

Model-based decision support for assessing the playability of heritage musical instruments

Victor ALMANZA

e Conte * îledeFrance

V. Placet, S. Cogan, E. Foltête, S. Serfaty, S. Vaiedelich and S. Le Conte

IMAC-XXXVII Conference 01/31/2019

Overview

I. Introduction

- II. Model-based decision support methodology
- III. Preliminary study on Laux Maler lute
- IV. Conclusions and perspectives

Overview

I. Introduction

II. Model-based decision support methodology

III. Preliminary study on Laux Maler lute

IV. Conclusions and perspectives

Introduction Museum problematics

Music museum of Paris

- Describe the story of music through its instruments
- Conserve and restore heritage musical instruments
- Assess the playability of heritage musical instruments

Introduction

Assessing playability in museum context

• Heritage musical instruments present many cultural values.

 These cultural values are compared based on arbitrary notation.

→ If acoustical value of an instrument is predominant, we want to assess its playability.

Introduction

Focus on stringed musical instruments

- Assess the playability of heritage stringed musical instruments
- Music museum of Paris → collection of 7000 instruments but only 5% in playable state

→ Account for any irreversible phenomenon when the strings will be tuned again

Cracks on 1924 Grapelli violin soundboard

Crack on 1761 Hemsch harpsichord soundboard

Introduction Virtual prototyping in industry

http://www.mscsoftware.com/application

Prototyping tools

- Direct analysis
- Optimization
- Uncertainty quantification
- Test design
- Model calibration
- Inputs identification

Limitations

- Requires accurate material properties and behavior laws
- Geometric accuracy does not guarantee fidelity
- Forecasting under untested configurations

\rightarrow V&V to quantify credibility of the simulation

Introduction

Mechanical study of stringed musical instruments

Experimental approach

- Testing of acoustic stringed musical instruments (M. French & al. 2001)
- Analysis of bridge mobility of violins (B. Elie & al. 2013)
- Antique violins: effect of the player on the moisture content (G. Goli & al. 2017)

Analytical approach

- On the "Bridge Hill" of the violin (J. Woodhouse 2005)
- Static model of a violin bow (F.Ablitzer & al. 2011)
- → Not suited to make decisions on local behaviors

Violin mute used for the study (B. Elie et al. 2013)

Simulated vertical deformation uz (mm) of the pianoforte at a1= 415 Hz and RH/T: 70/28. (D.Konopka et al. 2015)

Virtual prototyping approach

- Restoration of a 17th-century harpsichord to playable condition (S. Le Conte & al. 2012)
- Vibrational modes of the violin family (C. Gough 2013)
- Numerical modelling of wooden structures (D. Konopka & al. 2015)

→ This approach can provide a real complement compared to the two previous

Introduction Objective

Develop a decision support tool

- To study the impact of the long-term state of playability of heritage stringed musical instruments
- Based on virtual prototyping
- Usable in museum framework
- Complex numerical model (behavior, geometry, loading)
- Account for uncertainties (aleatory and epistemic)

Specific sources of uncertainties

- Visible and invisible damage (cracks, worms holes, glue joints, ...)
- Material properties of aged wood
- Prestress state
- Environmental loading

Introduction Corpus of interest

Various lutes

Application case : 1532 Laux Maler lute E.2006.3.1

Model-based decision support for assessing the playability of heritage musical instruments

Overview

I. Introduction

II. Model-based decision support methodology

III. Preliminary study on Laux Maler lute

IV. Conclusions and perspectives

Model-based decision support

Methodology scheme

Numerical model

- Geometry
- Material properties
- Behavior laws
- Loading

Sensitivity analysis

- Aleatory uncertainties
- Local and global approaches
- → Identify critical parameters

Decision robustness

- Aleatory and epistemic uncertainties
- → Study decision robustness to lack of knowledge

Overview

I. Introduction

II. Model-based decision support methodology

III. Preliminary study on Laux Maler lute

IV. Conclusions and perspectives

Preliminary study on Laux Maler lute Geometric model

Laux Maler lute pictures

Hypotheses

- Simplified geometry without defects
- Connections are supposed perfect

14

Behavior model and parameters

Part	Wood species	Constant	Spruce	Ash	Pear tree	Ebony	Lime	Hygro-	
Soundboard	Spruce	E_L (MPa)	10200	9850	11500	18000	9200	expansion coefficient	Value
Back strips	Ash	E_R (MPa)	850	1125	1350	2450	1025	α_{L} (%mc ⁻¹)	3×10^{-5}
Duckouipo		E_T (MPa)	500	550	700	1550	475		
Liner	Ash	v_{LR}	0,39	0,37	0,38	0,4	0,37	$\alpha_R (\% mc^{-1})$	7×10^{-4}
Back block	Ash	v_{LT}	0,43	0,47	0,47	0,46	0,47	$\alpha_T (\% m c^{-1})$	$2,4 \times 10^{-3}$
Bridge	Pear tree	v_{RT}	0,5	0,6	0,59	0,56	0,61	Used hygro	-expansion
Fretboard	Ebony	G_{LR} (MPa)	750	825	975	1650	775	coeff	icient
Neck	Lime	G_{LT} (MPa)	675	600	725	1300	550		
Darshaw	Deinien	G_{RT} (MPa)	75	200	250	550	175		
Pegbox	Poirier		Flas	tic constant	of wood spe	rcies			
Front block	Lime		2103						
Braces	Spruce	Wood ma	terial is m	nodeled wi	th an orth	otronic ela	stic linear	and	

Wood species associated with lute parts

Wood material is modeled with an orthotropic elastic linear and hygro-expansion behavior

Preliminary study on Laux Maler lute Output features

Quadratic Hill yield criterion (R. Hill. 1948)

$$\sigma_{Hill} = F(\sigma_{22} - \sigma_{33})^2 + G(\sigma_{33} - \sigma_{11})^2 + H(\sigma_{11} - \sigma_{22})^2 + 2L\sigma_{23}^2 + 2M\sigma_{31}^2 + 2N\sigma_{12}^2$$

$$F = \frac{1}{2} \left[\frac{1}{(\sigma_2^y)^2} + \frac{1}{(\sigma_3^y)^2} - \frac{1}{(\sigma_1^y)^2} \right] ; \quad G = \frac{1}{2} \left[\frac{1}{(\sigma_3^y)^2} + \frac{1}{(\sigma_1^y)^2} - \frac{1}{(\sigma_2^y)^2} \right]$$

$$H = \frac{1}{2} \left[\frac{1}{(\sigma_1^y)^2} + \frac{1}{(\sigma_2^y)^2} - \frac{1}{(\sigma_3^y)^2} \right]$$

$$L = \frac{1}{2(\sigma_{23}^y)^2} ; \quad M = \frac{1}{2(\sigma_{31}^y)^2} ; \quad N = \frac{1}{2(\sigma_{12}^y)^2}$$

Yield stress (MPa)	Traction	Compression		
$\sigma_L^{\mathcal{Y}}$	65.5	-50.3		
$\sigma_R^{\mathcal{Y}}$	3.75	-6		
$\sigma_T^{\mathcal{Y}}$	2.79	-6		
$\sigma_{LR}^{\mathcal{Y}}$	6.3	34		
σ_{LT}^{y}	5.34			
σ_{RT}^{y}	1.83			

Yield stress for Norway spruce wood at MC = 12% and 20°C (J. Schmidt et al. 2009)

Frequency of the first 5 soundboard eigenmodes

Preliminary study on Laux Maler lute Model verification

Model-based decision support for assessing the playability of

Preliminary study on Laux Maler lute Model verification

Elements type	Quadratic second-order thetrahedral elements (C3D10)
Number of elements	150 000
Number of dof	1 500 000
Number of part	41
Number of different material parameters	48
Maximum value of the Hill criterion (\emptyset)	0.613
Eigenfrequencies (Hz)	212 ; 243 ; 244 ; 266 ; 328

Summary of the finite element model

Preliminary study on Laux Maler lute Static analysis

Soundboard hill criterion field

Model-based decision support for assessing the playability of heritage musical instruments

Preliminary study on Laux Maler lute Modal analysis

Shape and frequency of the first 5 soundboard eigenmodes

Model-based decision support for assessing the playability of

heritage musical instruments

Sensitivity analysis : Inputs and outputs

	Inputs		
Environmental input	Moisture content		
	Soundboard thick.		
	Back thick.		
Geometric	Bridge position		
inputs	Main braces thick.		
	Sound hole braces thick.		
	Fan-shaped braces thick.		

	Inputs		
	EL	GLR	
	ER	GLT	
	ET	GRT	
Material	vLR	$lpha_L$	
mputs	vLT	α_R	
	vRT	α_T	
	ρ		

Inputs

137 inputs (1 env. + 6 geo. + 130 mat.)

Outputs

- Maximum value of the Hill yield criterion
- Frequency of the first 5 soundboard eigenmodes

Finite difference sensitivity analysis with δ = 0,1%

Only inputs generating greater variation than **0.1%** of the output are shown.

Only inputs generating greater variation than **0.01%** of the output are shown.

Model-based decision support for assessing the playability of heritage musical instruments

Info-gap robustness analysis

System model

Defines the relation between system inputs and outputs

→ Finite elements model

Uncertainty model

Represents the uncertainty in the variables x as a function of the horizon of uncertainty $h \rightarrow U(x, h) = x * (1 + h)$, with h = [0; 0.1]

Performance requirement

→ Maximum value of the Hill criterion < 1

Robustness analysis

→ Info-gap robustness analysis with minmax design

Info-gap decision theory: decisions under severe uncertainty (Y Ben-Haim 2006)

Overview

I. Introduction

II. Model-based decision support methodology

III. Preliminary study on Laux Maler lute

IV. Conclusions and perspectives

Conclusions and perspectives

Conclusions

- Propose a methodology for model-based decision support in a museum context
- Account for aleatory and epistemic uncertainties
- Preliminary study on a generic model of the lute Laux Maler

Perspectives

- Develop a more accurate model of the lute (geometry, behavior laws and loading)
- Model the sources of lack of knowledge
- Study the impact of prestress on static and dynamic responses
- Perform an experimental and numerical confrontation

Thank you for your attention !

