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Abstract—This paper compares the efficiencies of the cross-
spectrum and of a simple spectrum average to estimate the
frequency stability of an oscillator.
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I. INTRODUCTION

The main purpose of this paper is the comparison of the
efficiencies of the cross-spectrum (c-s) estimator, i.e. the
covariance of 2 spectra, regarding a simple average of these
spectra. We assume that each spectrum is composed of a
common red noise, that we call signal, and a white noise.
The white noises of both spectra have the same level 0%
but are uncorrelated. Such a comparison imposes the perfect
knowledge of this parameter o3 in order to be able to
evaluate the signal variance o% with the spectrum average
(s.a) method. However, this latter estimator exhibits a lower
estimate variance than the other one suggesting that it could
be more efficient even if it is biased in essence. Ultimately,
this paper addresses the question about the efficiency of the
Dike radiometer versus that of the correlation radiometer [1],
[2], [3]. In fact, one bin of the FFT is equivalent to the IF
filter of the receiver. The question is then: which estimator is
the most efficient?

II. VARIANCE OF THE ESTIMATES

At a given Fourier frequency f, the spectra may be modeled

as
X=A+C )
Y=B+C

where A, B are uncorrelated normal complex random variables

(rv) of variance 012\,, i.e. the white level, and C' a normal

complex rv of variance o%/f®, with 0% the signal level and
« the red noise exponent.
The estimators are then

Ses =X-Y

- X+v]” X+v)°

Sav =R R - =
i B

where ~ stands for the complex conjugate of the quantity which

is below and R[], 3[-] stands respectively for the real and the

imaginary parts of the quantities within the brackets. One can

easily verify that these estimators are unbiased' [4].
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I'We stated in the introduction that the s.a estimator is “biased in essence”
because, in order to get an unbiased estimator of the signal level, we must
subtract half the noise level from it, i.e. its bias.
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Fig. 1. Variance (above) and histogram (below) of the estimates. These
data were obtained from a set of 1 million simulated spectra. Below is the
histogram of the estimates at f = 8 a.u where o% = O'JQV =1au

On the other hand, denoting V[-] the variance of the quantity
within the brackets, we can demonstrate that

V|8 ~V [S’av} for o% > 0%
V|8, | ~ 2V [Sav} for J% < 012\,.

This is confirmed by Fig. 1 (top) which exhibits the vari-
ance of the estimates of both estimators applied to a signal
composed of a mixture of uncorrelated white noise of level 1
arbitrary unit (a.u) and a common f~® noise which crosses the
white noise level at f = 8 a.u. At f =4 a.u, the signal level
is 256 times higher than the white level and the variances of
both estimators coincide. On the other hand, for frequencies
higher than 16 a.u, the signal level is less than 256 times lower
than the white level and the variance of the c-s estimates is 2



TABLE I
COMPARISON OF THE 95% BOUNDS GIVEN BY THE C-S AND S.A
ESTIMATORS FOR A NOISE LEVEL 012\, =1aA.U.

0% Best | Min Mean Max
% % % %
0.0 20 -86 17 28
0.1 24 -94 16 28
0.2 27 | -140 16 28
0.3 28 | -150 16 28
0.5 31 | -146 16 28
0.7 32 | -168 17 28
1.0 34 | -210 14 28
14 36 | -210 13 28
2.0 38 | -169 13 28
3.2 35 | -203 11 28
5.0 37 | -187 9 28
10.0 40 | -133 5 27

The second column (“Best”) exhibits the percentage of cases where the 95%
bound from the c-s estimator is more stringent (lower) than the 95% bound
obtained by the s.a estimator. The following columns show respectively the
minimum, the mean and the maximum values of the relative differences
between the 95% bounds of both estimators: (B95¢s — B954y)/B9%cs.

times higher than the variance of the s.a estimates. This seems
to indicate a better efficiency of the s.a estimator.

However, the histograms of the estimates of both estima-
tors exhibit a very different shape (see Fig. 1 bottom): a
variance-I" double exponential for the c-s estimates [5] and
the x? decreasing exponential for the s.a estimates. Then,
although the negative part are very different, the positive part
of the histograms are quite similar. However, for low positive
estimates, the c-s histogram is a little bit higher. Therefore,
this shows the probability to get a positive estimate, i.e.
an informative estimate, is very slightly higher with the c-s
estimator than with the s.a estimator.

The only way to get an objective answer about the efficiency
of the methods is to search for the Bayesian upper limit, e.g. at
95 % confidence, of the a% estimation knowing one estimate:
the most efficient method is the one which provides the most
stringent upper limit.

III. SEARCHING FOR THE MOST STRINGENT ESTIMATOR
A. Inverse problem

We have have first to adress the direct problem, i.e. the
statistics of the c-s (or s.a) estimates knowing the signal level
(the noise level is assumed to be known). Then, we have to
deduce the inverse problem from the direct problem, i.e. the
statistics of the signal level from a c-s (or s.a) estimate. The
direct and inverse problem resolutions will be detailed in the
full paper.

B. Comparison of the 95 % confidence limits

An example of result of such a process is given in Table
I: for different signal level values (the noise level is set to 1
a.u), this table gives the proportion of most stringent bound
given by the c-s estimator. This percentage increases from
20% when there is no signal to 40% when the signal level
is 10 times the noise level, i.e. when the number of negative
estimates decreases. It is highly probable that the percentage

tends toward 50% when 0% > 0%/, i.e. when the probability to
get a negative Scs estimate tends toward 0. On the other hand,
Table I shows that the mean deviation between the bounds
obtained by both estimator is as low as 10 ~ 15% and that
the maximum deviation, i.e. when the c-s bound is higher
the s.a bound, does not exceed 28%. However, the minimum
deviation can be of the order of —200% meaning that in some
rare cases the s.a 95% bound can be 2 times higher than the
¢-s bound.

Nevertheless, these results definitely show that the a-v
estimator is more efficient than the c-s estimator, even if the
difference is small.

IV. CONCLUSION

In order to compare the efficiency of the cross-spectrum es-
timator and the spectrum average estimator to assess the signal
level, we first calculated the variances of these estimators and
observed that the variance of the latter estimator is lower than
the variance of the former one, suggesting that the spectrum
average estimator is the best. We decided then to compare the
Bayesian limit at 95% of confidence of the signal level given
by both estimators. Here also we found a slight advantage
for the spectrum average estimator. This estimator is then the
winner of this trial, at least for 2 degrees of freedom. An
extension of this study for higher degrees of freedom will be
given in the full paper.

Nevertheless, considering on one hand the very small dif-
ferences between the efficiencies of these estimator and on
the second hand the significant discrepancies between the
95% bounds that may occasionally appear, the wiser solution
could be to systematically compute the bounds given by both
estimators and choose the lower one.

Finally, we must also remind that the second estimator
implies a perfect knowledge of the noise level since half of
it has to be subtracted from the spectrum average. The least
uncertainty about this noise level knowledge could drastically
decrease the efficiency of the spectrum average method. In this
connexion, the cross-spectrum estimator is definitely the most
robust estimator since it does not need an explicit knowledge
of the noise level.
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