrix is symmetrical3, then all its eigenvalues and eigen

3with regards to its diagonal



vectors are also real [11].
One of the practical use cases of the eigen vectors is

for the spectral clustering. This clustering technique uses the
eigen vectors for its initial data embedding. In the spectral
embedding process, the leading eigen vectors are chosen in
order to reduce the dimensionality of the initial data. The
resulting matrix is called the eigenmap.

B. Computation and enhancements

A great deal of work has been invested in finding differ-
ent algorithms for the computation of the eigenvalues and
eigen vectors. Further performance improvements were also
suggested for accelerating this computation, e.g., the paral-
lelization of the computation process [12], which led to a
strategy called Divide & Conquer. Implementation-wise, the
LAPACK library [13] is one of the oldest linear algebra
libraries that embeds a general eigensolver. It is built on
the top of BLAS, a lower lever implementation of matrix
and vector arithmetic operations. LAPACK implements 4
iterative algorithms for this purpose, including a Divide &
Conquer one. LAPACK is written in FORTRAN and was
subject to several enhancements and updates [14], [15].

Moreover, Armadillo [17], [18] is another recent C++
library that implements a general eigensolver. Nevertheless,
the functions in this library are not all built from scratch. Based
on the description of Armadillo, only basic functionalities are
available in case LAPACK in not pre-installed. For instance,
the eigen decomposition functions rely on LAPACK. There-
fore, Armadillo is not expected to outperform LAPACK.

Conversely, the Eigen [9] library is also another well
known and recent C++ library, for linear algebra, that does
not rely on any other libraries. Eigen also implements an
algorithm for a general eigensolver. Compared to LAPACK,
Eigen has a much better API. Performance-wise, Eigen
compares well to BLAS/LAPACK [19], based on its bench-
mark [20].

The Jacobi’s algorithm [21] and its accelerations [22],
[23] present additional iterative methods for computing the
eigenvalues and eigen vectors. The major difference between
this algorithm and the previous general eigensolvers, is that
Jacobi’s iterative algorithm can only be applied on real sym-
metric matrices. Therefore, the implementation of this Eigen
solver should be less complex and potentially runs faster
than the general solvers, when its application conditions are
respected.

III. THE EXPERIMENTAL PROTOCOL

A. Eigensolvers selection

We recall that the required embedding for the spectral
clustering is computed from the initial pairwise similarity or
adjacency matrix. This initial matrix is real and symmetric [8]
because in most cases, a pairwise similarity between two
elements i and j, Si,j = Sj,i. Accordingly, the general eigen-
solvers and Jacobi’s eigensolver are both applicable, and might
provide different degrees of accuracy in the approximation
of the values of the eigenvalues and eigenvectors. Therefore,

for the sake of comparison, the Eigen [9] library and an
implementation of the Jacobi iterative Eigen solver4 were
selected. These two implementations were assessed according
to the protocol presented in the following section.

B. Computation speed assessment

The processing speed of the selected eigensolvers was
assessed by computing the eigenvalues and eigen vectors of
three matrices of different sizes:

• a first matrix of size 100× 100,
• a second matrix of size 500× 500,
• and a third larger matrix of size 1049× 1049.

In order to meet the requirements of Jacobi’s algorithm,
the experimental matrices are real and symmetric. Moreover,
in an attempt to raise the computation complexity in this
assessment, the chosen matrices are dense. Finally, the compu-
tation process is launched three times for each implementation
(and on each matrix) to limit the accidental interference of
background processes on a single run. The used machine for
this experiment is equipped with an i7-6700 3.4GHz processor
and 8GB of RAM.

C. Clustering quality assessment

The effect of the resulting embedding on the clustering
quality is assessed on three sets of biological sequences:

• The first set consists of HIV virus complete genomes.
• The second genomic set is composed of NADH dehydro-

genase3 mitochondrial genes.
• The third set consists of proteins from a same gene of

Arabidopsis thaliana.
The choice of biological sequences comes from the recent
emergence of the spectral clustering in this domain, in addition
to the aspects of resemblance between the treatment of this
type of data and many other types. Indeed, two biological
sequences can have parts that match and others that mismatch,
in addition to missing or added parts. Biologically, the three
differences are referred to as mutations, deletions, or inser-
tions, and can be visually identified by matching the aligned
sequences as illustrated in Figure 1.

The clustering golden truth of our selected data sets is
deduced from the phylogenetic trees. A phylogenetic tree
shows the evolutionary relationship among the sequences, and
helps determine the subsets of sequences probably descending
from the same ancestor. In the literature, many tools can be
found for building the phylogenetic tree of a given dataset of
sequences. For this experiment, the tree for each dataset was
built according to the following procedure:

1) MUSCLE [24] aligned the sequences.
2) ClustalX 2.1 [25] generated the phylogenetic tree.
3) The resulting phylogenetic tree was visualized using

PRESTO [26].
Figure 2 illustrates a sample phylogenetic tree where three
clusters can be visually identified and are highlighted in
different colors.

4https://github.com/edwardlfh/testv2/tree/master/jacobi



Fig. 1. Visualisation of aligned sequences

The accuracy of the resulting clusterings will be assessed
using a validation index [27]. Among the available indexes
in the literature, the Adjusted Rand Index (ARI) was selected
because on one hand it is simple to use as it only requires
the labels vectors of the correct clustering and the resulting
clustering for its computation. On the other hand, the ARI
have proved its accuracy and relevance in many studies [6],
[28]. The ARI score ranges between 0 for two completely
different clusterings, and 1 for identical ones. The results of
the experiments are presented in the next section.

IV. THE OBTAINED RESULTS

A. Computation speed

Based on the experimental protocol, the computation speed
of the two selected implementations of the eigensolvers were
assessed. Knowing that the running background processes on
the used machine might interfere with this experiment, we
ran three times each computation for a better precision and
reliability, and to avoid this potential deficiency. Table I shows
the recorded computation times for both algorithms along with
the average execution time of the three conducted runs.

TABLE I
EIGENSOLVERS COMPUTATION TIME IN SECONDS

Matrix size Algorithm 1st run 2nd run 3rd run Average

100x100 Jacobi <1 <1 <1 <1
General 1 1 1 1

500x500 Jacobi 7 7 6 7
General 199 200 201 200

1049x1049 Jacobi 72 78 76 75
General 1611 1595 1617 1608

The recorded times for the three runs, displayed in Ta-
ble I, are close for the three matrices, and consistent. In

Fig. 2. Visual identification of three clusters in a given phylogenetic tree

the case of the smallest matrix, the difference does not look
significant since it remains in the order of fractions of a
second. Conversely, in the case of two larger matrices, the
average shows that the eigenmap computation using Jacobi’s
algorithm presents a remarkable speed-up when compared to
the execution time of the general algorithm. This speed-up
exceeded 28X for the second matrix and 21X for the largest
matrix. Naturally, a general computation method is expected to
be more complex and slower than a particular method, but this
results highlights a significant performance difference between
these eigensolvers. Therefore, the implementation of Jacobi’s
algorithm is more suited for the spectral embedding speed-
wise. It contributes in improving the overall computation speed
of a spectral clustering.

B. Clustering accuracy

The influence of the computed spectral embedding on the
quality of the clustering, is another factor that should be



considered and has an even higher importance than speed.
To evaluate the influence of both eigensolvers on the quality
of the resulting clusterings, the embedding of each adjacency
matrix, corresponding to an experimental dataset, was com-
puted by both eigensolver. The resulting embeddings were
then passed to a common clustering algorithm, namely the
Gaussian Mixture Model (GMM), and the resulting clusterings
were recorded.

Finally, for each dataset, the ARI was computed using
the true labels vector of the deduced reference clustering,
along with the labels vectors of the resulting clusterings.
Table II shows the values of the Adjusted Rand Index for
the clusterings of each dataset and with both eigensolvers.

TABLE II
CLUSTERING ACCURACY WITH REGARDS TO THE EIGENSOLVER

1st set 2nd set 3rd set
Algorithm Jacobi General Jacobi General Jacobi General

ARI 0.876 0.770 0.819 0.899 1 0.770

The results produced using Jacobi’s algorithm scored an
average ARI of 0.898, over the three used datasets, compared
to an average of 0.813 when using the general algorithm. By
considering the quality of the clusterings, these scores reflect
a slight advantage for the use of Jacobi’s algorithm over the
general algorithm. Indeed, when using Jacobi’s algorithm, the
clusterings scored a better ARI for two sets out of three,
than when using the general algorithm. The results of the
experiments are further discussed in the next section.

V. CONCLUSION AND DISCUSSION

This paper presented a comparative study between a general
eigensolver and Jacobi’s eigensolver. The latter is only appli-
cable on the real and symmetrical matrices. In this study, the
processing speed of these two algorithms was compared and
the selected implementations of these algorithms were tested
on a large and dense matrix. We also studied the influence
of their produced spectral embedding on the accuracy of the
spectral clustering.

The results of the experiments show that Jacobi’s eigen-
solver is the best suited for spectral embedding, speed-wise
and accuracy-wise. In fact, a speed-up exceeding 28X over
the general algorithm was observed when producing the
embedding with Jacobi’s algorithm. Moreover, the computed
Adjusted Rand Indexes showed a superiority for the clustering
that used the embedding produced with Jacobi’s algorithm.

The accuracy of the clustering was evaluated on biological
sequences. Nevertheless, this method can be applied onto other
other types of data, for instance, similarity analysis between
images or network packets. In the first case, a mutation
between two images can be a pixel having different colors,
while it can be an alteration of the data in some parts of
the packet in the second case. Moreover, the insertions and
deletions compare to missing or added contents to either an
image or a network packet. Therefore, and in a practical use

case, the spectral clustering can group images based on a
certain degree of matching contents, while it can identify a
malicious network packet based on a certain similarity pattern
with another identified one.

Finally, future extensions to this work include more in-
tensive experiments involving different types of data. Further
acceleration schemes for the eigensolvers are also possible.
Finding novel and easier ways for data embedding and di-
mensionality reduction could further improve the spectral
clustering technique. Implementing a multi-purpose spectral
clustering package, that is able to interpret various types of
data, could be a novel and interesting idea.
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