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Abstract15

We introduce a finite-element-method-updating-based open-source framework to identify mechanical16

parameters of heterogeneous hyper-elastic materials from in silico generated full-field data which can be17

downloaded herehttps://github.com/aflahelouneg/inverse_identification_soft_tissue.18

The numerical process consists in simulating an extensometer performing in vivo uniaxial tensile ex-19

periment on a soft tissue. The reaction forces and displacement fields are respectively captured by force20

sensor and Digital Image Correlation techniques. By means of a forward nonlinear FEM model and an21

inverse solver, the model parameters are estimated through a constrained optimization function with no22

quadratic penalty term. As a case study, our FEMU tool has been applied on a model composed of a23

keloid scar surrounded by healthy skin. The results show that at least 4 parameters can be accurately24

identified from a uniaxial test only. The originality of this work lies in two major elements. Firstly, we25

develop a low-cost technique able to characterize the mechanical properties of highly heterogeneous26

nonlinear hyper-elastic materials. Secondly, we explore the model accuracy via a detailed study of the27

interplay between discretization error and the error due to measurement uncertainty. Next steps consist28

in identifying the real parameters and so finding the matching preferential directions of keloid scars29

growth.30

Keywords : Finite Element Model Updating, parameter identification, in31

vivo, uniaxial tensile test, Digital Image Correlation, keloid,32
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1 Introduction33

From a general point of view, hyperelastic models are frequently used to model large deformations of34

rubber materials and biological tissues. One of the major challenges which we partially address in this35

paper are the choice of the, often ad hoc, hyperelastic model, and the identification of the parameters of36

this model.37

In biomechanics, understanding diseases and injuries related to biological tissues and to treat them38

effectively, we need to explore how soft tissues behave under load and environmental conditions. There39

are two approaches to model soft tissues: bottom-up and top-down.40

In bottom-up approaches, the complexity of the tissue is accounted for explicitly by accounting for tissue41

substructures, meso/micro/nano and molecular structures.42

In top-down approaches, the complexity is built through phenomenological constitutive laws which43

make a mechanistic account of the complexities and intricacy of the subscales. Whilst the former enable44

a thorough description of the interplay between various physiological and external mechanisms, they45

are complex to build and require advanced microscopy and imaging techniques, which are not readily46

available in clinical environments. The latter, on the contrary filter unnecessary information (which47

depends on the main objective of the models) whilst retaining the features of the model which have48

a significant impact on the behaviour of the system. To describe subscale behaviour within a single49

“homogenised” framework, these top-down constitutive models must resort to material parameters in50

which the subscales are lumped.51

Once a suitable constitutive model is identified, for instance using Bayesian model selection [1–3], the52

identification of the parameters with limited information becomes the principal difficulty. To do so, one53

of the main techniques consists in performing a multi-parameter optimisation where the solution of the54

problem using a numerical model is compared to experimental results, thereby enabling the “update” of55

the parameters. This is known as Finite Element Updating (FEMU).56

Once the probability distributions for the constitutive parameters have been identified, along with their57

confidence intervals [4, 5], the following task, which we do not address here, is to propagate the58

uncertainty in those parameters, so as to measure their importance on the quantities of interest to the59

clinician. The interested reader is referred to [6] for stochastic methods focusing on the propagation60

of uncertainties through partial differential equations associated with finite elasticity, in particular on61

target motion and acceleration methods [7].62

These ideas have been pushed forward with the goal of discriminating between discretization error and63

model error in a series of papers [8–10], where real-time error estimation method for surgical simulation64

and guidance are described in detail [11].65

A trend in biomechanics is the development of real-time modelling and simulation methods [12, 13] as66

well as virtual and augmented reality engines for surgery [14–16]. The algorithms put forward are able67

to identify and update, on the fly, the model parameters associated with soft tissues.68

During the last few decades, more traditional methods have been devised to estimate the parameters69

of solid materials in general, without requiring real-time simulations. To this end, inverse methods70

based on combining full-field measurements and the finite element method (FEM) have been frequently71

used [17–19]. The whole inverse problem process is then known as “finite element method updating”72
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(FEMU). The earliest implementation of FEMU was possibly performed in 1971 by Kavanagh and73

Clough [20], where they tackled the problem of identifying mechanical properties in elastic solids.74

The FEMU method is an iterative process whereby physical FE model parameters would be updated75

continuously until the discrepancy between the simulated and measured displacements and forces is76

minimized (in a certain norm). The major advantage of this approach is the identification of ev-77

ery possible mechanical parameter in regions that are difficult to access; or unstable medium where78

the uncertainty is high, especially for materials undergoing large deformations. To acquire full-field79

measurements, different optical techniques, including digital image correlation (DIC) are commonly80

used [19, 21]. The procedure has been integrated into FEMU frameworks in many mechanical charac-81

terization studies; in linear elasticity [22–24], in elasto-plasticity [25–28], in viscoelasticity [29] and in82

hyperelasticity [30–32].83

One type of model which is able to describe the complexity of soft tissue deformation is known as84

hyperelastic material models [33,34]. Those models have been used in conjunction with FEMU inverse85

approaches using full-field imaging techniques [35]. In this way, mechanical parameters can be identified86

for a number of biological materials: skin [36–38], arteries [39, 40], lung [41, 42] and others [43–45].87

To simulate the hyperelastic behavior of soft tissues, numerous phenomenological constitutive models88

have been developed [35, 46–49].89

Hyperelastic models may be isotropic or anisotropic. They are characterized by a strain energy density90

function, where polynomial, exponential and logarithmic terms are combined [50]. Neo-Hookean [51],91

Mooney-Rivlin [52], Ogden [53] and Yeoh model [54] are possible treatments of large strain elasticity92

which are particularly often used in biomechanics. A simple hyperelastic constitutive law was proposed93

in 1996 byGent et al. [55] for rubber. Gent’s model has also been used to identify thematerial parameters94

of arterial walls [56] and porcine brain tissues [57, 58]. Its strain energy function involves a logarithm95

of the first invariant of the Cauchy–Green strain tensor. It consists of only two parameters ` and �<96

corresponding, respectively, to the shear modulus and a parameter related to the limited extensibility of97

macromolecular chains. Hyperelastic, or rubber-like, materials are constituted by a network of those98

long flexible randomly oriented chains [59].This limitation is lately considered in skin and heart tissue99

characterization [60, 61], the two most analyzed biological tissue kinds. Horgan and Saccomandi have100

associated molecular-statistical properties to the two parameters of Gent model [56].101

The main goal of this paper is to validate a numerical pipeline based on an open-source, open-data,102

open-protocol framework to identify the hyperelastic parameters of a heterogeneous soft tissue. The103

inverse identification is performed using a FEMU approach. The data are fabricated from a nonlinear104

FE model simulating in situ and in vivo extension test. The full-field displacement measurements are105

obtained with DIC, while the reaction forces are measured by a force sensor. The two data sets are used106

to optimize the constrained objective function with no quadratic penalty function.107

As a case study, we simulate the in vivo uniaxial test performedwith a light extensometer on a bi-material108

media. The model consists of an heterogeneity (keloid) surrounded by healthy skin, as described in the109

following studies: Jacquet et al. [62] and Chambert et al. [63]. Keloids are benign tumours growing110

continuously and progressively over the human skin surface [64]. The evolution of keloids is known111

to be related to many factors, biological, genetic and biomechanical [63, 65]. Beside the psychosocial112

effects caused by the unpleasant keloidic shapes, such as anxiety and depression, keloid tumours tend113

to limit the motion of surrounding skin because they are stiffer and more isotropic. Moreover, they114

create local stress and strain concentration at the interface between the tumour (also known as scar) and115
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the skin, which are believed to be correlated with the subsequent growth and evolution of the keloid.116

Understanding the mechanical behaviour of keloids and its interaction with surrounding tissue is of117

importance to better predict and contain their growth [66–68].118

Note thatBayesian inverse approaches provide another regularisation approach. As the inverse problem is119

ill-posed, stochastic approaches “fuzzify” the values of the parameters which are no longer deterministic.120

This makes the identification process more flexible, as the parameters are no longer constrained to take121

one and only one value but become probability distributions, whose moments need to be identified.122

Bayesian approaches are particular stochasticmethodswhich rely on prior expert knowledge to regularise123

the inverse problem by constraining the search space. The interested reader is referred to [4].124

As a first step, we introduce the data acquisition process of the simulated test. Then, we provide details125

on the process scheme of our FEMU framework implemented in FEniCS [69], as well as its internal126

building blocks, such as the forward FEM and the inverse solvers. A 2-D mesh convergence study is127

done in terms of element size and interpolation degree to determine a reference mesh, assumed to be128

the most accurate so far. By generating dummy data on the reference mesh with fixed Gent parameters129

into both materials, we apply the inverse identification on other coarser meshes. This procedure helps130

to define a low-cost mesh and to analyze the sensitivity of the model as function of discretization131

errors [70]. Moreover, we perform a sensitivity analysis as function of dummy measurement noise [71].132

First, we vary the noise levels on the input data (displacement fields and reaction forces). Then, we133

vary the amount of the DIC frames used to minimize the cost. As result, we explore the limits of the134

numerical model. In other words, we define the maximum deviation of the measurements that make135

them exploitable with a view to identifying accurately the material parameters.136

The complete FEniCS implementation, themeshes and all associated dummy data are available: https:137

//github.com/aflahelouneg/inverse_identification_soft_tissue.138

2 Methodology139

2.1 Data acquisition process140

The numerical process developed in order to identify bi-material soft tissue parameters is based on a141

Finite Element Method Updating inverse problem, where we simulate the in vivo uniaxial tensile test142

performed on human skin. Our focus is on a butterfly-shaped keloid scar situated on the left upper143

arm of a Caucasian skin presented by Chambert et al. [63]. From that uniaxial test (Fig. 1), two sets144

of mechanical information are gathered simultaneously for each load step: reaction force, using the145

force sensor, and displacement field, from Digital Image Correlation (DIC), as described by Jacquet et146

al. [62].147

We use this load–displacement data to optimize a constrained objective function, where the discrepancy148

between the observed and the simulated mechanical response of keloid/healthy-skin during the load149

is minimized. From an arbitrary choice of material parameters, we create numerical data, which we150

artificially pollute by random noise. This procedure enables us to validate the parameter identification151

process and to analyse the uncertainties related to the whole model.152

2.2 Implementation framework153

The strategy used in this paper to identify the biomechanical parameters is optimizing a specific cost154

function such that the discrepancy between the experimental data taken as reference and the model155
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Figure 1: Output data of keloid-skin undergoing large deformation in an uniaxial test secured by an Ultra-light
extensometer [62] . The reaction force is measured on the intern pad surface ΓLpad in contact with the keloid (red
line) and the displacement field is captured with a camera within a fixed frame (dashed lines).

solution is minimised, by means of a Newton-Gauss method.156

Within FEniCS development environment, we have entirely implemented a finite element model update157

(FEMU) framework [20, 72, 73], consisting in a collection of open-source components with ability to158

enable automated solution of PDEs [69]. The first step is to set an initial guess of material parameters159

) (0) , followed by the determination of displacement fields on a chosen zone of interest and reaction160

force on the left pad. Then, by comparing the model with imported data, the objective function is161

evaluated and a new set of parameters is computed. The process is repeated again until the variation of162

all parameters reach a value below the threshold.163

For biomechanics, there are two major advantages to using FEniCS. The first is the ease with which164

constitutive relations can be added, within a single line of code. The second is the ability of FEniCS165

to automatically and symbolically differentiate any expression, thereby leading to automatic sensitivity166

analyses [74].167

For details, the interested reader is referred to the recent papers of [6, 7, 75], where the framework is168

described in detail for particular cases in biomechanics and the code is provided online here. http:169

//bitbucket.org/unilucompmech/stochastic-hyperelasticity.The FEMU inverse method170

has been used successfully in recent publications [31, 76, 77]. The flowchart of the method is shown in171

Figure 2.172

2.3 Forward FEM solver173

In this part, we focus on the structure of the numerical simulation that takes as input the keloid geometry,174

the boundary conditions and the constitutive model, and gives as output the displacement field and the175
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Figure 2: FEMU-based inverse identification process scheme

reaction force on the pad, derived from the latter. We assume that:176

• Plane strain conditions are made for skin and keloid structures considering that the inner layer of177

skin is attached to muscles and subcutaneous tissues.178

• The keloid scar and healthy skin are both modelled as isotropic homogeneous soft tissues and179

respond to the same hyperelastic behavior law, but with different sets of parameters.180

• There are no body force and no traction forces applied on external boundary conditions.181

• Nonlinear quasi-static analyses are carried out.182

2.3.1 Variational formulation183

The numerical model domain is divided into three sub-domains Ω = {Ω1 ∪ Ω2 ∪ Ω3} ⊂ R2 (Fig. 3).184

Experimental process is controlled by a prescribed displacement D̄(C) during a time C ∈ [0, )] such as185

D̄(0) = 0 and D̄()) = D̄max. Hence, at any time, the imposed boundary conditions on the pads are all of186

Dirichlet type on boundary ΓLpad (Fig. 1).187

Considering rate-independent material and quasi-static hypothesis, at any time C∗, given an admissible188

displacement field such as u = D̄(C∗) on ΓLpad and u = 0 on ΓRpad, total potential energy is expressed as189
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XZ

Figure 3: The geometrical model of the uniaxial test on a bimaterial soft tissue consisting in 3 subdomains:(Ω1)
keloid scar media (green), (Ω2) peripheral healthy skinmedia (dark) and (Ω3) outbound healthy skin zone (yellow).
The outside boundaries are free to move (no displacement constraint).

:190

Π(u) =
∫
Ω1∪Ω2

khs(u)3E +
∫
Ω3

kk(u)3E −
∫
Ω

b · u3E −
∫
mΩ

t · u3B (1)

where the body (respectively surface) forces, b (respectively t) vanish because of the absence of external191

forceswhere the body and the surface forces b and t vanish because of the absence of body force and192

the displacement (Dirichlet) boundary conditions. [R2]193

khs, respectively kk, is the elastic strain energy density that characterizes the mechanical behavior of194

the hyperelastic material related to healthy skin, respectively keloid.195

One could show that mechanical equilibrium is equivalent to minimization of total potential energy196

[69,78]. Let’s denote + (Ω) the space of admissible displacement such as u = D̄(C∗) on ΓLpad and u = 0197

on ΓRpad and +0(Ω) the space of admissible variations v such as v = 0 on Γ!?03 ∪ ΓRpad. Hence at any198

time C∗, for all admissible variations v ∈ +0(Ω), forward problem consists in finding the displacement199

field u ∈ + (Ω) solution of 1200

! (u; v) = 0 (2)

where ! is the variational equation of the quasi-static equilibrium (the directional derivative of Π with201

respect to change in u) (Algorithm 1 and https://fenicsproject.org/docs/dolfin/2017.2.0/202

python/programmers-reference/fem/solving/NonlinearVariationalProblem.html).203

! (u; v) ≈ Π(u + nv)
n

���
n→0

. (3)

1for details, please refer to Hauseux et al. [6].
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1 def nonlinear_problem(F, u, bcs):

2 ’’’

3 Forward nonlinear FEM solver.

4 F : deformation gradient tensor.

5 u : function for the displacement field.

6 bcs: list of Dirichlet boundary conditions.

7

8 n : number of iterations of Newton-Raphson algorithm.

9 b : boolean (if convergence b = True else b = False)

10 ’’’

11

12 J = derivative(F, u) # Jacobian matrix

13 problem = dolfin.NonlinearVariationalProblem(F, u, bcs, J)

14 n, b = problem.solve()

15

16 return n, b

Algorithm 1: Implementation of variational formulation in FEniCS

204

2.3.2 Constitutive model205

According to Limbert’s review [47], constitutive laws for skin (and this is the case of any biological206

material) can be classified into three categories: phenomenological, structural and structurally based207

phenomenological models. If one considers mechanical behavior only, a phenomenological model is a208

set of mathematical relations that describe the evolution of stress as a function of deformation gradient.209

Hence, it is generally always possible to fit such a constitutive model to a set of experimental data. This210

’black box’ approach has one major drawback: the resulting material parameters do not always have a211

direct physical interpretation and can be numerous. Moreover, it is usually difficult to choose the “best”212

law for a given situation, and, once this law has been identified, the best parameter set is non-unique213

and depends on boundary conditions. This was shown by Hauseux et al. [6] where the authors use214

an Holzapfel model and indicate, through a detailed sensitivity analysis that any boundary condition215

activates only some of the parameters. The compressible phenomenological model chosen here is the216

Gent model [55, 79].217

Unlike more conventional phenomenological hyperelastic models with 2 parameters, such as Neo-218

Hookean, Mooney-Rivlin or Ogden-2, where the non-linear behavior occurs for relatively large defor-219

mations (_1 > 2), the Gent model is a promising candidate to include non-linearities arising for small220

stretches (_1 < 1.2) [62]. Other categories of constitutive models can be easily used in our numerical221

model.222

The energy density for the healthy skin khs and for the keloid kk are expressed in terms of four material223

parameters: `hs and �<hs for the healthy skin, `k and �<k for the keloid.224

k = −`
2

(
�< ln

(
1 − �1 − 3

�<

)
+ 2 ln(�)

)
(4)

` and �< are the isotropic model parameters for each material, i.e., keloid and (healthy) skin, and �1 is225

the first strain invariant.226

8



�1 = CA (H) = CA (LL) ) = _2
1 + _

2
2 + _

2
3 (5)

where L is the deformation gradient and (_8)1≤8≤3 are the principal stretches.227

The Gent model limits chain extensibility, which is characteristic of skin behaviour when stretched.228

The strain energy density expression is designed to be singular when the first invariant of H , the229

left Cauchy-Green deformation tensor (also called the Piola deformation tensor), reaches a limiting230

value [80]:231

�< < _
2
1 +

2
_1
− 3 (6)

The Gent strain energy function can be implemented very easily within our framework (Algorithm 2).232

1 def Psi_(u, material_parameters):

2 ’’’Strain energy density’’’

3

4 F = variable(Identity(3) + grad_reduc(u))

5 B = F*F.T

6 J = det(F)

7 I1 = tr(B)

8

9 mu = material_parameters[’mu’]

10 jm = material_parameters[’jm’]

11

12 psi = -0.5*mu*(jm*ln(1 - (I1 - 3)/jm) + 2*ln(J)) # Gent compressible

13 PK1 = diff(psi, F) # Piola-Kirchoff I tensor

14 PK2 = dot(inv(F), PK1) # Piola-Kirchoff II tensor

15

16 return psi, PK1, PK2

Algorithm 2: Implementation of constitutive model in FEniCS

233

2.4 Inverse identification234

Knowing experimental data at a set {C: }:=0,1,...,#� with C#� = ) , let’s denote D (:) solution of direct235

problem (2) at time C: , D̄ (:) prescribed displacement and � (:)msr measured forcemagnitude at this time. We236

define the cost function quantifying relative discrepancy between between computed displacement field237

u(:) and measured DIC displacement field u(:)msr on restricted subdomainΩmsr ⊂ Ω at every experimental238

time step :239

J ()) = 1
2#�

#�∑
:=1

1
U2




u(:) ()) − u(:)msr




2

Ωmsr
(7)

where ‖.‖Ωmsr is a convenient norm defined as ‖[‖2msr =
∫
Ωmsr

[ ·[) 3x.240

U is a weighting coefficient used to scale misfit during time. A convenient way is to use experimental241

data :242

U = max
:=0,1,...,#�




u(:)msr





Ωmsr

(8)

To estimate bi-materials model parameters ) = {`k, �<k, `hs, �<hs} from experimental test, one could243
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find )̂ such as244

J
(
)̂
)
= min

)∈R#\
J ()) (9)

As it’s well-known that such problems are ill-posed, we add all available information in the minimization245

problem. Hence, we look for solution of Eq. 9 subject to the constraint that the mean of relative246

discrepancy between numerical and measured force magnitude should vanish :247

G()) = 1
#�

#�∑
:=1

1
V

(
�
(:)
G − � (:)msr

)
= 0 (10)

with scale parameter V defined as :248

V = max
:=0,1,...,#�

|� (:)msr | (11)

The predicted force � (:)G is the G-component of the force vector oriented along the direction of uniaxial249

loading, and the latter is computed from the FEM solutions u (:) by integrating the traction force Z over250

the pad (Eq. 13) [81], while the measured forces � (:)msr are gathered from the deformation gauge for each251

load step (Fig. 1). Ωmsr = {Ω1∪Ω2} is a part of the domainΩwhere the displacement field is measured252

(using Digital Image Correlation).253

�
(:)
G =

∫
ΓLpad

)
(:)
G 3( (12)

Z =
mk

(
u (:)

)
mL

(
u (:)

) T (13)

Finally, Γ is the boundary where the force is measured. T and 3( are, respectively, unit normal and254

infinitesimal surface to that boundary in the reference configuration.255

Then, to identify material parameters ) = {`k, �<k, `hs, �<hs}, we minimize cost function � ()) (14)256

subject to constraint � ()) (10) using the Lagrange multiplier method. Adding a single Lagrange257

multiplier Λ, the unconstrained optimization problem is defined as [82, 83]258

)̂ = argmin
),Λ∈R#\+1

J ()) + ΛG()) (14)

Among several non-linear least squares methods [84], we choose the Newton-Gauss algorithm. This259

method is accurate and inexpensive provided that a good initial guess of the model parameters can be260

made.261

3 Numerical results262

3.1 Mesh configuration263

Reference mesh264

We built a number of finite element meshes, from coarse to fine. A mesh of 44k quadratic triangular265

elements (about 2 105 DOFs) provides sufficient accuracy (Fig. 3) and is taken as a reference. Over the266

sensor area, we integrate the difference between the stress field provided by the reference mesh and that267
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of a sequence of coarser meshes to understand the convergence of the discrete scheme (Fig. 4). We268

choose the material parameter set ) ref = {`k = 50 kPa; �<k = 0.2; `hs = 16 kPa; �<k = 0.4}, based on269

our experience. Subscripts k and hs stand, respectively, for keloid and healthy-skin.270
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Figure 4: Reference mesh choice based on element degree and element size analysis of the forward nonlinear
FEM solver. As the set reference mesh configurations are Lagrange 2 and 44k elements.

However, as shown in Figure (5), the direct nonlinear simulation is computationally costly if we project271

data on the reference mesh. As the convergence of the non-linear FEM solution scheme requires few272

iterations (200 iterations for 44k element mesh ), this large computational expense comes from the273

computational expense associated with number of DOF. Consequently, for practical simulations, we274

recommend using coarser (converged meshes) as reference meshes than the 44k element mesh shown275

above. The choice of this mesh is discussed in the following section.276

Optimized mesh277

Based on qualitative criteria (affordable computation cost and low discretization error), we design an278

“optima” coarse mesh by comparing nodal solutions with that of the reference mesh. We choose a 540-279

element mesh, identify the high gradient zones, where we perform local, manual, adaptive refinement,280

to obtain a moderately fine mesh comprised of 1300 elements (Fig. 6, 7). As shown in Figure 8, the281

manually-refined mesh with 1300 elements is a suitable candidate for low-cost, yet accurate simulations.282

Note that it would be preferable to use a proper error indicator, as in [8, 9, 85].283

Although the computations on the targetedmesh are fast and accurate, another criterionmust be satisfied:284

parameter inverse identification accuracy regarding the discretization error. For that purpose, a first285
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Figure 5: Computational costs of forward nonlinear simulation with different mesh element sizes.

Figure 6: Coarsest operational meshes (left: 540 elements; right: 1300).

direct simulation with arbitrarily chosen material parameters (referential parameter set) is done with286

the reference mesh over 50 prescribed displacement sets from 0 mm to 4 mm. Then, the output nodal287

solutions and the reaction force computed in post-treatment are introduced into the inverse solver as288

artificial targeted experimental data, where the optimization process is performed with a secondary289

coarser mesh. The initial guess fixed for all the cases is \ (0) = {` (0)k = 10 kPa; �< (0)k = 0.01; ` (0)hs =290

10 kPa; �< (0)hs = 0.01}. As the direct nonlinear solver converges over a small range of parameters with291

quadratic Lagrange elements, and conversely with linear Lagrange elements, the inverse identification is292

done on two sub-optimization steps: the converging set from the first optimization, using the first-guess293

\ (0) and Lagrange-P1 elements, is used as a first-guess for a second optimization process with Lagrange-294

P2 elements. Finally, we compare, versus the referential parameters, the identified material parameters295

to study the effect of the discretization on the inverse identification accuracy (Tab 1). From the latter296

table, we superpose in Figure (9) the accuracies of inverse identification for several mesh densities and297

their respective computation costs. As such, the optimized mesh proves to be a better trade-off between298

identification accuracy.299

3.2 Data noise sensitivity analysis300

We aim through this part to study parameter estimation accuracy with respect to variations of data noise301

levels occurring on measurements of reaction force and DIC fields. This study has two major objectives:302

validate the consistency of the numerical model and define the limit of measurement errors. Due to a303

lack of availability of experimental data, we have generated dummy data from a direct nonlinear FEM304

solver using the mesh reference (involving 44 k Lagrange-P2 elements ) and the reference material305

parameters. Then for each observation time, additive white Gaussian noises (AWGN) are performed on306
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Table 1: Effect of discretization error on inverse identification accuracy. The dummy data, relevant to the
reference material parameters set are projected on several coarser meshes. k and hs stand respectively for “keloid”
and “healthy-skin”. Estimation accuracy is equal to 1 − Y\ , where Y\ is the relative discrepancy between the
estimated parameters and the reference ) ref

Mesh density Converging material parameters set Accuracy
(number of elements) Lagrange-P1 Lagrange-P2 (%)

44000 `k = 44.04 kPa `k = 50 kPa 100%
�<k = 0.2002 �<k = 0.2 100%
`hs = 13.91 kPa `hs = 16 kPa 100%
�<hs = 0.406 �<hs = 0.4 100%

22000 `k = 42.51 kPa `k = 50.038 kPa 99.92%
�<k = 0.2019 �<k = 0.2002 99.92%
`hs = 13.19 kPa `hs = 16.022 kPa 99.86%
�<hs = 0.4042 �<hs = 0.3998 99.95%

12000 `k = 41.432 kPa `k = 50.431 kPa 99.14%
�<k = 0.2006 �<k = 0.1999 99.97%

`hs = 12.906 kPa `hs = 16.059 kPa 99.63%
�<hs = 0.4138 �<hs = 0.4015 99.62%

6000 `k = 38.825 kPa `k = 50.52 kPa 98.96%
�<k = 0.2008 �<k = 0.2001 99.95%

`hs = 12.265 kPa `hs = 16.166 kPa 98.96%
�<hs = 0.4166 �<hs = 0.4013 99.68%

1300 `k = 36.358 kPa `k = 50.344 kPa 99.31%
�<k = 0.1931 �<k = 0.1971 98.55%

`hs = 10.237 kPa `hs = 16.115 kPa 99.28%
�<hs = 0.4549 �<hs = 0.4133 96.68%

540 `k = 40.37 kPa `k = 49.88 kPa 99.76%
�<k = 0.1949 �<k = 0.1923 96.15%
`hs = 7.5 kPa `hs = 16.031 kPa 99.81%
�<hs = 0.491 �<hs = 0.4325 91.88%

Optimized mesh `k = 44.101 kPa `k = 50.219 kPa 99.56%
�<k = 0.1988 �<k = 0.1994 99.70%
`hs = 13.28 kPa `hs = 16.157 kPa 99.02%
�<hs = 0.431 �<hs = 0.4053 99.68%
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Figure 7: Relative displacement mismatch field between the coarsest mesh (540 cells) and the reference mesh
(44k elements).

Figure 8: Relative displacement mismatch field between the adaptive-mesh (1300 cells) and the reference mesh
(44k elements).

nodal solutions within the DIC observation zone and on the simulated reaction force (Fig. 10). The307

additive noise model has been employed frequently in many inverse studies [4, 86, 87]:308

umsr = u + (u ∀- ∈ Ωmsr (15)
309

�msr = �G + (F (16)

with, respectively,310

(u ∼ N(0, (2
DIC) and (F ∼ N(0, (2

force) (17)

3.2.1 Effect of double noise standard deviation311

The study has been done on 50 DIC frames relative to the incremental prescribed displacement of312

the moving pad from undeformed configuration to 4 mm traction. By varying separately standard313

deviations for both dummy displacement field and reaction force, (DIC = {0; 40; 120; 200} (`m) and314

(force = {0; 2; 6; 10} (mN), we create 16 artificial data set to be input as experimental data into the315

inverse problem solver. In the meantime, we consider zero-noise cases to dissociate the effects of the316

two noise natures on parameter identification. As the study concerns the effect of noise on parameter317

estimation regardless the robustness of the inverse solver (convergence to a global optimum), and for318

computation cost reason, we set a same initial guess \ (0) not further away from the targeted material319

parameters \ = {`k = 49 kPa; �<k = 0.19; `hs = 15 kPa; �<hs = 0.39}.320

We propose hereby numerical indicators, YDIC and Yforce, to quantify the discrepancies caused by321
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Figure 9: Quantification of parameter identification accuracy with respect to discretization error (Tab. 1) and
computation cost. The estimation discrepancy for each material parameter, denoted by Y, is equal to its relative
difference with ) ref , on every mesh. Ỹ is particularly attributed to inverse identification over adaptive mesh. CAGM
and CAM are inverse identification costs on, respectively, automatic-generated mesh and adaptive mesh. The
optimized mesh witnesses a very good trade-off between discretization error and computation cost.

generating noises randomly around reference data overall observation times:322

YDIC =

∑50
:=1

√∫
Ω

(
u(:)ref − u(:)msr

)2

∑50
:=1

√∫
Ω

u(:)ref
2

(18)

Yforce =

√∑50
:=1

(
�
(:)
msr − � (:)ref

)2√∑50
:=1 �

(:)
ref

2
(19)

The dummy data used for inverse identification are projected over twomesh configurations: the reference323

mesh, to deal only with noise-level effect, and the optimized mesh, to study the effect of discretization324

error combined with measurement noise. The results are respectively shown in Figure 11.325

3.2.2 Effect of number of snapshots326

In this part, we analyze the effect of the amount of data, consisting of the DIC snapshots and their327

relative reaction forces, on the accuracy of parameter inverse identification. To do, from the full set328

of noisy dummy data, we select a subset of #S snapshots distributed uniformly over the whole time329

range. Beside the weakly non-linear mechanical response scenario, where we set the referential material330

parameters to generate data, we propose to explore occasionally the effects of the number of snapshots331
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Figure 10: Generation of noised dummy data from reference solution.
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Figure 11: Parameter estimation accuracy performed on noisy dummy data, with different levels, projected over
studied meshes. As the noise distribution is based on randomness, we need to draw three times the dummy data
samples and gather the maximum discrepancies. All the values are taken from Tables 2 and 3 (Appendix A).

(#S) in case of highly non-linear behavior also. The latter is secured by fixing the top and bottom332

external boundaries in the y-direction and by setting the following parameter in the FEM solver as333

\ = {`k = 10 kPa; �<k = 0.017; `hs = 8 kPa; �<k = 0.17}. The dummy noise are fabricated for both334

scenarios basing onAWGN theorywith the same standard deviations (DIC = 200 `m and (force = 20 mN.335

To quantify noises only over the pseudo-times subsets, we use modified indicators ŶDIC and Ŷforce. In336

Figure 12, we illustrate all the results related to the inverse identification inaccuracies for three random337

draws.338

3.3 Objective function339

We study in this part the ability to identify material parameters if the optimization is set only on340

displacement or forces. Hence, The displacement fields mismatch term is uncoupled from reaction341

forces in the constrained equation 14. We obtain two alternative optimization expressions that have342

been tested out in the present study (Eq. 20 and 21). Consequently, the Lagrange multiplier Λ is not343

taken into account. We also aim, through this isolation procedure, to correlate separately the nature of344

data -displacement measurement within the ZOI or reaction force over the pad- to each of parameter. In345

Figure 14, the evolution of material parameters for each optimization iteration for all constrained cost346

functions (Eq. 14, 20 and 21) is shown. As result, the constrained optimization cost J + _G is the only347
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Figure 12: Identification sensitivity to measurement noise with respect to #S. The dummy data are projected on
a 44k-elements-mesh (reference). As the noise distribution is based on randomness, we need to draw three times
the dummy data samples and keep the maximum discrepancies. All the values are taken from Table 4 (Appendix
A).
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Figure 13: Inverse solutions computed from dummy weakly and highly nonlinear FD-curve data. All the
snapshots were used to estimate the material parameters. All the other inverse solutions with respect to the
number of observation pseudo-times are detailed in Appendix B.

tool to identify the targeted materials ) ref . Or more specifically, to estimate all the material parameters348

of bi-materials, both displacement and reaction forces must be measured and used in the minimization349

process.350

Ju()) =
1
2

1
#�

#�∑
:=1

1
U2




u(:) ()) − u(:)msr




2

Ωmsr
(20)

Jf ()) =
1
#�

#�∑
:=1

1
V

(
�
(:)
G − � (:)msr

)
(21)

An alternative constrained objective function Juf (Eq. 22) have been also proposed. In this equation, the351

forcemismatch is squared and is not multiplied by the LagrangemultiplierΛ. For derivation purpose, we352

add the coefficient 1/2. The results have shown that this optimization equation, used frequently in many353

characterization studies, is capable to identify correctly the material parameters but only in monolithic354

case. Also, it is technically not possible to derive automatically the square integral in FEniCS. A355
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manual implementation of the sensitivity equation is doable but highly expensive: the Hessian matrix356

is assembled over mesh nodes for each snapshot.357

Juf ()) =
1
2

1
#�

#�∑
:=1

1
U2




u(:) ()) − u(:)msr




2

Ωmsr
+ 1

2
1
#�

#�∑
:=1

1
V2

(
�
(:)
G − � (:)msr

)2
(22)
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Figure 14: Convergence of material parameters for different cost functions.

4 Discussion358

In Figure 4, we observe the non-convergence of FEM solutions in terms of element degree (relative359

error > 1%): the use of Lagrange-P1 element demonstrates also its incapacity to estimate accurately the360

reference material parameters (Tab. 1), even when using projected artificial data on highly refined mesh361

(reference mesh). However, the results have shown that the initial guess of parameters set in the inverse362

solver can be relatively very far from the reference parameter in case of Lagrange-P1 interpolation, i.e.363
\target
\ (0)
≈ 40. And in case of Lagrange-P2 interpolation, setting the same initial guess occurs in costly364

computations and most of time in non-convergence of direct Newton-Raphson algorithm. Therefore,365

as illustrated in Table 1, we have used strategically both linear and quadratic interpolation in two sub-366

optimization steps to identify successfully the targeted parameter set. Starting from a far initial guess,367

where the linear elements are used, a first set is estimated. Then by taking the latter as an initial guess368

into the inverse solver, based on quadratic finite elements, the final parameter set is correctly identified.369

For example, �< (0)hs = 0.01 → �<
Lagrange−P1
hs = 0.406 → �<

Lagrange−P2
hs = �<

reference
hs = 0.4. As far as370
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we authors know, this strategy has never been used before. Commonly, the choice of FEM element371

shape function is arbitrary providing that it secures a successful convergence. Though, using linear or372

quadratic elements may lead to different local optimums. Besides, if one assumes that the quadratic373

elements represent better the captured DIC field, the ’double-trigger’ technique would be a good way to374

converge to the most accurate parameter set.375

The correlations between material parameters and uncertainty natures, measurement noise and dis-376

cretization errors, separately and combined, are discussed hereby. Firstly, to deal only with the mea-377

surement uncertainty factor, the dummy data have been projected on the reference mesh. Globally, the378

relative mismatches of identified parameters are remarkably low (< 2.5%) for noise levels reaching up379

to YDIC = 8% and Yforce = 12% (Fig. 11a). Once applying only noises effect on forces (YDIC = 0 `m),380

we notice that identification of �<k and �<hs still be perfectly accurate. Consequently, `k and `hs are381

tightly related to the sensitivity of reaction force. Also, `k is as sensitive as `hs to force noise. It would382

be explained that because of zero-noise on DIC data, the objective function (Eq. 14) is reduced to its383

force part, where the bi-material is interpreted as a homogeneous media. Inversely, by focusing only on384

displacement noises (Yforce = 0 mN), we observe that all parameters discrepancies, more importantly385

�<k and �<hs, increase for higher noise level on DIC (Fig. 11a). Finally, the combination of both386

DIC and forces measurement noise does not lead to higher mismatches as expected, and the maximum387

parameter discrepancy is below 2.5%. For more details, see Table 3 in Appendix A.388

Then, we discuss the effect of discretization errors on inverse identification accuracy (Fig. 11b). As the389

data are projected on a coarser adaptive mesh, the discrepancies of identified parameters increase higher390

Y\ < 7.44%. For all double noise levels, the relative mismatches of keloid parameters `k and �<k391

are likely very low (<1%), except for some critical cases where it reaches (4%). The other parameters,392

`hs and �<hs, are seemingly more sensitive to the combination measurement-noise/discretization-error,393

with a critical discrepancy approximating 7.5%. It is because many nodes are deleted in the coarser394

mesh, and especially outside the keloid scar, where the nodal solutions are spatially sensitive (because395

of significant transverse deformation gradient). Thus, we conclude that the proposed optimized coarser396

mesh is suitable for fast and accurate computations, knowing that the displacements and reaction forces397

are assessed with low uncertainty levels: (DIC < 120 `m and (force < 10 mN. In critical cases, we398

may push uncertainty limits of displacement measurement to (DIC < 200 `m and extend at the same399

time the ZOI edges towards top and bottom external boundaries (Fig. 1). This study helps us to control400

efficiently further experimental protocols. However, in the case of DIC processing, it is not obvious401

to quantify uncertainties, because they depend on many parameters, such as subset size, correlation402

window size and focal length of the optical system [88].403

Additionally, the analysis of inverse identification sensitivity with respect to the number of observation404

times have been done. In Figure 12, we see that adding more DIC snapshots results in decreasing405

estimation error value Ŷ��� in both cases, highly and weakly nonlinear mechanical response. With406

few snapshots, it would be also possible to identify accurately the parameters if relative points are407

concentrated on the curving part. However, within the logic of real-time error estimation method for408

surgical simulation [8, 9], a manual selection of snapshots is out of interest. Through the obtained409

results, a challenging compromise between number of equidistant observation times and CPU cost410

(central processing unit) should be carried on. Basing on sensitivity study in both cases, highly and411

weakly non-linear behaviors, choosing around 100 equidistant observation times would be a better412

option. It must be taken into account that our choice depends on the structure and the constitutive413

model. If our open-source framework is used for another soft tissue study, i.e. artery, a quick sensitivity414
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study regarding the number of snapshot is highly recommended. It should be noted that the reliability415

of Bayesian inference is based on sufficient amount of snapshots to be imported into the solver [5]. As416

result, if the stochastic algorithm converges, then the optimal number of snapshots is reached.417

Finally, Figure 14 witnesses the inverse solver’s incapability to identify correctly the targeted parameters418

through following objective functions (20) and (21). The initial guess was fixed very near to the targeted419

values tomake sure that the issue is exclusively related to the nature of the objective functions. Unlike the420

cost Ju, where the inverse solver diverges completely from the desired values (Fig. 14), the cost Jf leads421

to an incomplete convergence (Fig. 14a and 14c). As `k and `hs are directly related to reaction force,422

they can be identified theoretically only by minimizing force discrepancy. But at the same time, �<k and423

�<hs are floating parameters (Fig. 14b and 14d). Hence, to identify the 4 bi-material parameters, one424

must include both displacements reaction force into the framework is strictly necessary; as described by425

the cost J + ΛG. We recall that choosing constrained optimization function with no-quadratic penalty426

as introduced by Bertsekas [82], is due to FEniCS limits. The derivation of squared integral (12) with427

respect to material parameters must be implemented manually. Which leads to extra computation in428

each inverse solver iteration.429

5 Conclusions430

We have validated in this paper the capacity of our FEMU-based framework to identify 4 mechanical431

parameters of a bi-material soft tissue from only one in-plane uniaxial tensile test https://github.432

com/aflahelouneg/inverse_identification_soft_tissue. As a study case, we have applied433

the numerical process on a heterogeneous media composed of keloid scar and healthy skin. By434

generating dummy noisy data on a reference mesh, we have performed sensitivity analyses with respect435

to measurement noise levels, discretization errors, and the number of data snapshots. As result, the436

model identifiability limits have been explored and an adaptive mesh has been determined for further437

faster computations. The maximum admissible measurement uncertainties on DIC and force acquisition438

are (DIC = 120 `m and (force = 10 mN, whereas the minimum number of observation times to exploit439

is around 100 snapshots. Furthermore, a novel inverse identification strategy combining linear and440

quadratic elements have been successfully validated. And then, we have compared different objective441

functions. The Next steps consist in identifying the real parameters of the studied keloid scar, finding the442

matching preferential directions and so defining as precisely as possible the specifications of a clinical443

solution against keloid growth. Extending the discretization study to the use of automatic adaptive444

meshes is an interesting subject that would be investigated in the future [89].445
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B Inverse solutions
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Figure 15: Parameter estimation accuracy performed on noisy dummy data for each observation pseudo-times
set #S = {5, 10, 20, 50, 100}. The material parameters are chosen such that the response is weakly non-linear.
The artificial data are projected on a 44k Lagrange-P1 elements-mesh (reference).
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Figure 16: Parameter estimation accuracy performed on noisy dummy data for each observation pseudo-times
set #S = {20, 25, 40, 100, 200}. The material parameters are chosen such that the response is highly non-linear.
The artificial data are projected on a 44k Lagrange-P1 elements-mesh.
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C Observed costs
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Figure 17: Observed costs of respective objective functions Ju, Jf and J + ΛG during inverse identification
process. The computations have been stopped in two first cases because of divergence of forward non-linear FEM
solver.
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