
Self-Autofocusing using Deep Learning for Digital Holography and 

Applied to Position Measurement  

Stéphane Cuenat, Antoine N. André, Louis Andreoli, Patrick Sandoz, Raphaël Couturier, 

Guillaume J. Laurent, Maxime Jacquot 

Institut FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, France  
stephane.cuenat@univ-fcomte.fr,antoine.andre@femto-st.fr, 

louis.andreoli@femto-st.fr 

Abstract  

The numerical wavefront backpropagation principle of digital holography (DH) confers unique extended focus 

capabilities. However, the determination of the correct focus distance is a difficult and time consuming problem. To 

cope with this problem, a deep learning solution is proposed to cast the auto-focusing as a classification problem. The  

experiments show that a good accuracy (1-3 μm) can be reached for a set of holograms ranging on a distance of 10 

μm and using a 10x microscope objective.  

 

1. Introduction 
DH records the wavefront incident on the image sensor through the interference pattern produced by its coherent 

combination with a known reference wavefront. The amplitude and phase of the incident beam thus determined allows 

numerical backpropagation to reconstruct images of the object of interest at various distances without depth-of-focus 

limitations tied to conventional refractive imaging techniques. These extended focus capabilities offered by DH 

require however the correct determination of the focusing distance to be inserted in computations. Nowadays, Deep 

Learning (DL) is reshaping the world of computer science and it is used in many application areas including DH. 

Particularly, DL helped in coping the time consumption and heavy computation concerns of the older techniques to 

determine depth position: instead of applying many diffraction calculations, training a deep neural network is adopted 

to enable it to do the depth predictions [1]. These predictions can be approached either as a classification problem or 

a regression problem. Most of the work in DH are applied to simple objects like biological cells. The proposed solution 

tackles more complicated objects [2]. 

 

2. Applicative context 
At the microscale, optical microscopy provides a convenient non-contact tool for the measurement of position 

and displacements of objects versus one to six degrees of freedom and with resolution down to the nanometer range. 

However, the short depth-of-focus of microscope objectives restricts drastically the allowed displacements along the 

axial direction. This limitation is released by DH that integrates the phase term associated to refractive lenses into 

computations and thus allows in-focus images of objects far beyond the nominal range of the objectives used. 

Furthermore, DH reconstructs the interferometric phase representative of the out-of-plane position of objects with an 

unbeatable resolution. In our microrobotic application, encoded pseudoperiodic patterns are observed by a DH 

microscope (DHM by Lyncee Tec Corp.) to measure the position and displacements of mobile objects versus the six 

degrees of freedom [3, 4, 5]. 

 

3. Proposed solution 

The objective is to localize objects at the micrometre scale. We use holograms of a 

target to retrieve the 6 degrees of freedom (DoF) of a structured target.  The target is 

generated in such that it encodes the position (X and Y) using a binary code. The object 

image needs to be reconstructed first. For that purpose, we are relying on the known 

methods which are implying a series of Fourier and inverse  transformations.  These 

transformations consume most of the  time  and  do  not  allow  one  to  get  an  idea  of  

the  re-constructed  object (6  DoF) in a real-time  approach. In this paper, a method is 

proposed to extract the reconstruction  distance Z (which is the distance along the optical 

propagation) only  using  deep  learning  and  classification models. As input, produced 

holograms on a distance Z over 10 μm are considered.  Each hologram (see Figure 1) 

is  recorded  using  the  same  target. In a first step, this problem is approached using 
Figure 1: example of an 
original hologram. 
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a classifier model. For that purpose, the set of holograms have been  split  in  10  classes. Each  class  contains  a  total  

of  360 holograms. The digital holography microscope used is producing holograms with a resolution equal to 

1024x1024.  

 

4. Preliminary results 
 Three neural network architectures have been evaluated: Densenet169 & 

Densnet201, Efficientnet B4 & B7, VIT B16, B32, L16 & L32 [6]. All the 

trainings, validations and testings have been executed on a NVidia GPU V100 

series. A simple split rule on the input dataset has been applied: 80% for training 

and 20% for validation, basically 3,400 images in total (2,720 images taken to 

train the models and 680 images used as validation dataset). 200 random images 

have been extracted from the full dataset to build our test dataset randomly. Each 

training has been executed with a max of 200 epochs. Two sets of holograms have 

been created: the original hologram (Figure 1) and the negative version. Each set 

has been devided in 2 subsets applying an additional filter before feeding the 

neural network: a Sobel operator (algorithm used to create an image emphasising 

edges) of the hologram and without any filter applied. The results (Table 1) show 

the value of the valuation and test accuracy for the best configurations. Figure 2 

shows the needed time for a single inference.   

 

 

 

 

5. Conclusion 
Our experiments show that the reconstruction distance for digital holography using deep learning techniques can 

be found, especially using classification models. The 1-3 μm scale has been reached for a dataset of holograms on a 

scale of 10 μm. This solution allows to surpass of a factor 2-3 the optical resolution of the microscope (using a 10x 

microscope objective) knowing that the optical resolution is defined as: 𝑟 =  
𝜆

𝑁𝐴2 = 6.6 𝜇𝑚 (with NA = 0.3: numerical 

aperture and 𝜆 = 0.6 𝜇𝑚). The above shows an approach based on classification models, a regression should bring us 

to the next level. The first preliminary results points an error of 1.5 μm taking a larger dataset ranging over a distance 

of 100 μm. As for the next step, the goal is to tackle the decoding of the position (X and Y in the focal plane of the 

hologram). 
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 Valuation accuracy Test accuracy 

ViT/B_16 0.90* 0.94* 

EfficientNetB7 0.9941** 0.99** 

Densenet169 0.9955** 0.945** 

Table 1:  valuation and test accurary for the three best architectures (VIT/B_16, EfficientNetB7 and Densenet169). 
*Using a dataset of holograms without applying an additional filter (negative version of holograms). 

**Using a dataset of holograms on which a Sobel operator has been applied (negative version of holograms). 
 

 

Figure 2: speed results for the three best 

architectures (VIT/B_16, EfficientNetB7 and 

Densenet169) using a test dataset. 
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