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The rising need for hybrid physical platforms has triggered a renewed interest for the development
of agile radio-frequency phononic circuits with complex functionalities. The combination of travel-
ling waves with resonant mechanical elements appears as an appealing means of harnessing elastic
vibration. In this work, we demonstrate that this combination can be further enriched by the oc-
currence of elastic non-linearities induced travelling surface acoustic waves (SAW) interacting with
a pair of otherwise linear micron-scale mechanical resonators. Reducing the resonator gap distance
and increasing the SAW amplitude results in a frequency softening of the resonator pair response
that lies outside the usual picture of geometrical Duffing non-linearities. The dynamics of the SAW
excitation scheme allows further control of the resonator motion, notably leading to circular polar-
ization states. These results pave the way towards versatile high-frequency phononic-MEMS/NEMS
circuits fitting both classical and quantum technologies.

I. INTRODUCTION

The on-chip manipulation of elastic or mechanical vi-
brations, whether hosted and localized within resonators
or traveling in the material substrate, has been leading
to significant progress in diverse areas of applied and fun-
damental science. Surface acoustic wave (SAW) devices
are a striking example of such rapid developments. They
are ubiquitously used in modern telecommunications sys-
tems [1] and are extremely relevant as sensing compo-
nents in a number of applications [2]. Micro- and nano-
mechanical systems, for their part, have imposed them-
selves as prevalent means of implementing extremely sen-
sitive sensing devices [4–6]. They are characterized by a
rich dynamics, involving linear and nonlinear phenom-
ena [7–10] that opens exciting prospects for mechanical
signal processing. This dynamics can be further enriched
in coupled systems where mechanical mode coupling can
be induced in e.g. clamped beams [11–13], pillars [14, 15]
or through intermodal coupling [16–19]. Over the past
few years, both types of mechanical systems have been
attracting renewed interest [20] and were exploited to
achieve dynamic and coherent interaction with a variety
of physical systems, including holes and electrons [21–
23], quantum dots [24–27] spins [28, 29], superconducting
circuits [30–33] and photonic devices [34–37]. Enhanc-
ing control over such mechanical systems at the micro-
or nano-scale and in the radio-frequency regime there-
fore holds promises for the implementation of complex
phononics-based hybrid platforms permitting high-speed
operation. A number of works have proposed to com-
bine mechanically-resonant elements with traveling elas-
tic waves to demonstrate dynamic linear and nonlinear
phononic systems, whether in the context of phononic
crystals and elastic metamaterials [38–43] or in NEMS-
based architectures [44, 45]. In the last case, the re-
ported devices exploit geometric, electrostatic or wave-
mixing-induced non-linear behaviors, taking advantage
of the high-quality factor resonance of mechanical ele-

ments. The current limit of this approach however lies
in the attainable resonant frequencies that are heavily
conditioned by NEMS classically operating at maximum
frequencies of a few MHz.
In this work, we demonstrate the possibility to im-

plement a nonlinear phononic platform based on the in-
teraction of travelling SAWs and coupled mechanical res-
onators capable to operate in the radio-frequency regime.
We analyze a pair of low aspect ratio cylindrical pillars
vibrating on a flexural mode and demonstrate the obtain-
ing of unexpected non-linear coupled mechanical states
from these otherwise linearly-behaving mechanical res-
onators. The observed experimental results, supported
by analytical modelling and numerical simulations, show
that these non-linearities are the result of an interplay
between the resonator mode symmetry and the elastic
field distribution on the substrate surface and that they
exhibit a strong dependence on the resonator gap dis-
tance and the SAW excitation scheme. The elastic en-
ergy distribution affects in turn the substrate surface
displacement, hence disturbing the resonators dynamics
and leading to the occurrence of circular state of mo-
tion. The proposed devices, that operate in the 70-MHz
range, are readily scalable to higher frequencies. They il-
lustrate the relevance of SAW-based phononic devices for
the implementation of high-frequency electromechanical
circuits with complex dynamics.

II. LINEAR REGIME: SINGLE RESONATORS

AND LARGE GAP DISTANCES

The phononic resonators under study consist of
micron-scale cylindrical pillars with an aspect ratio of
the order of one, deposited atop a single-crystal piezoelec-
tric substrate. The resonators are excited by a Rayleigh
surface acoustic wave generated by an interdigital trans-
ducer (IDT) harmonically-driven at frequencies about
70 MHz. The resulting SAW amplitude depends linearly
on the applied RF power. The mode of interest is a first-
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Figure 1. Experimental frequency responses of SAW-driven
phononic microresonators. (a) Response of a single pillar with
a diameter of 4.4 µm and a height of about 4 µm excited by a
SAW for different input powers applied to the IDT (10 dBm,
15 dBm and 20 dBm). The light dotted lines correspond
to data obtained by laser scanning interferometry and ac-
quired every 10 kHz. The solid lines are obtained by applying
a Savitsky-Golay smoothing filter to the raw experimental
data. Inset: Angular plot of the distribution of the orienta-
tion of the flexural mode vibration for frequencies between 65
and 75 MHz. (b) Frequency response for two pillars within a
pair with a 6-µm gap distance excited by a longitudinal SAW
wave vector under different drive powers. The solid line corre-
sponds to the resonator located closest to the SAW source, the
dashed line to the resonator located farthest from the source.

order flexural mode, that is theoretically composed of two
degenerate, orthogonally polarized eigenstates due to the
circular cross-section of the resonators. The frequency
response of isolated SAW-coupled resonators were previ-
ously shown to exhibit Fano lineshapes, resulting from
the interaction of the impinging SAW with the localized
mechanical resonator [14]. Figure 1(a) reports the out-
of-plane vibration amplitude measured out of a single
resonator subjected to a SAW driven by radio-frequency
(RF) input powers ranging from 10 to 20 dBm. A sin-
gle resonance peak appears at a frequency of 70.7 MHz.
The degeneracy lifting expected from fabrication imper-
fections in resonators with circular symmetries cannot
be observed here. This can be accounted for by the low
quality factor (Q -factor) of the resonance, that is about
equal to 30. When increasing the drive power, the vibra-
tion amplitude of the phononic resonator shows a pre-
dictable linear dependency, as expected from such low
quality-factor mechanical structures under the present
weak excitation, with a constant resonant frequency and
Q-factor.
Similar experiments were conducted on a pillar pair

with a 6-µm gap distance excited by a SAW with a
wave vector directed along the inter-resonator axis. Fig-
ure 1(b) shows that increasing the SAW drive power
again leaves the frequency position and quality factor of
the pillar pair resonances unaffected. The coupling mech-
anism is therefore here independent on the SAW ampli-
tude, as expected for linearly strain-coupled mechanical
resonators.

III. FREQUENCY SOFTENING IN SMALLER

GAP DISTANCE COUPLED-RESONATOR

SYSTEMS.

The previous observations do not hold, however, for
shorter gap distances, where SAW mediated dipole-like
interaction is dominant [14]. A similar investigation of
the resonator response as a function of the drive power
was performed for 1.5-µm-spaced pillar pairs excited by
SAWs propagating either along the inter-resonator axis
(longitudinal excitation) or in the direction normal to
the inter-resonator axis (transverse excitation). The re-
sults obtained in the case of a transverse excitation are
reported in Figure 2(a) and 2(b) for each resonator, here
denoted T 1 and T 2. The resonator pair frequency re-
sponse reveals the existence of two vibrational modes.
The first mode (i) is found at about 68 MHz and has
a quality factor of about 30 that is comparable with the
one observed for a single pillar. A higher frequency mode
(ii) lying slightly below 72 MHz can also be found, with a
quality factor now reaching about 60. The resonance line
shape exhibits the lightly asymmetric profile expected in
coupled resonator systems. Increasing the drive power in
the 10 to 20 dBm range results in a downshift of about
400 kHz for mode (ii), while the lower frequency mode (i)
remains at the same frequency position. Phase maps ob-
tained by laser scanning interferometry and reported in
Figure 2c reveal that mode (i) corresponds to a symmet-
ric mode, while mode (ii) corresponds to an antisymmet-
ric mode with respect to the propagation axis. Increasing
the drive power in the 10 to 20 dBm range does not signif-
icantly affect the overall modal behaviour of the coupled
resonator system.

The observed power-dependant frequency shift hints
at a nonlinear coupling of the first-order flexural modes
of the two phononic resonators, despite each individual
resonator exhibiting an otherwise linear response. The
involved non-linear coupling mechanism is therefore dif-
ferent from those usually exploited in NEMS, that rely on
the coupling of high-quality factor mechanical resonators
with geometrical non linearities [46]. The higher quality
factor obtained by resonator-to-resonator coupling could
help triggering non linear interactions by lowering the
amplitude thresholdrequired to reach the critical point.
However, these interactions here result in a frequency
downshift with increasing drive amplitude, while geomet-
rical nonlinearities are expected to result in a frequency
upshift in such clamped-free resonators. Such coupling-
induced softening nonlinearities were previously reported
in phononic crystals made of local resonators coupled by
nonlinear graphene membranes [38]. In our case, cou-
pling occurs through the substrate surface and is medi-
ated by the SAW elastic energy distribution, that is it-
self conditioned by the resonator-to-resonator coupling
conditions. The observed non-linear behavior can be
described as resulting from a softening of the coupling
spring constant induced by the highly-confined SAW.
This effect may allegedly be understood by considering
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Figure 2. Experimental frequency and phase responses of a pillar pair excited by a transverse SAW. The gap distance is 1.5 µm.
(a) Response of resonator T1. (b) Response of resonator T2. (c) Experimental phase maps at 12 dBm for the lower frequency
mode (i) at 68.6 MHz (1) and for the higher-frequency mode (ii) at 71.8 MHz (2); at 20 dBm for the lower frequency mode (i)
at 68.3 MHz (3) and for the higher-frequency mode (ii) at 71.5 MHz (4).

the coupled pillars as forming a cavity for SAW with a
strong energy confinement in the 1.5-µm-wide gap. The
system becomes resonant, hence promoting energy trans-
fer between the two resonators as the SAW amplitude in-
creases. Finite element method (FEM) simulations based
on a linear elastic model confirm that the phononic res-
onators induce a strong localization of the elastic energy
distribution at the resonator vicinity. The Von Mises
stress distributions reported in Figure 3 further highlight
that stress localization within the resonator gap is only
observed for the anti-symmetric mode (ii). This observa-
tion is in good in agreement with the experimental device
response, as only mode (ii) experiences a nonlinear fre-
quency downshift.
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Figure 3. Finite element method simulations of the Von Mises
stress distribution. The two 1.5 µm-spaced resonators are
excited by a linear elastic line source following a transverse
excitation scheme. (a) Symmetric mode (i), here found at
70.73 MHz. (b) Anti-symmetric mode (ii) at 73.34 MHz.
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Figure 4. Coupled-oscillator model of a pillar pair excited by
a transverse SAW. (a) The solid lines correspond to the ex-
perimental data for a pillar pair with a 1.5 µm gap distance
excited using a RF input power of 20 dBm. The dashed lines
correspond to the theoretical frequency response obtained out
of the proposed coupled-oscillator model for an applied force
amplitude F0 = 10 µN. (b) Sum of the measured amplitudes
of the two resonators for the anti-symmetric mode. The dots
indicate the maximum displacement for each input RF pow-
ers, the dashed line is a fitting to the theoretical backbone
curve given in equation 3.

As a possible description of this SAW-coupled res-
onator system, we propose to use a tentative simplified
model based on two single-mode linear oscillators with
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respective masses mi (i = 1, 2) coupled by a non linear
coupling strength knl. The corresponding equation of
motion can be written as:

m1ẍ1 + γẋ1 + kx1 + κ12(x1 − x2) + κnl(x1 − x2)
3

= F0 cos(Ωt),
(1a)

m2ẍ2 + γẋ2 + kx2 + κ12(x2 − x1) + κnl(x2 − x1)
3 = 0,

(1b)

where x1 and x2 are the displacement amplitudes
for each resonator, γ is the linear damping, k is the
resonator spring constant and κ12 is the linear coupling
constant. The unperturbed frequencies of the resonators

are defined as ω
(i)
0 =

√

k/mi. The two effective masses
are defined from the physical mass of the resonators
(mi = ρVi, ρ being the mass density and Vi the volume
of the resonators). A difference in mass of about 5%,
corresponding to an estimated difference in height of
200 nm between the two resonators, was introduced in
the model. The frequency softening effect is introduced
by assuming a negative κnl constant. The term on
the right-hand side corresponds to the SAW excitation,
modelled as an external periodic force of strength F0

and frequency Ω. This external force is applied to
only one of the resonators to avoid artificially forcing
a relative phase condition between the two oscillators.
Figure 4(a) displays the experimental response of the
two resonators for a drive power of 20 dBm, along with
the corresponding simulated vibration amplitude. The
spring constant k = 116 (kN/m) and the linear coupling
constant κ12 = 5.3 (kN/m) used in the model are esti-
mated from the two resonance frequencies measured for
mode (i) and mode (ii) of the pillar pair [47]. In order to
estimate κnl, we rewrite the system of equations (1a-1b)
assuming equal resonator masses (m1 = m2 = m) [47]:

ü+ µu̇+ ω2
0u+ αu3 = F cos(Ωt), (2)

where ω0 =
√

k+2κ12

m
, µ = γ/m and α = 2κnl/m.

u = x1 − x2 is the amplitude difference between the two
resonators. The natural frequency response curve of the
nonlinear system can then be described by expressing its
backbone curve that follows a typical parabola-shaped
curve as a function of the maximum amplitude of u:

Ω = ω0 +
3

8

α

ω0
a2 (3)

where a represents the amplitude of u. Fitting the ex-
perimental resonance frequency at different drive power
to this backbone curve equation, as presented in Fig-
ure 4b, yields a nonlinear coupling constant κnl of the
order of -0.016 (kN/m3). The nonlinear coupling term
±κnl(x1 − x2)

3 in equation (2) affecting only the out-
of-phase mode, the proposed model captures the mode
symmetry dependence of the observed nonlinear effect,

with a symmetrical, in-phase mode frequency position
remaining independent of the drive SAW amplitude.
The occurrence of non-linearities was confirmed by

investigating a similar pillar pair subjected to a longi-
tudinal excitation. The measured frequency responses,
reported in Figure 5, show that the resonator pair,
composed by two pillars L1 and L2, again hosts two
sets of modes appearing at the respective frequencies
of 71.5 MHz (mode (iii)) and 73 MHz (mode (iv)) at
10 dBm. Increasing the applied drive power now leads to
a frequency downshift for both resonances. The higher
frequency resonance shift is comparable to the one ob-
served in the transverse case and is estimated to be
slightly lower than 400 kHz. The resonance frequency
of mode (iii) is also downshifted, with a shift now of
the order of 600 kHz, as displayed in Figure 6(a). But
one of the most interesting feature of this frequency re-
sponse lies in the observed change in resonance profile,
that presents an increasing asymmetry as the amplitude
increases. This effect leads to a frequency instability
area, which is further confirmed by performing reverse
frequency sweeps. Figure 6(b) compares upward and
downward frequency sweeps for pillar L1, situated closer
to the excitation source at 20 dBm. A typical hystere-
sis cycle is observed, showing an amplitude jump. This
behavior confirms the presence of non-linearities in the
proposed system, a rather unexpected result given the
geometrical characteristics and the operating frequencies
of the involved mechanical resonators.

IV. CIRCULARLY-POLARIZED RESONANCES

The experimental field maps of Figure 5(c) further re-
veal that the input SAW amplitude also affects the nature
of the resonator polarization states and breaks the flexu-
ral mode symmetry previously observed in transversely-
coupled resonators. In the transverse excitation case re-
ported in Figure 2, only pure flexural modes are observed
and the out-of-plane component of the displacement field
exhibits a well-defined nodal line, as seen in the phase
maps in Figure 2(c). The corresponding phase states are
further depicted in Figure 7(a) and (b) that represent the
radial phase of the two resonators extracted from these
field maps for an input power of 20 dBm. The two res-
onators are shown to oscillate either in-phase (Fig. 7a)
or out-of-phase (Fig. 7b) depending on the considered vi-
bration mode. But a longitudinal excitation leads to the
occurrence of circular polarization states. In the case of
mode (iii), only one out of two resonators is circularly
polarized, while the second one keeps a well-defined flex-
ural behavior (Fig. 7c). The phase state is table over the
power range, as shown in the phase maps labeled (1) and
(2) in Figure 5(c) taken at a drive power of 12 dBm. The
higher-frequency mode (iv), that appears at a frequency
of about 72.9 MHz at 20 dBm, is however characterized
by circularly-polarized states with opposite handedness
(Figure 7d). This behavior points at a cross-coupling



5

P = 20 dBm
f = 72.9 MHz

0 5 10 15

-5

0

5

-π

0

π

D
is

ta
n
c
e
 (

µ

m
)

D
is

ta
n
c
e
 (

µ

m
)

D
is

ta
n
c
e
 (

µ

m
)

D
is

ta
n
c
e
 (

µ

m
)

P = 20 dBm
f = 71.24 MHz

0 5 10 15

-5

0

5

-π

0

π

P = 12 dBm
f = 73.4 MHz

0 5 10 15

-5

0

5

-π

0

π

P = 12 dBm
f = 71.9 MHz

0 5 10 15

-5

0

5

-π

0

π

1 2 4

70
71

72
73

74
75 10 dBm

12 dBm

15 dBm

17 dBm

20 dBm

0

0.5

1

1.5

2

2.5

3

3.5

4

Frequency (MHz)

A
m

p
lit

u
d
e
 (

n
m

)

3

1

2

4

Figure 5. Experimental frequency and phase responses of a pillar pair excited by a longitudinal SAW. The gap distance is
1.5 µm. (a) Response of resonator L1. (b) Response of resonator L2. (c) Experimental phase maps at 12 dBm for the lower
frequency mode (iii) at 71.9 MHz (1) and for the higher-frequency mode (iv) at 73.4 MHz (2); at 20 dBm for the lower frequency
mode (iii) at 71.24 MHz (3) and for the higher-frequency mode (iv) at 72.9 MHz (4).
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Figure 6. Hysteresis cycle. (a) Frequency response of res-
onator L1 for varying input powers. (b) Comparison of up
and down frequency sweeps for the first resonance of pillar
L1 (closest to the excitation source) at an RF input power
of 20 dBm. The frequency shift linked to the hysteresis cycle
appears at about 70.9 MHz.

between the two orthogonal polarization states theoreti-
cally composing the first-order flexural mode of such res-
onators with cylindrical symmetry.

The occurrence of these circular states is concomitant
with an increase in drive power; they may not, how-
ever, be indisputably be attributed to nonlinear effects.
If non-linearities were already shown to induce ellipti-

cal polarization states in singly-clamped mechanical res-
onators [46], e.g. in carbon nanotubes [48–50], the el-
liptical transition is obtained at very high drive powers
and can only been obtained out of high quality-factor
mechanical resonators. For low Q -factors, this ellipti-
cal transition is considered trivial and hence indepen-
dent of any non-linear behavior. But linear systems can
also yield circular polarization states, provided that the
resonators are subjected to force field with high vortici-
ties [51]. In the present case, the nature of the Rayleigh
SAW involves a linearly polarized excitation in the sub-
strate plane. The vibration of the phononic resonator
may however results in a mechanical back-action on the
surface acoustic wave field at the resonator vicinity, re-
sulting in coupling of the shear polarization components
of the surface displacements. This, in turn, induces cross-
coupling of the two orthogonal polarizations of the res-
onator, hence giving rise to the observed circular polar-
ization states. This back-action process is, again, trig-
gered by the higher force field induced by the cavity
formed in the resonator-to-resonator gap, therefore lead-
ing to a power-dependant mechanism.

V. CONCLUSION

In conclusion, we demonstrated the occurrence of
surface-acoustic wave induced non-linearities in pairs
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Figure 7. Typical phase states for the two proposed excitation
schemes. The measurements are taken at a drive power of
20 dBm. (a) Symmetric mode at 68.3 MHz and (b) anti-
symmetric mode at 71.5 MHz for a transverse excitation. (c)
Illustration of rotating polarization states obtained for one
out of two resonators in the case of a longitudinal excitation
(f = 71.24 MHz) and (d) for both resonators, with opposite
handedness for an excitation frequency of 72.9 MHz. Movies
of the corresponding out-of-plane resonator displacements are
provided in Supplemental Movies 1 to 4 [47].

of otherwise linear coupled phononic microresonators.
These non-linearities are characterized by a frequency
softening of the pillar pair response for short gap dis-
tances, while isolated resonators retain a linear behavior.
The characteristic features of the non-linear response are
also conditioned by the incident SAW wave vector di-
rection. Coupled resonators submitted to a transverse
SAW excitation are well described by assuming a neg-
ative, cubic Duffing-like term applied to the resonator-
to-resonator coupling constant, leading to a linear cou-
pling rate of about 5 kN/m and a nonlinear coupling
constant of the order of 10−2 kN/m3. In the case of a
longitudinal excitation, in addition to the observed non-
linear dynamics, the increased surface displacements at
the resonator vicinity results in a feedback mechanism be-
tween the mechanical motion of SAW-coupled phononic
resonators and the substrate surface that acts as both a
clamping element and a source of mechanical excitation.
This interaction leads to a cross-coupling of the resonator
eigenmodes, and hence on the occurrence of rotating po-
larization states. These results illustrate the rich dynam-
ics involved in these phononic systems, where linear and
non-linear effects can be combined to achieve coherent
control of both the frequency response and modal be-
havior of high-frequency phononic microresonators.
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