

1

Modélisation et Simulation numérique des transferts thermiques dans les écoulements gazeux compressibles oscillants dans les régénérateurs

Khalil KHELIFI ⁽¹⁾ – Maher RADDAOUI ⁽¹⁾ – François LANZETTA ⁽²⁾

⁽¹⁾ Ecole Nationale d'Ingénieurs de Gafsa, Tunisie ⁽²⁾ François LANZETTA Institut FEMTO-ST-ENERGIE, Belfort, France

Plan

Introduction

Optimisation de « machines alternatives »utilisant des régénérateurs

Machines magnétocaloriques

Machines Stirling

Machines thermoacoustiques

Réduire les consommations d'énergie primaire Réduire la production de gaz à effet de serre Améliorer les efficacités de conversion d'énergie (chaleur, froid, électricité)

Introduction

Caractéristiques des régénérateurs

Composant crucial des machines Stirling, systèmes magnétocaloriques et thermo acoustiques

Fluide chaud

Fluide froid

Régénérateur

- Accumulation de chaleur dans le régénérateur lors du passage du fluide chaud
- Restitution de chaleur par le régénérateur lors du passage du fluide froid

Objectifs scientifiques

- mesures des grandeurs physiques instationnaires P, V et T
- évolution du coefficient de perte de charge
- évolution de l'échange thermique

Banc d'essai

Instrumentation

Fluide chaud

- Pression : capteurs piézoélectriques
- Vitesse : sondes à fil chaud CTA
- Température : microthermocouples de type K
 ✓ du gaz
 - ✓ de la matrice solide
- Position du piston : capteur magnétique de proximité

 P_{ch}, V_{ch}, T_{ch}

Côté chaud

 T_{R1}

T_{S1}

T_{S2}

T_{S3}

Banc d'essai : deux chaînes d'acquisition de mesures

➢ Régénérateur

Réalisation par prototypage 3D (fusion laser, acier inoxydable)

Structure : canaux droits Porosité : 35%

Hammamet 20-22 Décembre 2018

Travaux antérieurs

- Thèse, Mohamed Saïd KAHALERAS (Étude expérimentale des transferts thermiques et des coefficients de perte de charge pour les écoulements gazeux alternés au sein des régénérateurs)
- > Evolution de la température aux extrémités du régénérateur

- T chaude moyenne ≈ T échangeur chaud
- T froide moyenne > T échangeur froid

L1=60mm; C1=64.4mm et ΔT_2 =70°C/10°C

Évolution de la vitesse du fluide durant les phases de compression et de détente

Pressions instantanées aux deux extrémités du régénérateur en fonction de l'angle de rotation

Perte de charge linéaire du régénérateur

 $(f = 6 \text{ Hz}, \Delta T = 0^{\circ})$

 $(f = 6 Hz, \Delta T = 40^{\circ}C)$

Modélisation de l'écoulement

Maillage

Conditions limites

- Deux cas étudiés avec ou sans échange thermique
- — "Velocity inlet" imposée à l'entrée du domaine fluide. L'amplitude ainsi que la direction de la vitesse sont définies
- "Wall" avec une condition de non-glissement à la paroi imposée à l'interface fluide/solide, les parois sont considérées adiabatique
- "Symmetry" est définie pour les plans de symétrie que comporte la géométrie modélisée
- — "Pressure intlet" imposée en sortie pour définir la pression relative statique du fluide sortant du domaine

Modèle utilisé: k-E

• Équation de conservation de la masse

$$\frac{\partial \mathbf{u}_{\mathbf{i}}}{\partial x_{i}} = 0$$

• Équation de conservation de la quantité de mouvement

$$\frac{\partial \mathbf{u}_{i}}{\partial t} + \frac{\partial (u_{j}u_{i})}{\partial x_{j}} = -\frac{1}{\rho_{f}}\frac{\partial P}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left[v_{f}\left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}}\right)\right]$$

• Équation de température

$$\rho_f C_{p,f} \left(\frac{\partial T}{\partial t} + \frac{\partial}{\partial x_i} u_i T \right) = \frac{\partial}{\partial x_i} \left(\lambda_f \frac{\partial T}{\partial x_i} \right)$$

Conclusions

- Mise en œuvre d'un banc d'essai instrumenté de caractérisation des écoulements alternés au sein des régénérateurs
- □ La température du gaz dans un régénérateur oscille au cours du temps et ne peut pas être considérée comme linéaire dans la direction de l'écoulement
- ❑ Déphasage de 90° entre la perte de charge linéaire (valeur maximale à *φ*=180°) et la vitesse (valeurs maximales à *φ*= 90° et *φ*= 270°)
- Ies énergies stockées et déstockées varient périodiquement au cours d'un cycle sous les effets des variations temporelles déphasées de la vitesse, de la pression et de la température
- □ Validation du modèle numérique par comparaison avec les résultats expérimentaux

Perspectives

Obtenir et exploiter des résultats expérimentaux pour :

- de plus hautes fréquences (6 < Fr < 50 Hz voir au-delà)
- différentes porosités d'une même structure de régénérateur ($\epsilon \rightarrow 0,90$)
- de plus grands gradients de température (0 < ΔT < 800 °C)

Travailler sur des valeurs efficaces des grandeurs thermo-physiques et adimensionnelles

Approfondir le travail sur les définitions des coefficients de perte de charge et de transfert de chaleur

Merci pour votre attention