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Abstract—This paper compares the 95% upper limit on the
signal level between 2 estimators: the cross-spectrum and the
spectrum average. This is generalized in the case where we have
more than 2 radio-telescopes and an example is given in the case
of 5 radio-telescopes.

Index Terms—Bayesian statistics, confidence interval, cross-
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function, probability density function.

I. INTRODUCTION

This paper aims to compare the efficiencies of the cross-
spectrum (c-s) estimator and the spectrum average (s.a) estima-
tor generalized in the case where more than 2 radio-telescopes
(RTs) measure a signal. For that a comparison of the 95%
Bayesian upper limit is computed. Consequently the estimator
which is the more stringent will be the more efficient. To
assess this confidence interval the probability density function
(pdf) of both estimators knowing the parameters σ2

S , the sought
signal level, and σ2

N , the noise level of each RT (assumed to
be the same), is required. This is generalized in the case where
5 RTs, e.g. Effelsberg (Ge), Cagliari (It), Nançay (Fr), Jodrell
Bank (UK) et Westerbork (NL) presently included in the Large
European Array for pulsars (LEAP), are involved. This signal
can be a red noise originated from gravitational waves on the
line of sight from the millisecond pulsars observations. Our
previous paper [1] shows that the variance-gamma distribution
is the exact solution of the c-s pdf. However this is no longer
the case for more than 2 RTs that is why a description included
the Fourier transform of the characteristic function is proposed
as a solution. Then the inverse problem is computed to assess
the confidence interval on the signal level σ2

S , and 2 sets of
measurement are given in order to compare both estimators.
Nonetheless, whereas both estimators give nearly the same
95% upper limit what about when we increase the number of
degree of freedom, i.e. the number of RTs ?

II. STATEMENT OF THE ESTIMATORS

Let us consider at a given Fourier frequency the spectra of
the ith RT as

Xi = XS +XNi (1)

where XS is a normal complex rv of variance σ2
S i.e. the signal

level and XNi are uncorrelated normal complex rv of variance
σ2
N i.e. the white noise level. Then the s.a and c-s estimators

are respectively

 Ssa = R
[
N

∑n
i Xi

σ2
Ni

]2
+ I

[
N

∑n
i Xi

σ2
Ni

]2
−N

Scs = 〈Xi · X̃j〉m with i 6= j

(2)

where 〈·〉 stands for the m average over the different com-

binations of RTs with m =

(
n

2

)
and ·̃ stands for the

complex conjugate of the quantity which is below. Moreover
R[·], I[·] stands respectively for the real and the imaginary
parts, appearing through the Fourier transform operation, of
the quantities within the brackets whereas n is the number
of RTs. The N factor is the noise variance ponderation
normalization corresponding to

N =

(
n∑
i

σ−2
Ni

)−1

. (3)

These estimators are unbiased, as shown in [2], since their
expectation is the sought signal level σ2

S .

III. PROBABILITY DENSITY FUNCTION

A. Spectrum Average

The s.a estimator leads to the following χ2 distribution with
2 degrees of freedom resulting from the real and imaginary
part of the spectrum,

p(Ssa|σ2
S) =

e−
Ssa+N

2σ2

2σ2
(4)

where,

σ2 = N + σ2
S . (5)
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Fig. 1: Comparison of the empirical and theoretical PDF of
the cs for 5 RTs where the variances are σ2

S = 3 and σ2
N = 5.

B. Cross-spectrum

The c-s estimator leads to the variance-gamma (VΓ) dis-
tribution for 2 RTs as established in [1] but for more than 2
RTs it is no longer the case. Having no exact solution known
nowadays, we give an approximation of it. First we perform
a QR decomposition by using the Householder transformation
in an orthogonalization process. Second we compute the
eigenvalues li of the resulting components and obtain a linear
combination of χ2 distribution as followed,

Scs =

n∑
i

liχ
2
k (6)

where k is the number of degree of freedom of each eigen-
value. It can be shown that the white noises induce negative
eignvalues where the signal implies a positive one. Then we
define the characteristic function of χ2

k as

φcsi(t) = (1− 2jlit)
−k/2 (7)

where j is the imaginary unit complex number and we apply
a variable change of −t for the negative eignvalues. The χ2

distribution being independent, the characteristic function of
the c-s becomes φcs(t) =

∏n
i φcsi(t). The probability density

function of the c-s is finally define as

p(Scs|σ2
S) =

1

2π

∫
R

exp−jtScs φcs(t)dt. (8)

Figure 1 shows that theoretical probability density function
(PDF) fits very well the histogram obtained by 107 Monte
Carlo simulations for 5 RTs. The variance of each white noise
is the same σ2

N = 5 whereas the signal level is σ2
S = 3.

IV. COMPARISON OF THE 95% UPPER LIMIT

We have set the direct problem, i.e. the statistics of the s.a or
c-s knowing the signal level and noise level (which is assumed
to be known). Now we have to deduce the inverse problem
from the direct problem, i.e. the statistics of the signal level
knowing the s.a or c-s estimate and this is the Bayes theorem
which enables us to establish this link. A full descrition
of the direct and inverse problem will be detailed in the paper.

TABLE I: Measurement set for the outputs of each RT (5 in
total) where σ2

S = 3 and σ2
N = 5.

measurement set 1 measurement set 2
Real part Imaginary part Real part Imaginary part

X1 -3.8947 -1.7994 -0.1494 8.9456
X2 -5.0950 -3.9125 -0.5275 4.4659
X3 -25133 -5.5431 0.2176 5.7742
X4 0.6433 -1.9566 1.6044 3.2146
X5 -0.2294 -2.5738 -0.5284 0.3563

Let us give an example of such a process. We set the number
of RTs to 5 and the variances of the signal and noise are
respectively σ2

S = 3, σ2
N = 5. Then we produce 2 sets of

random measurement with these parameters, shown in Table
I. We obtain respectively for the first and second measurement
set the c-s values Scs1 = 13.2256 and Scs1 = 18.5636. It
leads for the first set to the 95% upper limit on the signal σ2

S

following value, 58.8 for the s.a and 12.3 for the c-s. Whereas
the second set gives us 66.6 for the s.a and 14.7 for the c-s.
These results show that the c-s estimator give a more stringent
upper limit and is then more efficient than the s.a estimator.

V. CONCLUSION

The efficiency of both estimators, the spectrum average
versus the cross-spectrum, is highlighted through the
comparison of the 95% Bayesian upper limit. We found
an advantage not the least for the cross-spectrum estimator
especially that increases with higher degree of freedom which
means with higher number of radio-telescopes. This estimator
has also a particular interest since it is not biased whereas
the spectrum average estimator is. However both estimators
required a complete knowledge of the noise introduced by
the measurement instruments.

The generalization to more than 2 radio-telescopes implies
a numerical integration of the characteristic function and has
no longer an exact density solution to the cross-spectrum
probability density function. However whereas it was wiser to
compute both estimator for 2 radio-telescopes since one can
be stringent than the other depending on the measurement, it
is clearly better to take into account the cross-spectrum for
higher degrees of freedom.
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