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France

bAdvanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa Marı́a, Av. España 1680, Valparaiso, Chile

Abstract

A simple and scalable finite-dimensional model based on the port-Hamiltonian framework is proposed to describe the
fluid-structure interaction in tubes with time-varying geometries. For this purpose, the moving tube wall is described
by a set of mass-spring-damper systems while the fluid is considered as a one-dimensional incompressible flow
described by the average momentum dynamics in a set of incompressible flow sections. To couple these flow sections
small compressible volumes are defined to describe the pressure between two adjacent fluid sections. The fluid-
structure coupling is done through a power preserving interconnection between velocities and forces. The resultant
model includes external inputs for the fluid and inputs for external forces over the mechanical part that can be used
for control or interconnection purposes. Numerical examples show the accordance of this simplified model with
finite-element models reported in the literature.

Keywords: port-Hamiltonian Systems, Fluid-Structure Interactions, Incompressible Fluids, Scalable
finite-dimensional model

1. Introduction

Fluid-structure interaction (FSI) stems from the reciprocal action between an elastic structure and a fluid flow
through a contact surface [1]. In this work, we consider an incompressible flow in tubes with time varying geometries,
as shown in Figure 1. This FSI problem play an important role in several applications, such as the study of the blood
flow in vessels [2, 3, 4] and the human phono-respiratory system [5, 6, 7, 8, 9], among others.

From a numerical point of view, FSI problems have some drawback, such as; they require an appropriate grid for
the mechanical and fluid domains, a clear delineation of fluid-structure interface [10], an appropriate estimation of the
nonlinear dynamics, and the numerical stability of the discretization methods. In the literature, different approaches
have been proposed to solve these drawbacks. For example, in [11] a generic form of fluid governing equations is
used in an Arbitrary Lagrangian-Eulerian (ALE) frame and a the nonlinear generalized-α time integration scheme
is used to estimate the flow dynamics. In [12] the flow is described through a linear incompressible inviscid model
in an ALE formulation and the mechanical movement is given by a generalized string model, using a Leap Frog-
Implicit Euler time discretization scheme. Similarly, in [4] an axisymmetric Navier-Stokes Prandtl (RNS-P) system
is used and the fluid-structure dynamics are obtained using a finite volume “multiring” algorithm. With respect to the
numerical stability, it is common to use an energy-based analysis, i.e., the conservation of the energy balance by the
discretization algorithms, as shown in [3, 13].

Other problem related with incompressible fluids is the causality of the pressure in the numerically discretized
momentum equation. In this sense, pressure-pressure coupling algorithms are commonly used, such as for example,
backward approximation pressure correction schemes [14] and pseudo-compressible algorithms, such as the Pretrov-
Galerkin method [15].
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Figure 1: Incompressible flow in a tube with time varying geometry. Solid line represents the tube walls and the arrows represents the magnitude
and sense of wall velocity at corresponding points. Dashed lines are the flow stream lines.

In this work, we simplify the mechanical dynamics using a set of mass-spring-damper systems to describe the wall
movement. Furthermore, we consider the fluid as a one-dimensional incompressible flow described by the average
momentum dynamics in a set of incompressible flow sections. To solve the causality problem on the pressure we use
and expand the approach proposed in [16], defining small compressible volumes, called nodes, where small variations
in the density are used to describe the pressure between two adjacent incompressible fluid sections, allowing consistent
coupling between two incompressible fluid sections.

The aim of this work is to propose a simple, scalable and energy-consistent model for the continuous dynamic
behavior of flows in tubes with time varying geometries. To this purpose we use the port-Hamiltonian systems (PHS)
framework that is particularly suited for the modeling of continuous nonlinear systems. PHS framework has been used
to describe compressible flows [17, 18, 19], magnetohydrodynamics [20] and to study the FSI of liquid sloshing in
moving containers [21]. In the PHS framework the dynamics are associated with a non-negative potential function that
represents the systems total energy and an inner product as well as input and output signals representing the power
supplied to the system. As a consequence, two PHS for different physical domains can be interconnected through
their ports, whose product represents the power exchange between both systems. Therefore the port-Hamiltonian
formulation is a useful tool to describe multi-physical problems. Another advantage of PHS is that they guarantee
properties for control, such as passivity and stability [22, 23]. Additionally, PHS generates a Dirac structure [23],
allowing the use of mathematical tools, like Lie algebra [24], to analyze the system properties.

In this work, we use the port-Hamiltonian framework to derive a scalable finite-dimensional model of an incom-
pressible flow in a tube with time varying geometries. Incompressible sections and nodes in the fluid are used as
kinetic and potential storage elements, respectively, to obtain a PHS formulation that is coupled with the mechanical
model of the structure using a power-preserving interconnection.

The remainder of the paper is organized as follow: In Section 2 we give a description of the system and the
assumptions considered for the model. In Sections 3 and 4 we develop the mechanical and fluid models, respectively.
In Section 5 we describe the interconnection between the two systems to get the overall model. Finally, in Section 6
numerical examples are given, and Section 7 presents the conclusions. Additionally, a notation table is included in
the Appendix.

2. System description

In this work we consider an incompressible fluid in a tube of which the wall is moving. This movement is influ-
enced by the force exerted by the fluid flow and some possible external forces. At the same time, the flow dynamics
are affected by boundary conditions, that changes according to the wall movement. We consider a symmetrical be-
havior of the fluid and wall dynamics, hence, the fluid description is reduced to a 2D incompressible flow. We use
a modular modeling approach to describe the wall and flow dynamics in a number of tube sections used as lumped
elements that are coupled.

In this end, we use a set of interconnected mass-spring-damper (MSD) systems to characterize the moving wall,
as shown in Figure 2. In this figure, each dotted box is a MSD system that describes the motion of one tube section.

In this work the fluid dynamics are described by the well-know continuity and motion equations [25], in their
incompressible form and neglecting the gravitational effects, leading to:

∇ · (v) = 0 (1)

ρ∂tv + ρv · ∇v + ∇p = µ∇2v (2)
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MSD characterization of moving wall

Nodes

Figure 2: Mechanical description of wall movement. Each box dotted represent one MSD system.

where ρ, v, p and µ are the density, velocity field, pressure and viscosity of the fluid flow, respectively, ∇ · (), ∇ and
∇2 describes the divergence, gradient and Laplacian operators, respectively, and ∂t = ∂

∂t .
Notice that (1) is, from a mathematical point of view, the approximation of the more general mass balance ∂tρ +

∇ · (ρv) = 0, when we assume that the variations of the fluid density are negligible, i.e., ∆ρ ≪ ρ. We use the
Mach number (M) to consider when this incompressibility assumption is adequate. In this work we study flows with
M ≤ 0.3 [26]. In different studies on incompressible flows it is common to use pseudo-compressible algorithms, such
as the Pretrov-Galerkin method, to define appropriate pressure-pressure couplings [15] in the space discretization of
(2). Similarly, in this work we relax the incompressible hypothesis to describe the pressure in different zones of the
fluid domain. The considered moving wall characterization implies that the flow channel presents sudden expansions
and contractions. Additionally, we can reduce the fluid analysis to a 1D incompressible flow, as shown in Section
4. Thus, we divide the fluid domain in sections with uniform cross-sectional area where the flow is incompressible
to describe the fluid dynamics and infinitesimal compressible sections, that will be denoted by nodes to describe the
pressure in the coupling zone between two adjacent incompressible sections, as shown in Figure 2. The use of nodes
to couple incompressible sections has been applied in [16] for tubes with fixed irregular geometries. In this work
we extend this idea to consider time-varying geometries. We define the fluid behavior in nodes using the following
assumption.

Assumption 1. The volume of a node i is small enough, such that the density distribution is uniform, and the changes
in density are only caused by changes in the volume [27, Sec. 5.1, p.78]. This implies that the mass in each node is
constant, i.e., the following relationship is satisfied

ρiV̄i = κ (3)

where ρi and V̄i are the density and volume of the i-th node, and κ is the node total mass.

As mentioned above, we use the PHS framework to describe the ODEs associated with the wall and fluid dynam-
ics. In this sense, according to [22, 23] an input-state-output PHS with direct feed-through is given by:

ẋ = (J − R) ∂xH + (g − P)u (4a)

y = (g + P)T∂xH + (M + S )u (4b)

where x is the state vector, (u, y) are the input-output pair, the Hamiltonian H is the total energy of the system, ∂x = ∂
∂x

, J and M are skew-symmetric matrices, and matrices P, R and S satisfy[
R P
PT S

]
≥ 0 (5)

As a consequence of the non-negative condition (5), H satisfies

H ≤ H0 +

∫ t

0
yT (τ)u(τ)dτ (6)

where H0 is the energy at t = 0. This result is equivalent to the numerical stability analysis presented in [13, 2, 3],
i.e., the PHS formulation guarantee the model stability.
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Figure 3: Mass-spring-damper (MSD) model for the different sections of the wall.

3. Mechanical model

In this section we propose a port-Hamiltonian formulation of the wall motion. In a MSD system there are two
energy storage elements, namely, the mass that stores kinetic energy, and the spring that stores potential energy [23].
Thus, for a system with Ns interconnected MSD as shown in Figure 3, the total energy is given by

Hs =
1
2

Ns∑
i=1

π2
i

mi
+ kiq̄2

i

 +
1
2

Ns−1∑
i=1

kci (q̄i − q̄i+1)2 (7)

where πi is the momentum of mass mi, ki and kci are coefficients of lateral and coupling springs, and the relative mass
displacements are given by q̄i = qi − qi0 where qi is the mass position and qi0 is the equilibrium point when the flow
velocity is equal to zero and the static pressure is equal to the reference pressure p0.

Proposition 1. Let Hs be the total energy of Ns interconnected MSD systems, as shown in Figure 3. Denoting by
q̄s =

[
q̄1 q̄2 · · · q̄Ns

]T
and πs =

[
π1 π2 · · · πNs

]T
the state variables associated with the displacement and

momenta of masses, the finite-dimensional PHS approximation of the wall dynamics is given by:[
˙̄qs

π̇s

]
=

[
0 I
−I −Rs

] [
∂q̄s Hs

∂πs Hs

]
+

[
0
I

]
us (8a)

ys =
[
0 I

] [∂q̄s Hs

∂πs Hs

]
(8b)

where the input us =
[
F1 · · · FNs

]T
is the set of external forces in each mass, the output ys =

[
vc1 · · · vcNs

]T

is the set of corresponding velocities, 0 and I are zero and identity matrices of proper dimensions, ∂q̄s Hs = Ksq̄s is

the set of forces applied by the springs to the masses and ∂πs Hs =
[
π1
m1
· · ·

πNs
mN−s

]T
is the set of mass velocities.

Matrices Rs and Ks are given by:.

Rs =



d1 + dc1 −dc1 0 · · · · · · 0
−dc1 d2 + dc1 + dc2 −dc2 · · · · · · 0

0 −dc2 d3 + dc2 + dc3
. . . · · · 0

...
...

. . .
. . .

. . .
...

0 0 · · ·
. . .

. . . −dc(Ns−1)

0 0 · · · · · · −dc(Ns−1) dNs + dc(Ns−1)


(9)

Ks =



k1 + kc1 −kc1 0 · · · · · · 0
−kc1 k2 + kc1 + kc2 −kc2 · · · · · · 0

0 −kc2 k3 + kc2 + kc3
. . . · · · 0

...
...

. . .
. . .

. . .
...

0 0 · · ·
. . .

. . . −kc(Ns−1)

0 0 · · · · · · −dc(Ns−1) kNs + kc(Ns−1)


(10)
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Proof. The velocity of one mass is the derivative of its displacement with respect to time, i.e., ˙̄qi = πi
mi

= ∂πi Hs. Thus,
for q̄s we obtain

˙̄qs = ∂πs Hs =

[ π1

m1
· · ·

πNs

mNs

]T
(11)

On the other hand, applying a momentum balance on the masses, we obtain

π̇s = −Fs − Fd + us (12)

where Fs =
[
Fs1 · · · FsNs

]T
is the set of forces applied by the springs to the masses, Fd =

[
Fd1 · · · FdNs

]T
is

the set of forces of the dampers, and us =
[
F1 · · · FNs

]T
is the set of external forces. From Figure 3, we obtain

that for the i-th mass, the spring force is given by:

Fsi = kiq̄i − kc(i−1)(q̄i−1 − q̄i) + kc(i)(q̄i − q̄i+1)

= [−kc(i−1) ki + kc(i) + kc(i−1) − kc(i)]

q̄i−1
q̄i

q̄i+1


= ∂q̄i Hs

and the damper force is given by:

Fdi = divci + dci(vci − vc(i+1)) + dc(i−1)(vci − vc(i−1)) = [−dc(i−1) di + dc(i) + dc(i−1) − dc(i)]

vc(i−1)
vci

vc(i−1)


where vci is the velocity of mass mi. Considering kc0 = kcNs = 0 and dc0 = dcNs = 0 we obtain

Fs = ∂q̄s Hs = Ksq̄s (13)
Fd = Rs∂πs Hs (14)

where Rs and Ks are given by (9) and (10), respectively. Thus, using (13) and (14), the momentum balance in (12)
can be rewritten as

π̇s = −∂q̄s Hs − Rs∂πs Hs + us (15)

Finally, defining the state vector as xT =
[
q̄T

s πT
s

]
, the ODEs (11) and (15) can be rewritten in the PHS form (4),

where

J =

[
0 I
−I 0

]
R =

[
0 0
0 Rs

]
g =

[
0
I

]
,

and where the matrices P, M and S are equal to zero, obtaining the model described in (8).

4. Fluid Model

In this section we propose a port-Hamiltonian model for incompressible fluids in tubes with time varying geome-
tries. As mentioned before, we consider flows with Match number M < 0.3 and provide a 1D model of the fluid using
incompressible sections and infinitesimal compressible zones called nodes. From an energy point of view, incom-
pressible sections are kinetic energy storage elements, describing the fluid motion trough the momentum balance:

ρ0∂tv = −ρ0v · ∇v − ∇p − µ∇2v (16)

subject to ∇ · (v) = 0, where ρ0 is the reference density of the fluid and v = [v v]T with v and v as the longitudinal
and transverse velocities of the fluid, respectively. Similarly, nodes store potential energy and are used to describe
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the pressure distribution in the flow. Their dynamics are governed by the changes of the fluid density. Then, the fluid
dynamic in a node is given by:

∂tρ = −∇ · (ρv) (17)

On the other hand, the loss of kinetic energy of a fluid in a tube is given by different phenomena [25], such as viscosity
friction with the walls, turbulences and irregularities in the geometry. Thus, we firstly discuss the energy dissipation
in the flow, and then we present the models for the incompressible sections and for the nodes to develop a scalable
model.

4.1. Power dissipation in the flow
Note that the term µ∇2v in (2) is the incompressible simplification of −∇ · (τ), where τ is the viscous stress

tensor for Newtonian fluids [25]. The dissipation in the flow can be obtained from the dot product − (v · ∇ · (τ)) =

− (∇ · (τ · v)) − (−τ : ∇v), where the term (−τ : ∇v) is the scalar product between the tensors τ and ∇v, and it is
always positive, describing the power dissipation in the flow [25]. For incompressible flows, the viscous dissipation
has the general form:

Dv =

∫
(−τ : ∇v)dV = λ

1
2
ρAvv3

v ≥ 0 (18)

where vv and Av are the characteristic velocity and area, respectively, and λ = λµ + λg, where λµ is the friction loss
factor that depends on the Reynolds number and λg is the loss factor associated with the tube geometry. Note that, from
Assumption 2, the transversal flow velocity has an algebraic relation with vci. As a consequence, the dissipation is
given by the longitudinal flow component. Thus, in the i-th section of the flow with density ρ0, the viscous dissipation
can be written as

Dvi = λi
1
2
ρ0Aiv2

i |vi| (19)

The loss factor λµ can be chosen depending on the considered assumptions on the flow, see e.g. [25, Section 6.2].
On the other hand, λg depends on the geometry of the tube and, in the literature, there exist empirical formulas for
tube expansions and contractions, change of direction and different class of bifurcation junctions [28, 29]. In this
work we only consider the loss factors associated with sudden expansions and contractions. In a sudden expansion,
when the fluid enters a section with enlarged cross-sectional area, a jet is formed as the fluid separates from the wall
of the smaller tube section. This jet flow expands until it fills the entire area and part of the fluid breaks away and
circulates in the corner of the expanded section [28]. In this case the loss factor is given by

λe
i =

(
1 −

Ai

Ai+1

)2

(20)

where Ai is the cross-sectional area of the i-th incompressible section.
In a sudden contraction, given the reduction of the tube, the fluid accelerates as it enters the smaller section. In

this case the loss factor is given by [28]

λc
i =

1
2

(
1 −

Ai

Ai−1

)
(21)

According to [30], the loss factor in the inlet depends on the entrance tube geometry and is usually less than 0.78,
while the loss factor associated with the outlet is equal to 1.

4.2. Model of incompressible fluid sections
If we consider the i-th section of the fluid, the upper boundary moves in the transverse direction with velocity

vci, as shown in Figure 4. Moreover, as a consequence of Assumption 1, a change of density in a node implies a
change of the corresponding volume, which generates a variation in the volume of adjacent incompressible sections.
The first effect of these moving boundaries, is that the volume of the i-th incompressible section is a function of the
density of adjacent nodes. Thus, considering a node length of 2 ¯̀i, as shown in Figure 4, the node volume is given by
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Figure 4: Coupling incompressible fluid sections using nodes with compressible behavior.

V̄i = ¯̀i (Ai + Ai+1), where Ai and Ai+1 are the cross-sectional areas of the adjacent incompressible flow sections. Thus,
the volume Vi of section i is described by a fixed reference value V∗i = Ai`

∗
i minus the corresponding part of adjacent

nodes, see Figure 4, i.e.,

Vi = V∗i − Ai( ¯̀i + ¯̀i−1) = V∗i −
κ

ρi
αi −

κ

ρi−1
(1 − αi−1) (22)

where αi = Ai/(Ai + Ai+1) is a dimensionless factor. As we will see in the next subsection, the description of Vi in
(22) will help us to describe the dynamic pressure in each node.

The second effect of these moving boundaries is that part of the fluid moves in the transverse direction, induced by
the boundary velocity vci. This implies that the longitudinal flow in the section is affected by the upper wall movement.
As a consequence, from (1), we obtain the following relationship:

Q1i − Q2i − Acivci = 0 (23)

where Aci is the contact area of the fluid section with the moving boundary. Note that the inlet and outlet flows
in a section, Q1i and Q2i respectively, are different when the upper wall moves. Thus, denoting by vi the average
longitudinal flow velocity in section i, to satisfy (23), we define the inlet and outlet flows as:

Q1i = Aivi +
1
2

Acivci (24)

Q2i = Aivi −
1
2

Acivci (25)

where Aivi is the average longitudinal flow and Acivci is the transverse flow in the contact surface of the moving
boundary. Note that (24) and (25) are equal when the upper boundary does not move.

The third effect of the moving boundaries is that the tube geometry is time varying, inducing a fluid rotation in
each section. To simplify the model, we consider a two-dimensional flow and the following assumption

Assumption 2. Denote by v the transverse component of the flow velocity. The gradient of v is uniform in each
fluid section and is given by ∂wv = vci/qi and ∂zv = 0 where w and z denote the transversal and longitudinal axis
respectively, and qi is the moving boundary position.

Note that, from Assumption 2, the transversal velocity in a section i is given by v = vciw/qi. As a consequence,
the corresponding transversal momentum satisfies the following algebraic relationship with the boundary velocity
πyi =

∫
ρ0vdVi = ρ0Vivci/2. This algebraic constraint implies that the dynamics of the transversal momentum in each

incompressible section are given by a linear combination of the ODEs associated with the mechanical model, that
were shown above, and the ODEs that describe density behavior in the nodes.

Thus, to obtain a minimal realization we consider the following proposition to describe the flow in one incom-
pressible section.
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Proposition 2. In a fluid section with volume Vi and uniform gradient of transversal velocity, the flow is described by
the longitudinal flow momentum dynamics:

π̇zi = −Ai
λi

2
ρ0|vi|vi − Aciρ0vivci + Ai(P1i − P2i) (26)

where the term Aciρ0vivci represents the effect of the moving boundary in the longitudinal flow.

Proof. As we mentioned above, the corresponding transversal momentum has an algebraic relationship with the
boundary velocity, i.e., the boundary velocity defines the transversal behavior of the flow. Thus, it is only necessary
to know the longitudinal flow momentum to describe the fluid in one section. Then, from (16) we obtain that:

ρ0∂tv + ρ0v∂zv + ρ0v∂wv + ∂z p = µ
(
∂2

z v + ∂2
wv

)
(27)

where the term ρv∂wv is associated with the conversion of longitudinal flow into transversal flow and vice versa,
induced by the velocity of the boundary. Integrating in the section volume the first and third terms of (27) and
applying the Leibniz integral rule and the divergence theorem, an additional term associated with the contact surface
S ci and its correspondence velocity vci appears, i.e.,∫

ρ0∂tv + ρ0v∂wvdVi = π̇zi + Ai
ρ0

2

(Q2i

Ai

)2

−

(
Q1i

Ai

)2
= π̇zi + Aciρ0vivci (28)

Integrating the remaining terms of (27) and considering a uniform velocity in the inlet and outlet cross-sectional
surfaces of Vi we obtain: ∫

∂z

(
ρ0

2
v2 + p

)
dVi = −Ai (P1i − P2i) (29)

where P1i and P2i are the inlet and outlet total pressures, respectively. Finally, in this work we only consider the power
dissipation of the stress tensor. Then, the term

∫
µ
(
∂2

z v + ∂2
wv

)
dVi represents the force associated with the viscous

dissipation. Thus, using (19) this force can be approximated as∫
µ
(
∂2

z v + ∂2
wv

)
dVi ≈ −Aiλi

1
2
ρ0|vi|vi (30)

Finally, combining (28), (29) and (30), and solving for π̇zi we obtain (26).

If we now consider the kinetic energy in one section, we can express it as Ki = 1
2ρ0Viv2

i = 1
2π

2
zi/(ρ0Vi). Thus, for

N sections the total kinetic energy is

K f =

N∑
i=1

1
2

π2
zi

ρ0Vi
(31)

where ∂πzi K f = πzi/(ρ0Vi) = vi is the average velocity in section i. Using the PHS framework we describe the flow
dynamics in N section as shown in Proposition 3.

Proposition 3. Consider a fluid domain divided into N incompressible sections and N − 1 nodes. Defining the state
vector πz as the set of longitudinal momenta of incompressible sections, P1 and P2 as the total pressure sets at the
inlet and outlet boundaries of the sections, respectively, ub as the set of upper boundary velocities, Q1 and Q2 as
the inlet and outlet flow sets, respectively, and F∗π = F + F̂ where F is the set of forces applied over the contact area
of sections with the moving wall and F̂ is an additional term. Then, the port-Hamiltonian model that describes the
dynamics of incompressible sections is given by:

π̇z = −R f∂πz K f +

 ϑ
T
π

−ϑT
π

−ϕT
π


T P1

P2
ub

 (32a)

 Q1
−Q2
−F∗π

 =

 ϑ
T
π

−ϑT
π

−ϕT
π

 ∂πz K f +

 0 0 ψπ
0 0 ψπ
−ψT

π −ψT
π 0


P1
P2
ub

 (32b)
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where R f = diag
([

r1 · · · rN

])
is the dissipation matrix of the flow, ϑπ = diag

([
A1 · · · AN

])
maps the boundary

pressures of the sections, ϕπ = diag
([

Ac1πz1/V1 · · · AcNπzN/VN

])
and ψπ = diag

([
Ac1/2 · · · AcN/2

])
.

Proof. Let vi = ∂πzi K f = πzi/(ρ0Vi) and ri = λiρ0|πzi|/(2`i). Then, rewriting (26), the longitudinal flow momentum
equation in a section i is given by:

π̇zi = −ri∂πzi K f −
Aciπzi

Vi
vci + Ai (P1i − P2i) (33)

where the inlet and outlet pressures P1i and P2i and the velocity vci are inputs. The power conjugated outputs associ-
ated with these inputs are the inlet and outlet flows Q1i and Q2i and the force Fπi applied to the contact surface. From
(24) and (25) we obtain:

Q1i = Ai∂πzi K f +
Aci

2
vci (34)

Q2i = Ai∂πzi K f −
Aci

2
vci (35)

Define an auxiliary force F∗i as

F∗πi = Aci

(
πzi

Vi
∂πzi K f + (P1i + P2i)/2

)
(36)

= Fπi + F̂πi (37)

where F̂πi is an extra term that is compensated in the interconnection with the mechanical model, as shown in Section
5. Thus, the PHS model that describes the dynamics of the i-th section is given by

π̇zi = −ri∂πzi K f +
[
Ai −Ai −

Aciπzi
Vi

] P1i

P2i

vci

 Q1i

−Q2i

−F∗i

 =


Ai

−Ai

−
Aciπzi

Vi

 ∂πzi K f +

[
0 Mi

−MT
i 0

] P1i

P2i

vci


where Mi =

[
Aci/2 Aci/2

]T
.

Finally, for N incompressible sections, we define the state vector as πz =
[
πz1 · · · πzN

]T
. Denoting by P1 =[

P11 · · · P1N

]T
and P2 =

[
P21 · · · P2N

]T
the inlet and outlet total pressure sets, respectively, ub =

[
vc1 · · · vcN

]T
the

set of section velocities in contact surfaces; Q1 =
[
Q11 · · · Q1N

]T
, and Q2 =

[
Q21 · · · Q2N

]T
the inlet and outlet

flow sets, and F∗π = Fπ + F̂π where Fπ =
[
Fπ1 · · · FπN

]T
and F̂π =

[
F̂π1 · · · F̂πN

]T
, and defining matrices R f =

diag
([

r1 · · · rN

])
, ϑπ = diag

([
A1 · · · AN

])
, ϕπ = diag

([
Ac1πz1/V1 · · · AcNπzN/VN

])
, ψπ = diag

([
Ac1/2 · · · AcN/2

])
,

then, we obtain the PHS shown in (32).

4.3. Model of nodes
As explained in Assumption 1, the density in each node is assumed to be uniform. Then, the continuity equation

in (17) can be rewritten as:

∂tρ + ρ∇ · (v) = 0 (38)

This density variation implies a change in the node pressure, which, in turn, has an associated energy. We denote
by pρj = p j − p0 the pressure variation in the j-th node, where p0 is the pressure at the reference density ρ0 and p j is
the absolute pressure in the node. Thus, from the definition of the bulk modulus, βS , [31] we obtain:

pρj = βS ln
(
ρ j

ρ0

)
(39)
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Considering that the mass in each node is small, the kinetic energy can be neglected. From the first law of
thermodynamics and considering an adiabatic process, the potential energy E j, is given by the fluid work, dE j =

−pρj dV j. Using (3), the differential of the potential energy can be written as

dE j = pρj
κ

ρ2
j

dρ j (40)

where pρj is the node pressure.
The potential energy in node j is then given by the following non-negative function

E j = κβS

ρ j − ρ0

(
1 + ln(ρ j/ρ0)

)
ρ jρ0

(41)

Thus, for N − 1 nodes, the total energy is

E f =

N−1∑
j=1

κβS

ρ j − ρ0

(
1 + ln(ρ j/ρ0)

)
ρ jρ0

(42)

The PHS that describes the density dynamics is then given in the following proposition.

Proposition 4. Consider a fluid domain divided into N incompressible sections and N − 1 nodes. Denoting by ρ the
set of node densities, by Qρ

1 and Qρ
2 the inlet and outlet boundary flow sets of nodes, pρ1 and pρ2 the inlet and outlet

static pressure sets at the inlet and outlet node boundaries, respectively, and Fρ as the set of forces applied by nodes
in adjacent wall sections. Then, the density dynamics are given by the following PHS:

ρ̇ = 0∂ρE f +


ϑT
ρ

−ϑT
ρ

−ϕT
ρ


T Q

ρ
1

Qρ
2

ub

 (43a)

 pρ1
−pρ2
−Fρ

 =


ϑT
ρ

−ϑT
ρ

−ϕT
ρ

 ∂ρE f (43b)

where ϑρ = diag
([
ρ2

1/κ · · · ρ
2
N−1/κ

])
is the matrix mapping the inlet and outlet flows in nodes. The matrix ϕρ =

ϑρ
([

gAn 0N−1×1

]
+

[
0N−1×1 gAn

])
with gAn = diag

([
An1 · · · An(N−1)

])
, maps the upper boundary velocities in

nodes.

Proof. Integrating (38) over the j-th node volume, we obtain that the node density is affected by the adjacent moving
boundaries, i.e.,

ρ̇ j =
ρ2

j

κ

(
Qρ

1 j − Qρ
2 j

)
− An j

ρ2
j

κ

(
vc j + vc( j+1)

)
(44)

where Qρ
1 j and Qρ

2 j are the inlet and outlet flows of the node, respectively, vc j and vc( j+1) are the velocities of adjacent
moving boundaries, and An j is the corresponding contact area. The power conjugate variables for the inlet and outlet
flows are the internal node pressures. Then, from Assumption 1 and (40), we obtain

p1 j = p2 j =
ρ2

j

κ
∂ρ j E f (45)

Similarly, the conjugated variables associated with the velocity of adjacent moving boundaries are the applied
forces. Then, as shown in Figure 4, in the j-th wall section the force applied on the contact surface for the nodes is
given by:

F jρ = An( j−1)

ρ2
j−1

κ
∂ρ j−1 E f + An j

ρ2
j

κ
∂ρ j E f (46)
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Thus, for N − 1 nodes, the density dynamics can be described using the PHS model in (4), where the matrices
J, R, P, M and S are equal to zero, the input is given by u = [(Qρ

1 )T (Qρ
2 )T uT

b ]T with Qρ
1 = [Qρ

11 · · · Qρ
1N]T and

Qρ
2 = [Qρ

21 · · · Qρ
2N]T , the output is given by y = [(pρ1 )T − (pρ2 )T −FT

ρ ]T with pρ1 = [pρ11 · · · p
ρ
1N]T , pρ2 = [pρ21 · · · p

ρ
2N]T

and Fρ = [F1ρ · · · FNρ ]T , and the matrix g = [ϑρ − ϑρ − ϕρ ] where ϑρ = diag
([
ρ2

1/κ · · · ρ
2
N−1/κ

])
is the matrix

mapping the inlet and outlet flows in nodes, ϕρ = ϑρ
([

gAn 0N−1×1

]
+

[
0N−1×1 gAn

])
is the matrix mapping the

upper boundary velocities in nodes, with gAn = diag
([

An1 · · · An(N−1)

])
. Then we obtain the PHS formulation in

(43).

4.4. Scalable Flow model
In this section we develop the interconnection between N sections and N − 1 nodes to obtain the flow model. The

set of differential equations for incompressible sections and nodes are given by (32) and (43), respectively. Note that
when two PHS are coupled via a power preserving interconnection, then the model obtained is port-Hamiltonian and
the total energy is the sum of the energies of each subsystem [22, 23]. Then, in our model the total energy of the flow
is given by

H f = K f + E f (47)

Note that the outputs Q1 and Q2 of the incompressible section model are compatible with the inputs Qρ
1 and Qρ

2 of
the node model. Similarly, the inputs P1 and P2 are compatible with outputs pρ1 and pρ2 . However, note that pρ1 and pρ2
are static pressure and P1 and P2 are total pressures. Thus, we describe the flow dynamics as shown in the following
proposition.

Proposition 5. Let Pρ
1 = pρ1 + pρd and Pρ

2 = pρ2 + pρd be the total pressure sets at the inlet and outlet boundaries of
nodes where pρd is the set of dynamic pressures in the nodes, {Pi,Qi} and {Po,Qo} the pairs of total pressure and flow
at the inlet and outlet boundaries of the fluid domain, respectively. Then, there exist matrices C1, C2, C1∗ and C2∗,
such that[

C1
C1∗

]
: Q1 →

[
Qρ

2
Qi

]
,

[
C2
C2∗

]
: Q2 →

[
Qρ

1
Qo

]
,

[
C1
C1∗

]T

:
[
pρ2 + pρd

Pi

]
→ P1, and

[
C2
C2∗

]T

:
[
pρ1 + pρd

Po

]
→ P2.

Thus, the scalable port-Hamiltonian formulation for a flow with moving boundary is given by:[
π̇z

ρ̇

]
=

[
−R f φ
−φT 0

] [
∂πz H f

∂ρH f

]
+

[
ϑ −ϕπ
0 −ϕ

] [
up

ub

]
(48a)[

yQ

yb

]
=

[
ϑT 0
−ϕT

π −ϕT

] [
∂πz H f

∂ρH f

]
+

[
0 ψ

−ψT 0

] [
up

ub

]
(48b)

where up =
[
Pi Po

]T
, yQ =

[
Qi − Qo

]T
and yb contains the forces applied by the flow to the contact surfaces of the

moving wall. Matrix ϑ = ϑπ
[
CT

1∗ −CT
2∗

]
maps the boundary pressures in the corresponding fluid sections, matrix ϕ =

ϕρ +ϑρ (C2 + C1)ψπ maps the upper boundary velocities in the nodes, and φ = ϑπ (CT
1 −CT

2 )ϑT
ρ , ψ =

[
CT

1∗ CT
2∗

]T
ψπ .

Proof. Note that Qi = Q11 and Qρ
2(i−1) = Q1i,∀i ∈ [2,N]. Similarly, Qo = Q2N and Qρ

1i = Q2i,∀i ∈ [1,N − 1]. Then,
defining the matrices C1, C2, C1∗ and C2∗ as:[

C1∗

C1

]
=

[
1 01×N−1

0N−1×1 I

] [
C2

C2∗

]
=

[
I 0N−1×1

01×N−1 1

]
(49)

we obtain the power conserving interconnection rule given by:

Qρ
1

Qρ
2

P1
P2
−Qi

Qo


=



0 0 0 −C2 0 0
0 0 C1 0 0 0
0 −CT

1 0 0 CT
1∗ 0

CT
2 0 0 0 0 CT

2∗
0 0 −C1∗ 0 0 0
0 0 0 −C2∗ 0 0





pρ1 + pρd
−pρ2 − pρd

Q1
−Q2
Pi

Po


(50)
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Thus, the models (32) and (43) can be rewritten as:

π̇z = − R f∂πz K f + ϑπCT
1

(
pρ2 + pρd

)
− ϑπCT

2

(
pρ1 + pρd

)
+ ϑπCT

1∗Pi − ϑπCT
2∗Po (51)

ρ̇ = − ϕρub + ϑρC2

(
ϑT
π ∂πz K f − ψπub

)
− ϑρC1

(
ϑT
π ∂πz K f + ψπub

)
(52)

Considering ∂πz K f = ∂πz H f and from Proposition 4, we have that pρ1 = pρ2 = ϑT
ρ ∂ρE f . To define pρd it is necessary

to obtain a description of the dynamic pressure in each node. From (22) we obtain:

∂ρi K f =
ρ0

2

(
πzi

ρ0Vi

)2

∂ρi Vi +
ρ0

2

(
πz(i+1)

ρ0Vi+1

)2

∂ρi Vi+1 =
κ

ρ2
i

pρdi (53)

where pρdi =
ρ0
2

(
πzi
ρ0Vi

)2
αi +

ρ0
2

(
πz(i+1)

ρ0Vi+1

)2
(1−αi) is the dynamic pressure in the i-th node. Then, for N−1 nodes, the set of

dynamic pressures is given by pρd = ϑT
ρ ∂ρK f . This implies that pρ1 +pρd = pρ2 +pρd where pρ1 +pρd = ϑT

ρ ∂ρK f +ϑT
ρ ∂ρE f =

ϑT
ρ ∂ρH f , i.e., the flow dynamics can be rewritten as

π̇z = − R f∂πz H f + ϑπ
(
CT

1 −CT
2

)
ϑT
ρ ∂ρH f + ϑπCT

1∗Pi − ϑπCT
2∗Po (54)

ρ̇ =ϑρ (C2 −C1)ϑT
π ∂πz H f −

(
ϕρ + ϑρ (C2 −C1)ψπ

)
ub (55)

Finally, defining φ = ϑπ
(
CT

1 −CT
2

)
ϑT
ρ , ϑ = ϑπ [CT

1∗ − CT
2∗], ϕ = ϕρ + ϑρ (C2 −C1)ψπ and ψ = [CT

1∗ CT
2∗]

Tψπ , the
previous dynamic equations are written in the port-Hamiltonian form described in (4), where P and S are equal to 0,
and

J =

[
0 φ
−φT 0

]
, R =

[
R f 0
0 0

]
, g =

[
ϑ −ϕπ
0 −ϕ

]
, M =

[
0 ψ
−ψT 0

]
This leads to the system described in (48).

Note that yb = −Fc −F∗c, where Fc is the set of forces applied by the flow on the contact surface of the mechanical
structure. F∗c is an extra term that is cancelled in the interconnection between the flow and the mechanical models, as
we see in the next section.

5. Fluid-Structure model

In this section we present the interconnection between the fluid and the structure models. From Sections 3 and 4
we have that the total energy of the fluid-structure system is given by

H = Hs + H f (56)

where Hs and H f are defined in (7) and (47) respectively.

Proposition 6. Let the structure and flow port-Hamiltonian models be described as in Propositions 1 and 5, respec-
tively. Then, the PHS that describes the FSI between these two susbsystems is given by:

˙̄qs

π̇s

π̇z

ρ̇

 =


0 I 0 0
−I −Rs CTϕT

π CTϕT

0 −ϕπC −R f φ
0 −ϕC −φT 0



∂q̄s H
∂πs H
∂πz H
∂ρH

 +


0 0

CTψT I
ϑ 0
0 0


[
up

ue

]
(57a)

[
yQ

yv

]
=

[
0 ψC ϑT 0
0 I 0 0

] 
∂q̄s H
∂πs H
∂πz H
∂ρH

 (57b)

where ue and yv are the external forces and velocities sets of masses of the mechanical submodel, up and yQ are the
pressure and flow sets in the inlet and outlet boundaries of the fluid submodel, H is the total energy defined in (56),
and matrix C describes the interconnection between the mechanical structure and the corresponding flow sections of
the fluid model.
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Proof. Note that the power exchange between the fluid and mechanical system is given by uT
b Fc. Similarly, the power

source of the mechanical structure is given by uT
s ys. We consider that us = f (Fc) + ue and yb = −Fc − F∗c where f (·)

is a linear function and ue is the set of external forces applied on the mechanical model. Then, there exists a matrix
C such that C : ys → ub and −CT : yb → us. Thus, the fluid-structure model is obtained using the following power
preserving interconnection:  us

ub

−yv

 =

 0 −CT I
C 0 0
−I 0 0


 ys

yb + F∗c
ue

 , (58)

obtaining the following set of ODEs:

˙̄qs = ∂πs Hs (59)

π̇s = −∂q̄s Hs − Rs∂πs Hs + CT
(
ϕT
π ∂πz H f + ϕT∂ρH f

)
−CT F∗c + CTψT up + ue (60)

π̇z = −ϕπC∂πs Hs − R f∂πz H f + φ∂ρH f + ϑup (61)

ρ = −ϕC∂πs Hs − φ
T∂πz H f (62)

Additionally, from the interconnection rule in (58), ub = Cys. This implies that the set q f of heights of flow sections
is given by q f = Cq̄s + q0 where q0 is the set of heights when the flow velocity and pressure are equal to 0. Now, for
the i-th height we obtain that

∂qi K f =

i+1∑
j=i−i

1
2

(
πz j

ρ0V j

)2

∂qi V j = Aci
1
2

(
πzi

ρ0Vi

)2

+ Ani p
ρ
di + An(i−1) pρd(i−1)

Defining F∗c = ∂qK f , then, ∂q̄ K f = CT∂qK f = CT F∗c. Thus, the dynamics of the structure momenta can be rewritten
as follows

π̇s = −∂q̄s Hs︸  ︷︷  ︸
spring forces

− Rs∂πs Hs︸   ︷︷   ︸
damping

+ ue︸︷︷︸
external forces

−

CT F∗c︷︸︸︷
∂q̄s K f + CT

−yb=F+F∗c︷                                ︸︸                                ︷(
ϕT
π ∂πz H f + ϕT∂ρH f + ψT up

)︸                                                   ︷︷                                                   ︸
fluid force on contact surfaces: CT Fc

(63)

Finally, the system in (57) is obtained by expressing (59), (61), (62) and (63) in the port-Hamiltonian form (4),
where P, S and M are equal to zero and

R =


0 0 0 0
0 Rs 0 0
0 0 R f 0
0 0 0 0

 g =


0 0

CTψT I
ϑ 0
0 0

 J =


0 I 0 0
−I 0 CTϕT

π CTϕT

0 −ϕπC 0 φ
0 −ϕC −φT 0



Note that, the term ∂q̄ K f appears as a consequence of the fluid-structure interaction. This term compensates the
additional force F∗c in the output yb of the flow model, as shown in (63). Thus, the power exchange of the FSI is given
by yT

s CT Fc = uT
b Fc.

6. Numerical Examples

In this section we present numerical simulations of the proposed port-Hamiltonian FSI model. First we study a
simple system to analyze the pressure behavior in a node. Later we study a flexible vessel to compare the results
obtained with those presented in the literature.
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Figure 5: (a) Simple Fluid-Structure Interaction system for numerical example of Section 6.1. (b) Relative variation of density ρ1 in the node. (b)
Behavior of pressures in the node, pρ1 : static pressure, pρd1: dynamic pressure, Pρ1 : total pressure . (d) Position of masses, q1 = q̄1 + q10: position
of mass m1, q2 = q̄2 + q20: position of mass m2.

.

6.1. A simple FSI system

Consider a tube with two fluid sections with moving boundaries and one node. The upper boundary of each
section is coupled with a mass-spring damper system, as shown in Figure 5.a. The corresponding fluid-structure
port-Hamiltonian model proposed in Section 5, for this example, has the following state variables q̄s = [q̄1 q̄2]T ,
πs = [π1 π2]T , πz = [πz1 πz2]T and ρ = ρ1. The interconnection, dissipation and input sub-matrices for the model (57)
are given by

CTϕT
π =

 Ac1πz1
V1

0
0 Ac2πz2

q2

 , φ =

−A1
ρ2

1
κ

A2
ρ2

1
κ

 , CTϕ =

 ρ2
1
κ

( Ac1
2 + An1)

ρ2
1
κ

( Ac2
2 + An1)

 , CTψT =

[ Ac1
2 0
0 Ac2

2

]
ϑ =

[
A1 0
0 −A2

]
, Rs =

[
d1 0
0 d2

]
, R f =

[
r1 0
0 r2

]

and the energy gradient is given by ∂q̄s H =

[
Fs1 + Ac1

ρ0
2 v2

1 + An1 pd1

Fs2 + Ac2
ρ0
2 v2

2 + An1 pd1

]
, ∂πs H =

[
π1/m1
π2/m2

]
, ∂πz H =

[
πz1/ρ0V1
πz2/ρ0V2

]
and

∂ρH =
κ

ρ2
1

(p1 + pd1).

We consider the following parameters for this system: k1 = 100N/m, k2 = 75N/m, kc = 100N/m, m1 = m2 =

0.005kg, d1 = d2 = 0.025Ns/m ρ0 = 1.1376kg/m3, κ = 10−10kg, βS = 142 × 103Pa, L = 0.01m, `∗1 = `∗2 = 0.01m
and q10 = q20 = 5 × 10−3m. Figures 5.b, 5.c and 5.d show the simulation results for the relative variation of density
∆ρ1 = 100 ρ1−ρ0

ρ0
, pressures in the node and motion of masses, respectively, when the external inlet and outlet total

pressures are fixed to Pi = 800Pa ∀t ≥ 0 and Pi = 0Pa otherwise, and Po = 0Pa ∀t. Note that ∆ρ1 ≤ 0.1%, this
variation is small enough to be neglected in typical incompressible assumptions. However, it is useful in this work to
describe the pressure and the coupling between two incompressible sections. Moreover, this small variation implies
a small static pressure pρ1 , such that, the behavior of the total pressure Pρ

1 in the node is governed by the dynamic
pressure pρd1, as shown in Figure 5.c. The motion of the masses shows an oscillatory behavior and tends to settle in a
new equilibrium point according to the pressure distribution in the fluid.
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Table 1: Simulation parameters for the flexible vessel problem.
Using the material parameters proposed in [13]

N=51
Structure ki = 73.9483N/m, kci = 2.7 × 10−2N/m, di = 0.0209Ns/m ∀i, dci = 0 ∀i, mi = 3.7 × 10−5kg

Fluid ρ0 = 1 × 103kg/m3, βS = 2.15 × 109Pa, κ = 7.7 × 10−8kg, `∗i = 9.8 × 10−4m

N=71
Structure ki = 51.9883N/m, kci = 3.86 × 10−2N/m, di = 0.0148Ns/m ∀i, dci = 0 ∀i, mi = 2.65 × 10−5kg

Fluid ρ0 = 1 × 103kg/m3, βS = 2.15 × 109Pa, κ = 5.53 × 10−8kg, `∗i = 7.04 × 10−4m
Using the material parameter proposed in [3]

N=71
Structure ki = 100.604N/m, kci = 0.9085N/m, di = 0.0434Ns/m,∀i, dci = 0,∀i, mi = 2.92×−5kg

Fluid ρ0 = 1 × 103kg/m3, βS = 2.15 × 109Pa, κ = 6.63 × 10−8kg, `∗i = 8.45 × 10−4m

6.2. Flexible vessel

rs

Ls

hs {

Vessel wall

Fluid way

Figure 6: Flexible vessel description.

A flexible Vessel is a benchmark problem used to analyze the pressure impulse propagation in a FSI system. It
is related to the blood flow through an artery and it has been used for validating the performance of FSI solvers
[13, 2, 3]. Considering an axi-symmetric vessel behavior, we can approximate the vessel structure and fluid using
the model proposed in this paper with equal number of masses and incompressible fluid sections, i.e., n = N. The
structure parameters are approximated using the following formula

`∗i = Ls/N,∀i q0i = rs,∀i mi = 2πρsrshs`
∗
i ,∀i

ki = β1λm
`∗i hs

πrs
,∀i kci = β2µm

πrshs

`∗i
,∀i di = ζ

√
miki,∀i

where rs and Ls are the vessel radius and length, respectively, ρs and hs are the density and thickness of the vessel wall
(as shown in Figure 6), λm and µm are the Lamé coefficients, and β1 and β2 are dimensionless factors. The damping
parameters are empirically adjusted. For the fluid we consider Ai = πrsqi, V∗i = Ai`

∗
i and κ = ρ0V∗i 10−3.

First we use the parameters proposed in Section 5.1 of [13] where Ls = 0.05m, hs = 0.001m, ρs = 1.2×103kg/m3,
λm = 17.308 × 104Pa , µm = 11.538 × 104Pa, and ρ0 = 1 × 103kg/m3. We divide the structure into two different
numbers of sections, N = 51 and N = 71, and equal numbers of incompressible sections in the fluid, i.e., matrix C in
(58) is the identity matrix. We use β1 = 6.7, β2 = 1.5 × 10−5, and ζ = 0.4. The parameter values are summarized in
Table 1. Using the same input conditions as described in [13], i.e., Po = 0Pa, ∀t and

Pi =

1.333 × 103Pa, 0 ≤ t ≤ 3 × 10−3s
0Pa, otherwise

with a sample time of 4 × 10−5s, we obtain the pressure wave propagation shown in Figure 7, where the structure
displacements have been scaled 10 times for the sake of clarity. Note that the speed propagation and attenuation of
the pressure waves are in correspondence with the results in [13, Figure 2]. However, a difference from the results in
[13] is the static pressure undershoot behind the pressure pulse propagation and a negative displacement of the tube
walls. Note that the distance between this undershoot and the pressure pulse increases as the pulse propagates through
the tube. This behavior is consistent with the results reported in [32, Figure 6], where a 3D model of the flexible tube
is studied. Regarding the negative displacement, consider the displacement at half length of the structure shown in
Figure 8. This displacement shows the same pattern as the radial displacement reported in [13, Figure 3.b]. Then,
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the main difference with respect to the results reported in [13] is given by the displacement at both ends of the tube.
This is due to the fact that in [13] the tube is fixed at both ends, restricting the motion of the tube near these locations.
In this work we do not implement this restriction, allowing greater displacement at the ends of the tube, as shown in
Figure 7.a.

N = 71

−50 0 50 100 150

N = 51

−50 0 50 100 150

(a) t = 4 ms

N = 71

−50 0 50 100 150

N = 51

−50 0 50 100 150

(b) t = 6 ms

N = 71

−50 0 50 100 150

N = 51

−50 0 50 100 150

(c) t = 8 ms

Figure 7: Static pressure (Pa) distribution, pρ1 , along the tube and scaled structure displacements for different time instants and two different number
of sections.
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Figure 8: Displacement of the wall in the half length point of the structure (Displacements q̄26 and q̄36 for N = 51 and N = 71, respectively).

Now, we consider the parameters used in [3] where Ls = 0.06m, hs = 0.001m, ρs = 1.1 × 103kg/m3, λm =

17 × 104Pa, µm = 5.75 × 104Pa, and ρ0 = 1 × 103kg/m3. The parameters are obtained using N = 71, β1 = 1.1,
β2 = 8.5 × 10−5 and ζ = 0.8 (see Table 1 for details). We define the input pressure pulse similarly as in [2, 3], i.e.,
Po = 0Pa and

Pi =

666.5
(
1 − cos

(
6.28t
0.003

))
Pa, 0 ≤ t ≤ 0.003s

0Pa, otherwise

Figure 9 shows the pressure distribution and structure displacement for 3 different time instants. The pressure dis-
tributions shown in Figure 9.a at time instants 4 × 10−3s, 8 × 10−3s and 12 × 10−3s are in correspondence with the
results reported in [2, Figure 8] and [3, Figure 8] at h = 0.01. Similarly, the shape of the wall displacements shown
in Figure 9.b are consistent with the results reported for the fluid-structure interface displacement in [2, Figure 9] and
[3, Figure 7] at h = 0.01. However, a difference between our results and those shown in [2, 3] is given by the negative
displacement at the left-end side of the tube in the first instants of the simulation. As we have commented above, this
difference is due to the fact we do not constraint the motion at the ends of the tube, allowing a free motion of the wall.
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Figure 9: Simulation results for flexible vessel using the material parameter of [2] at instants 4×10−3s, 8×10−3s and 12×10−3s. (a) Static pressure
distribution, pρ1 , along the tube. (b) Wall displacement distribution, q̄s, along the tube.

7. Conclusion

A scalable approach for the modeling of 1D incompressible fluid interactions with flexible structures has been pro-
posed. Describing the mechanical structure by sets of mass-spring-damper systems and relaxing the incompressibility
hypothesis a simple and scalable coupled fluid-mechanical port-Hamiltonian model has been derived. The fluid and
the mechanical structure are coupled through a power-preserving interconnection between the velocities and forces in
the contact areas of the two systems. Instrumental for the construction of the model is the definition of compressible
nodes which allow the total pressure coupling between incompressible fluid sections. Numerical results show that the
density variations in the nodes are sufficiently small to consider the fluid incompressible. A flexible vessel model has
been studied and the results obtained show pressure wave propagation in the flow and a structure motion in correspon-
dence with previous works based on finite-element models. Since the proposed model is a port-Hamiltonian system
it can be exploited for control purposes or to interconnect with other fluid-mechanical systems.
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Appendix. Notation Table

General Notation
Symbol Description Symbol Description

0 Zero matrix of appropriate dimensions I Identity matrix of appropriate dimensions
∇ f Gradient of f ∇ · ( f ) Divergence of f
∇2 f Laplacian of f ∂t Partial derivative with respect to time
∂x Partial derivative with respect to x ẋ Time derivative of x
Ns Number of structure sections N Number of incompressible flow sections

Structure sub-System
Symbol Description Symbol Description
mi, πi Mass and momentum of the ki, di Spring and damper coefficients in the

i-th structure section i-th structure section
kci, dci i-th coupling spring and damper coefficients q̄i Displacement of i-th structure section
πs Set of structure momenta q̄s Set of structure displacement
vci Velocity of the i-th structure section. Hs Total energy of the structure
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Fluid sub-System
Aci Fluid-structure contact area in the i-th vi Average longitudinal velocity in the i-th

incompressible flow section incompressible flow section
λi Loss factor of the i-th incompressible flow Vi Volume of the i-th incompressible flow

section section
An j Fluid-structure contact area in the j-th node V̄ j Volume of the j-th node
ρ0 Reference fluid density ρ j Density in the j-th node

pρj , pρd j Static and dynamic pressures in the j-th node πzi Average momentum of the i-th
incompressible flow section

πz Set of fluid momenta ρ Set of node densities
βS Bulk modulus of the fluid κ Mass of nodes
Pi Total pressure in the inlet fluid boundary Po Total pressure in the outlet fluid boundary
Qi Flow in the inlet fluid boundary Qo Flow in the outlet fluid boundary
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