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Energy-based fluid–structure model of the vocal folds
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Lumped elements models of vocal folds are relevant research tools that can enhance the understanding of
the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to
obtain an energy-based model for the fluid–structure interactions between the vocal folds and the airflow
in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described
as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-
dimensional flow assumption in lumped mass models. The simulation results show that the proposed
energy-based model successfully reproduces the oscillations of the vocal folds, including the collision
phenomena, and it is useful to analyze the energy exchange between the airflow and the vocal folds.

Keywords: port-Hamiltonian systems; fluid–structure interactions; vocal folds; compressible fluids;
lumped-parameter models.

1. Introduction

The need to better understand the pathophysiology of phonological disorders has motivated the study
of vocal fold dynamical behavior through mathematical models (Erath et al., 2013; Samlan et al., 2013;
Zañartu et al., 2014). In this sense, infinite-dimensional models have been proposed to obtain a detailed
description of intraglottal airflow and vocal folds structure, as shown in Jiang et al. (2017), Shurtz &
Thomson (2013) and Zheng et al. (2011). However, these models have strong computational demands
in the implementation of the spatial discretization methods used that hamper comprehensive multi-
physics descriptions and parametric variations, severely limiting their scope. On the other hand, finite-
dimensional models, using mass-spring-damper (MSD) representations of the vocal folds structure
(e.g., Ishizaka & Flanagan, 1972; Steinecke & Herzel, 1995; and Story & Titze, 1995; Galindo et al.,
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2017), are computationally inexpensive and have been successfully used for the exploration of several
normal and pathological conditions. One of the most common assumptions in these types of models
is to consider the airflow as a quasi-steady behavior one-dimensional flow (Erath et al., 2013). As a
consequence of this simplification, the flow is not affected by the dynamics of the vocal folds, limiting
the interaction between the vocal folds model and the intraglottal airflow only to the geometry of the
flow channel in the glottis to obtain a Bernoulli or jet flow behavior. Flow solutions are pivotal for
explaining the energy transfer that sustains (normal and pathological) phonation. According to Mittal
et al. (2013) and Thomson et al. (2005), the fluid–structure energy transfer in the glottis is greatly
affected by the flow dynamics, however, in traditional lumped-parameter models with a quasi-steady
airflow analysis, such as Steinecke & Herzel (1995) and Story & Titze (1995), the pressure over vocal
fold contact surface is given by a mapping of subglottal and supragottal pressures only, restricting the
analysis of energy transfers between the intraglottal airflow and vocal folds.

In recent years, there has been a growing interest in analyzing the energy flux in the glottis and its
influence in vocal folds dynamics and pathogenesis of vocal disorders (Thomson et al., 2005; Titze &
Hunter, 2015; Espinoza et al., 2017). In this sense, the port-Hamiltonian framework uses the energy as
lingua franca between different physical domains, providing a powerful framework to model the fluid–
structure interactions (van der Schaft & Jeltsema, 2014). Additionally, the description of system dynam-
ics in terms of the total energy allows for using system theory (e.g., passivity) to analyze the stability
of the model (van der Schaft, 2017). In particular, the dynamics of fluid–structure interaction systems
has been described, focusing in the energy flux of the system, for example, using distributed parameters
model for a vibro-acoustic system (Trenchant et al., 2015) and a lumped parameters model for the
vocal folds (Encina et al., 2015), for the mechanical structure only and for a simple mass description
(Hélie & Silva, 2017). Similarly, Mora et al. (2018) propose a port-Hamiltonian-based fluid–structure
interaction model for the body-cover formulation of vocal folds; however, the coupling between the
fluid and structure domains is given by signal interconnections, limiting the model scalability. In this
sense, a scalable power-balanced formulation for the glottal tract is proposed by Wetzel et al. (2019),
where the interconnection between adjacent sections of the glottal tract is given by auxiliary junction
variables and the coupling with the elastic wall is given by additional connecting springs.

In this paper, we present an energy-based fluid–structure model for the vocal folds. The vocal
fold structure is considered as the MSD system proposed by Story & Titze (1995). We assume the
intraglottal airflow as a compressible and irrotational fluid. Dividing the glottal tract in N sections for
the airflow velocity and density, we obtain a finite-dimensional port-Hamiltonian model of the fluid
dynamics from the partial differential equations that describe the conservation laws for the fluid (Bird
et al., 2014). This fluid model is coupled in a power-preserving connection to the MSD system. We
show in simulations that this finite-dimensional system encompasses all the phenomena involved in
fluid–structure interactions, including oscillations and shocks.

This paper is organized as follow: in Section 2, a brief introduction to port-Hamiltonian system is
presented. In Section 3, models for the vocal fold structure and intraglottal airflow and their coupling are
described. Finally, the simulation results and conclusions are presented in Sections 4 and 5, respectively.

2. Port-Hamiltonian systems

The description of mechanical systems, as mass-spring damper systems used in simplified models of
vocal folds, is commonly obtained using the classical Euler–Lagrange framework. An alternative to
Euler–Lagrange in the modeling of physical systems is the port-Hamiltonian framework. The core
of the port-Hamiltonian modeling is the use of the total stored energy of the system to describe the
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dynamics (van der Schaft & Jeltsema, 2014). Moreover, the port-Hamiltonian formalism is a powerful
tool to describe multi-physical systems, providing a framework to model different kinds of systems, for
example, chemical reaction networks (van der Schaft et al., 2016), electromechanical systems (Pyrkin
et al., 2018) and fluid–structure interactions (Cardoso-Ribeiro et al., 2016, 2017), among others.

In the port-Hamiltonian approach, the system behavior is a function of the gradient of the energy and
the input u and the output y belong to conjugated spaces, such that, the product yTu is the instantaneous
power supplied to the system (van der Schaft & Jeltsema, 2014; van der Schaft, 2017). In this work, we
consider an input-state-output port-Hamiltonian system (PHS) with feed-through term having the from

ż = [J(z) − R(z)]
∂H(z)

∂z
+ g(z)u (2.1a)

y =gT(z)
∂H(z)

∂z
+ M(z)u (2.1b)

where z ∈ R
n, u ∈ R

m and y ∈ R
m are the state vector, and the input and output ports, respectively.

The Hamiltonian H(z) : Rn → R is a positive definite function that represents the total energy of the
system. J(z) = −JT(z) is an n × n interconnection matrix that describes the energy transfer between
energy storing elements; R(z) = RT(z) � 0 is an n×n dissipation matrix that describes the energy losses
in the system; g(z) is an n×m matrix that maps the inputs to the state dynamics; and M(z) = −MT(z) ∈
R

m×m is the feed-through term matrix. For a general formulation of input-state-output port-Hamiltonian
systems with feed-through terms, see van der Schaft & Jeltsema (2014, Section 4.2).

A special feature of PHS (2.1) is given by the behavior of the Hamiltonian. By the positiveness of
R(z) and the skew symmetry of J(z) and M(z), the time derivative of H(z) is bounded by the supplied
power, i.e.,

Ḣ(z) =
(

∂H(z)
∂z

)T

ż = −
(

∂H(z)
∂z

)T

R(z)
∂H(z)

∂z
+ yTu � yTu. (2.2)

This implies that the change of stored energy in system (2.1) cannot exceed the energy supplied to
it, i.e., H(t)− H(0) �

∫ t
0 yT(τ )u(τ ) dτ . This, in fact, shows that PHS are passive and, as a consequence,

Lyapunov stable (van der Schaft & Jeltsema, 2014). As shown in Haddad et al. (2018) and Nguyen et al.
(2019), the passivity is a useful feature in the control and stabilization of linear and non-linear systems.

To obtain a model of the vocal folds and the intragottal airflow using the port-Hamiltonian theory,
in the sequel, we consider that the total energy in the glottis is given by the kinetic and internal energies
of the intraglottal airflow and the kinetic and potential energies stored in the mechanical system that
represents the vocal folds. Considering that vibratory cycle of vocal folds is stimulated by the subglottal
pressure, trachea output pressure, supraglottal pressure and the vocal tract input pressure, it is possible
to derive an energy-based model of the vocal folds and the intraglottal airflow as in (2.1), where the

output y is given by flows and the state variables are defined as z = [
zm zf

]T
, where zm represents

the state variables associated with the mechanical model of the vocal folds and zf represents the state
variables associated with the intraglottal airflow.

3. Fluid–structure model

In this section, we present an energy-based fluid–structure model of the glottis. For this purpose, we
assume a symmetrical behavior of the vocal folds and, as consequence, only a hemi-larynx is considered,
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Fig. 1. Hemi-larynx glottis model. Left: lateral view. Right: bottom view.

as shown in Fig. 1. In the literature, physical-based models have been used to describe the behavior of
the layered tissue-epithelium, lamina propria and muscle of vocal folds (Jiang et al., 2017; Shurtz &
Thomson, 2013; Zheng et al., 2011). However, the vibrations of the vocal folds commonly exhibit two
dominant eigenfrequencies whose behavior can be described through simplified MSD models (Sváček &
Horáček, 2018). Then, for the mechanical structure, we consider the body-cover model (BCM) proposed
by Story & Titze (1995), where the bottom surfaces of cover masses, m1 and m2, are in contact with the
intraglottal airflow through the surfaces S1 and S2, respectively. Due to the assumed symmetry, the cover
masses collide in the midsagittal plane of the glottis. To model the intraglottal flow, we consider the air
as an unsteady, compressible and irrotational flow. In the sequel, we use the subindex m for variables
associated with the mechanical structure and the subindex f for the variables of the intraglottal airflow.

3.1. Energy-based model of the mechanical structure

From a mechanical point of view, the BCM is a simplified description of the vocal fold behavior, as
shown in Fig. 1. Cover masses, m1 and m2, describe the motion of the epithelial layer and lamina propria
layer of the vocal folds and the body mass m3 describes the motion of the muscle that is effective in
the vibration (see Story & Titze, 1995, for details). Tissue deformations between the epithelial layer
and the muscle are described through interconnection of non-linear springs and linear dampers between
the cover masses and the body mass. Similarly, one linear damper with coefficient d3 and one non-
linear spring with coefficients k3 and η3 describe the tissue deformation between the muscle and the
glottal wall. The shear strain in the epithelial layer is described through a linear coupling spring, with
coefficient k12, between the cover masses. This yields the MSD system shown in Fig. 1.

Similarly, when the vocal folds collide another deformation appears. This deformation is given by
the tissue compression of the epithelial and lamina propria layers. To describe this phenomenon in
lumped-parameter models, it is common to allow the overlap of the cover masses (Ishizaka & Flanagan,
1972; Steinecke & Herzel, 1995; Story & Titze, 1995), i.e., in this case, masses cross the midsagittal
plane and have a negative position. Figure 2 shows the collision of the lower half part of vocal folds
and its representation by the overlapping of mass m1. Then, this tissue compression is characterized
by additional non-linear springs interconnected with the cover masses, applying a force normal to the
midsagittal plane. These springs are activated only when the collision occurs and are function of the
overlapping Δci.

An energy-based model using the port-Hamiltonian framework of a simplified mechanical structure
version of the body-cover model is proposed by Encina et al. (2015), where the energy stored by lateral
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Fig. 2. Description of the collision at lower half side of vocal folds in the glottal tract using the BCM from a coronal view. Δc1
denotes the overlapping of m1 that characterized the corresponding collision spring.

springs given by the displacement of corresponding cover masses, and auxiliary variables are used to
describe the elongation of collision springs and no airflow dynamics were considered. Dynamics of these
auxiliary variables and the respective spring forces are enable by switches that are activated when the
corresponding cover mass is in collision and disable otherwise. However, this formulation can have some
drawbacks. For example, some of the state and auxiliary variables need to be appropriately reinitialized
to 0 after each collision to avoid numerical errors that increase in time. In this section, we present
a more detailed energy-based model of the mechanical structure of the body-cover model, where the
stored energy by lateral spring is given by the relative displacement between the cover masses and the
body mass and without the use of auxiliary variables to describe the collision behavior. This model is
later connected to the airflow (see Section 3.3).

Denoting by qmi(t) the position with respect to the midsagittal plane of the i-th mass at the time
instant t, as shown in Fig. 1, and by qi0 the corresponding equilibrium point at the reference pressure p0

in the glottis. We define q̂i = qmi(t) − qi0, ˙̂qi and πi = mi
˙̂qi as the transverse displacement, velocity and

momentum of mass mi, respectively. To describe the collisions of vocal folds, we define the elongation
of collision springs as Δci = qmi(t)si, i ∈ {1, 2}, where si is a switch variable defined as

si =
{

1, qmi � 0

0, qmi > 0
, i ∈ {1, 2} (3.1)

The total energy of the mechanical structure is given by

Hm =
6∑

j=1

Umj +
3∑

i=1

Kmi (3.2)

where Umj is the stored potential energy in the j-th spring and Kmi is the kinetic energy of the i-th mass.
The potential and kinetic energies are detailed in Appendix A. The dynamic of mass mi is expressed
through the following momentum balance:

π̇i =
(∑

Fs

)
i
−

(∑
Fd

)
i
+ Fi (3.3)
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where
(∑

Fs

)
i denotes the forces applied by springs,

(∑
Fd

)
i denotes the forces dissipated by dampers

and Fi denotes the external force applied over the i-th mass. Denote by Fdi = di(
˙̂qi − ˙̂q3), i ∈ {1, 2}

the forces dissipated by the connecting dampers between the cover masses and the body mass, and by
Fd3 = d3

˙̂q3 the force dissipated by the damper between the body mass and the gottal wall, see Fig. 1,
where di = (

ζi + siζ
col
i

)√
miki are the damping coefficients, with ζ and ζ col

i the normal damping factor
and the additional damping factor active only when collision occurs, respectively, and ki the coefficient
of the corresponding lateral spring (Story & Titze, 1995). Then, considering the relationships (A.2) and
(A.9) detailed in Appendix A, the PHS that describe the dynamics of the structure of the vocal folds is
given by:

żm = [
Jm − Rm

] ∂Hm(zm)

∂zm
+ gmum (3.4a)

ym =gT
m

∂Hm(zm)

∂zm
(3.4b)

where zm = [ q̂1 q̂2 q̂3 π1 π2 π3 ]T are the state variables, ym = [
v1 v2

]T are the cover

mass velocities, um = [
F1 F2

]T are the forces applied to each mass, Jm =
[

03×3 I
−I 03×3

]
is the

interconnection matrix, Rm =
[

03×3 03×3
03×3 R1

]
is the dissipation matrix and gm =

[
03×2
G1

]
is the input

matrix, where

R1 =
⎡
⎣ d1 0 −d1

0 d2 −d2−d1 −d2 rs1

⎤
⎦ G1 =

⎡
⎣1 0

0 1
0 0

⎤
⎦

and where rs1 = d1 + d2 + d3.
The model (3.4) describes the dynamics of the masses and includes switches to model the collision

when the vocal folds are closed.

3.2. Energy-based model of the fluid

To obtain an energy-based model of the airflow, we use balance equations for mass and momentum that
are given by the following partial differential equations:

∂ρ

∂t
= −∇ · (ρv

)
(3.5)

∂v
∂t

= −∇
(

1

2
|v|2

)
− 1

ρ
∇p − 1

ρ
∇ · τ (3.6)

where v is the velocity field, p is the pressure, ρ is the fluid density and the Newtonian viscosity tensor

is given by τ = −μ
(∇v + (∇v)T

) +
(

2
3μ − κ

) (∇ · v
)

I with μ and κ as the viscosity and dilatational

viscosity, respectively, and I denotes the identity matrix (Bird et al., 2014).
From the ideal gas law, the airflow pressure is given by p = nRT/V, where V, n and T are the volume,

number of moles and temperature of the gas, respectively, and R denotes the universal gas constant.
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Using the molar weight M, the airflow pressure can be rewritten as p = ρ
(

∂p
∂ρ

)
T

where ρ = Mn/V and(
∂p
∂ρ

)
T

= RT/M is the isothermal compressibility. Moreover, isothermal compressibility is related to the

isentropic compressibility by the thermodynamic formula
(

∂p
∂ρ

)
s

= γ
(

∂p
∂ρ

)
T

, where γ is the specific

heat ratio of the gas, γ = 1.4 for the air, and
(

∂p
∂ρ

)
s

= c2 with c as the speed of sound (Landau &

Lifshitz, 1987, Chapter 8). Then, the pressure of the airflow can be expressed as follows:

p =
(

∂p

∂ρ

)
s

ρ

γ
= c2

γ
ρ. (3.7)

From a port-Hamiltonian point of view, we need to relate the pressure with the energy of the fluid.
In this sense, we use the specific form, per unit mass, of the Gibbs equation for a monoatomic fluid, i.e.,
du = −pd 1

ρ
+ Tds, where u and s are the specific internal energy and entropy, respectively. Considering

the isentropic assumption, this equation is reduced to du = −pd 1
ρ

. Then, the pressure can be expressed
as follows:

p = ρ2
(

∂u

∂ρ

)
s

. (3.8)

In port-Hamiltonian formulations of fluids, it is common to use the specific enthalpy h = u +
p
ρ

. Considering the pressure description in (3.7) and (3.8), then for an isentropic fluid we obtain the

following identity ∇h = 1
ρ
∇p (van der Schaft & Maschke, 2002; Kotyczka, 2013; Matignon & Hélie,

2013) and the internal energy is given by u = c2

γ
ln(ρ)+Cu, where Cu is a constant. Note that depending

of the selected value for Cu it is possible to obtain negative values for the internal energy. This may be a
drawback to analyze the system stability using the total energy as Lyapunov function (van der Schaft &
Jeltsema, 2014). On the other hand, in dissipative fluid processes, the temporal evolution of the system
depends on the energy available to be converted into mechanical work, and the total energy is replaced
by the total available energy (Mackay & Phillips, 2019). In this sense, we use a non-negative availability
function for the internal energy.

In this work, we prefer the use of relative pressure p̂ = p − p0 and relative enthalpy ĥ = h − h0,

where p0 = c2

γ
ρ0 and h0 are the pressure and enthalpy at reference density ρ0, respectively. Additionally,

denoting by ū(ρ) the available internal energy, such that ĥ = ū(ρ)+ p̂/ρ and p̂ = ρ2 ∂ ū(ρ)
∂ρ

, we obtain the

relationship 1
ρ
∇p = 1

ρ
∇p̂ = ∇ĥ. Moreover, assuming an irrotational flow then 1

ρ
∇ · τ = 1

ρ
∇ (

μ̂∇ · v
)
,

where μ̂ is a function of shear and dilatational viscosities (see Mora et al., 2020, for details). Thus, the
momentum equation (3.6) can be rewritten as follows:

∂v
∂t

= −∇
(

1

2
|v|2 + ĥ

)
− 1

ρ
∇ (

μ̂∇ · v
)

. (3.9)

The relative pressure and available internal energy of intraglottal airflow are given by

p̂ = c2

γ

(
ρ − ρ0

)
(3.10)
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ū(ρ) = c2

γ

(
ln

(
ρ

ρ0

)
+ ρ0

ρ
− 1

)
(3.11)

where ū(ρ) � 0 with a minimum at ρ = ρ0. The relative enthalpy is then given by

ĥ = c2

γ
ln

(
ρ

ρ0

)
= ∂

∂ρ

(
ρū(ρ)

)
. (3.12)

3.2.1. Finite-dimensional fluid model.. To simplify the model, we neglect the sagittal component of
the airflow, considering a two-dimensional flow. Since we assume an irrotational flow, we can reduce
the number of state variables using the following assumption.

Assumption 3.1 Denote by w and v the transverse and longitudinal components of the flow velocity.
The gradient of w is uniform in each velocity section and is given by ∂w

∂y = vc/q and ∂w
∂x = 0, where x

and y denote the longitudinal and transverse axes, vc and q are the velocity and position of the glottal
wall, respectively, and vc � v.

As a consequence of Assumption 3.1, in each velocity section w = vcy/q. This implies an algebraic
constraint between w and the glottal wall dynamics. Thus, to complete the flow description, the unknown
variable is the longitudinal velocity v. Additionally, as vc � v, we can use the following approximation
|v|2 ≈ v2. With these considerations, we reduce the velocity analysis to the longitudinal component,
whose momentum equation is described by

∂v

∂t
= − ∂

∂x

(
1

2
v2 + ĥ

)
− μ̂

ρ

∂

∂x

∂v

∂x
. (3.13)

To describe the flow velocity and density in the glottis, we divide the fluid domain in n sections of
length � for each variable, as shown in Fig 3(a and b), where ρj denotes the average density in volume

Ω̃j between longitudinal points x̃j−1 and x̃j, with x̃j = x̃0 + j�; and vj denotes the average velocity in

volume Ωj between longitudinal points xj−1 and xj, with xj = x̃0 + (j + 1
2 )�. Then, the fluid dynamics

are described using a one-dimensional mesh, as shown in Fig. 3(c), where the boundary conditions are
given by the momentum density in the glottis inlet boundary, ρv|x̃0

, and the energy plus enthalpy in the

outlet boundary, 1
2 v2 + ĥ|xn

. This mesh is equivalent to the mesh proposed by Trenchant et al. (2018) for
one-dimensional discretization of infinite-dimensional port-Hamiltonian systems.

Note that for an arbitrary section with average velocity vj the cross-sectional area Aj = Lqj is
uniform, with qj and L as the height and depth of the j-th velocity section, and the volume is given by
Ωj = Aj�. The contact surface Sj with the mechanical structure have velocity vc,j and area Ac,j = L�, as
shown in Fig. 4(a). For a density section j, the volume is given by the combination of the half of adjacent

velocity sections, Ω̃j =
(
Ωj−1 + Ωj

)
/2 = �L(qj + qj−1)/2. Similarly, the area of the contact surface

is a combination of the areas of adjacent velocity sections, with the corresponding contact velocities, as
shown in Fig. 4(b).
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Fig. 3. Spatial discretization of fluid variables for the finite-dimensional model. (a) Description of the density. (b) Velocity
description. (c) Equivalent one-dimensional mesh.

Fig. 4. Arbitrary j-th sections of the fluid domain. (a) Velocity section. (b) Density section. Ac,j and vcj are the area and velocity
of the contact surface Sj in the velocity section with volume Ωj and average velocity vj. ρj is the average density of the section

con volume Ω̃j.

Proposition 3.1 Consider a fluid domain division as shown in Fig. 3. For the j-th section of density and
velocity, the fluid dynamics can be described by the following ordinay differential equations (ODEs):

ρ̇j = 1

Ω̃j

(
Qj−1 − Qj − ρj

Ac,j−1

2
vc,j−1 − ρj

Ac,j

2
vc,j

)
(3.14)

v̇j = 1

�

(
1

2
ṽ2

j + ĥj −
(

1

2
ṽ2

j+1 + ĥj+1

))
−Φj (3.15)

where ρj and vj are the average density and velocity of the corresponding section, Qj = Ajρv|x̃j
is the

mass flow at x̃j, Aj is the cross-sectional area of j-th velocity section, Ac,j and vc,j are the area and velocity,

respectively, of the contact surface Sj on the j-th velocity section, 1
2 ṽ2

j = 1
2 v2|xj−1

and ĥj = ĥ|xj−1
are

the kinetic energy by unit mass and relative enthalpy at xj−1 and Φj is the average velocity drop due to
energy losses in the j-th velocity section.

Proof. See Appendix B. �
Using (3.14) and (3.15), we can obtain a finite-dimensional port-Hamiltonian model for the fluid

dynamics. In this sense, considering the fluid domain division in Fig. 3, we define the fluid total energy
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as follows:

Hf =
n∑

j=1

(
Kfj + Ufj

)
+ 1

4
ρ1Ai�v2

i + 1

2
An�ρoū(ρo) (3.16)

where Kfj = 1
4Ωj(ρj + ρj+1)v

2
j and Ufj = 1

2

(
Ωj−1 + Ωj

)
ρjū(ρj) describe the kinetic and potential

energies, respectively, in the corresponding fluid section, Ai and vi are the cross-sectional area and
velocity at x = x̃0, and ρo denotes the fluid density at x = xn (see Appendix .3 for details).

Considering the fluid effort described in (18), the mass flow at x = x̃j is given by Qj = 1
�

∂Hf
∂vj

.

Similarly, considering 1
2 ṽ2

j as the weighted mean between the kinetic energy per mass unit of adjacent

velocity sections, i.e., 1
2 ṽ2

j = 1
2 v2

j αj + 1
2 v2

j−1

(
1 − αj

)
where αj = Aj/(Aj + Aj−1) = Ωj/(2Ω̃j). Then,

from (19), the kinetic energy per unit mass plus specific enthalpy at xj−1 is given by 1
2 ṽ2

j + ĥj =
(1/Ω̃j)

∂Hf
∂ρj

. This implies that the systems (3.14) and (3.15) can be expressed as

ρ̇j = 1

Ω̃j

(
1

�

∂Hf

∂vj−1
− 1

�

∂Hf

∂vj
− ρj

Ac,j−1

2
vc,j−1 − ρj

Ac,j

2
vc,j

)
(3.17)

v̇j = 1

�

(
1

Ω̃j

∂Hf

∂ρj
− 1

Ω̃j+1

∂Hf

∂ρj+1

)
−Φj. (3.18)

Note that, from the discretization scheme in Fig. 3, the adjacent sections to the inlet and outlet
boundaries are given by the first density section and the last velocity section, respectively. Then, to
define the inputs and outputs of the system, the ODEs of these systems are written as follows:

ρ̇1 = 1

Ω̃1

(
Qi − 1

�

∂Hf

∂v1
− ρ1

Ac,0

2
vc,0 − ρ1

Ac,1

2
vc,1

)
(3.19)

v̇n = 1

�

(
1

Ω̃n

∂Hf

∂ρn
−

(
1

2
ṽ2

o + ĥo

))
−Φn (3.20)

where Qi = Aiρv|x̃0
and 1

2 ṽ2
o + ĥo =

(
1
2 v2 + ĥ

)
|xn

describe the inputs associated with the inlet and

outlet boundary conditions, respectively. Similarly, 1
2 ṽ2

i + ĥi =
(

1
2 v2 + ĥ

)
|x̃o

≈ 1
Ω̃1

∂Hf
∂ρ1

and Qo =
Anρv|xn

= 1
�

∂Hf
∂vn

− ρoAcn
2 vcn describe the corresponding power conjugated outputs.

3.2.2. Energy losses.. As shown in Mora et al. (2020), for an isentropic fluid, from an infinite-
dimensional port-Hamiltonian point of view, the dissipative elements of the flow are given by the
viscosity tensor of the fluid. However, from a macroscopic point of view, other sources of dissipation
appear. According to Bird et al. (2014), the dissipated power Eλ in a volume Ω must have the general
form:

Eλ = ρv3A ×
(

a dimensionless function of Reynolds
number and geometrical ratios

)
� 0 (3.21)
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where ρ, v and A are a characteristic density, velocity and area of the fluid domain in volume Ω. The

dimensionless function in (3.21) can be expressed as 1
2λ with λ = λf + λg, where λf , the friction loss

factor, is a function of the Reynolds number, viscous losses, and λg is a loss factor associated with
additional resistances determined by the geometry of the fluid way, such as sudden changes in the cross-
sectional area, see Bird et al. (2014, Section 7.5) for details. Then, (3.21) can be rewritten as

Eλ =
(
ρv

) 1

2
λA|v|v � 0 (3.22)

where the term 1
2λA|v|v describes the rate of velocity drop in a volume Ω due to the energy losses.

This term is equivalent to the dissipative terms used in others works. For example, in Kotyczka (2013)
the dissipation term, in an infinite-dimensional form, of one-dimensional flow in a rough pipeline is
described by 1

2λf |v|v/D where D is the pipe diameter and λf is obtained from the Haaland equation (Bird
et al., 2014). Integrating this term in a pipe section of volume Ω, we obtain

∫
Ω

1
2Dλf |v|v dΩ = 1

2λf A|v|v
that is equivalent to the rate of velocity drop derived from (3.22).

In the case of the intraglottal airflow, according to Lucero & Schoentgen (2015), the viscosity effects
are relevant at gottal opening and closure, affecting the waveform of the output flow at those instants,
decreasing the amplitude at instant of maximum opening (Zhang et al., 2020) and the fluid separation
in the glottis (Alipour & Scherer, 2004). On the other hand, the losses associated with geometry of the
glottal tract have an impact in the aerodynamics and the energy transfer to the vocal folds, affecting the
vibration cycle (Zañartu et al., 2014).

In the j-th velocity section, the characteristic velocity and area are given by vj and Ωj/�, respectively.
Then, the dissipated power described in (3.21) can be expressed as follows:

Eλj
=1

2

λj

�

ρj + ρj+1

2
Ωj|vj|v2

j = λj|vj|
�
(
ρj + ρj+1

)
Ωj

(
∂Hf

∂vj

)2

(3.23)

where λj = λ
g
j + λ

f
j � 0 is the loss factor in Ωj. Similarly, from a port-Hamiltonian point of view,

the dissipation power in the j-th velocity section is given by Eλj
= ∂Hf

∂vj
Φj. Comparing with (3.23), we

obtain that

Φj = dfj

∂Hf

∂vj
(3.24)

where dfj = λj|vj|
�(ρj+ρj+1)Ωj

� 0. Given the fluid domain description used in this work, we only consider

sudden contractions and expansions. The geometric loss factor λ
g
j is defined as (Mulley, 2004):

λ
g
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.5

(
1 − Aj+1

Aj

)
, sudden contraction, Aj+1 � Aj

(
1 − Aj

Aj+1

)2

, sudden expansion, Aj+1 � Aj.

(3.25)
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Note that these expressions for sudden contraction and expansion losses are given in textbooks
for steady flow and motionless walls. We use these expressions updating the values of areas in each
simulation instant.

In the case of the friction factor, we use, for simplicity, a Hagen–Poiseuille formulation, i.e., λ
f
j =

16/Re where Re = qj|vj|
μ

ρj+ρj+1
2 describes the Reynolds number in each velocity section of the glottis

(Alipour & Scherer, 2004).

3.2.3. Scalable port-Hamiltonian fluid model.. Considering the ODEs in (3.17)–(3.20) and (3.24),
the dynamics of n velocity and density sections of the intraglottal airflow can be expressed as

v̇ = −R2

∂Hf

∂v
+ ϕ

∂Hf

∂ρ
− gv

(
1

2
ṽ2

o + ĥo

)
(3.26)

ρ̇ = −ϕT
∂Hf

∂v
+ gρQi − ϑvc (3.27)

where v = [
v1, · · · , vn

]T and ρ = [
ρ1, · · · , ρn

]T are the velocity and density sets of fluid sections,

vc = [
vc1, · · · , vcn

]T is the set of velocities in the contact surface and Qi and
(

1
2 ṽ2

o + ĥo

)
are the inputs

in the inlet and outlet boundaries, respectively. The corresponding power conjugated outputs
(

1
2 ṽ2

i + ĥi

)
and Qo are given by

1

2
ṽ2

i + ĥi = gT
ρ

∂Hf

∂ρ
(3.28)

Qo = gT
v

∂Hf

∂v
− Movc (3.29)

where

ϕ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

�Ω̃1

− 1

�Ω̃2

0 · · · 0

0
1

�Ω̃2

− 1

�Ω̃3

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . .
1

�Ω̃n−1

− 1

�Ω̃n

0 · · · · · · 0
1

�Ω̃n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, gv =

⎡
⎢⎢⎢⎢⎣

0
...
0
1

�

⎤
⎥⎥⎥⎥⎦ , gρ =

⎡
⎢⎢⎢⎢⎢⎣

1

Ω̃1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ (3.30a)
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ϑ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1Ac1

2Ω̃1

0 · · · · · · 0

ρ2Ac1

2Ω̃2

ρ2Ac2

2Ω̃2

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
ρn−1Acn−2

2Ω̃n−1

ρn−1Acn−1

2Ω̃n−1

0

0 · · · 0
ρnAcn−1

2Ω̃n

ρnAcn

2Ω̃n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, MT
o =

⎡
⎢⎢⎢⎢⎣

0
...
0

ρoAcn

2

⎤
⎥⎥⎥⎥⎦ (3.30b)

R2 =
⎡
⎢⎣

df 1 · · · 0
...

. . .
...

0 · · · dfn

⎤
⎥⎦ � 0. (3.30c)

Defining the set of forces on the contact surfaces Fc = [
Fc1, · · · , Fcn

]T as

Fc = ϑT
∂Hf

∂ρ
+ MT

o

(
1

2
ṽ2

o + ĥo

)
. (3.31)

Then, we obtain the following dissipative port-Hamiltonian system with feed-through term (van der
Schaft & Jeltsema, 2014) to describe the fluid dynamics:

żf =
[
Jf − Rf

] ∂Hf

∂zf
+ gf uf (3.32a)

yf =gT
f

∂Hf

∂zf
+ Muf (3.32b)

where zf = [
vT ρT

]T
is the state vector, uf = [

1
2 ṽ2

o + ĥo Qi vc
T
]T

are the inputs, yf =[−Qo hi −Fc
T
]T

are the outputs and

Jf =
[

0 ϕ

−ϕT 0

]
, Rf =

[
R2 0
0 0

]
, gf =

[−gv 0 0
0 gρ −ϑ

]
and M =

⎡
⎣ 0 0 Mo

0 0 0
−MT

o 0 0

⎤
⎦ . (3.33)
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The time derivative of the total energy for the system (3.32a) is described by the power supplied and
the total dissipated power, i.e.,

Ḣf = −∂Hf

∂zf

T

Rf

∂Hf

∂zf
+ yT

f uf

= −∂Hf

∂v

T

R2

∂Hf

∂v︸ ︷︷ ︸
power dissipated

+ yT
f uf︸︷︷︸

power supplied

. (3.34)

Note that the force Fcj ∈ Fc is not the effective force on the contact surface of volume Ωj with
the mechanical structure. This is given by an additional force F∗

j induced by the effects of the structure
motion on the variations of fluid section Ωj = L�qj, i.e., the changes in the height qj. Forces F∗

j and Fcj
are given by

F∗
j = ∂Hf

∂qj
= 1

4

(
ρj + ρj+1

)
Acjv

2
j + Acj

ρjū(ρj) + ρj+1ū(ρj+1)

2
(3.35)

Fcj = ρjAcj

2Ω̃j

∂Hf

∂ρj
+ ρj+1Acj

2Ω̃j+1

∂Hf

∂ρj+1

= Acj

4

(
ρjṽ

2
j + ρj+1ṽ2

j+1

)
+ Acj

ρjū(ρj) + ρj+1ū(ρj+1)

2
+ Acj

pj + pj+1

2
. (3.36)

Then, considering that Fcj = Fj + F∗
j the effective force Fj applied on the contact surface of Ωj is

given by

Fj = Acj

4

(
ρjṽ

2
j + ρj+1ṽ2

j+1

)
− 1

4

(
ρj + ρj+1

)
Acjv

2
j + Acj

pj + pj+1

2
. (3.37)

Remark 3.1 Note that the fluid–structure power transfer is given by vc
TF, where F = [F1 · · · Fn]T

is the set of effective forces applied on the structure contact surface. Then, the output Fc makes it
difficult to couple the fluid and the structure systems. This problem with the output forces on the contact
surface can be solved using as state variables the heights or volumes of the fluid sections. However,
this solution have two disadvantages. First, the state vector increases in n elements. Second, the
fluid–structure model obtained would not have a minimum realization, given that the heights and
volumes of the fluid sections are proportional to the positions of masses in the structure model. In
Section 3.3, we propose a solution based in a fluid–structure power-preserving interconnection and the
relationship between the fluid section heights and the positions of the structure elements.

3.3. Overall model

Note that from Assumption 3.1, we obtain two conditions for the transverse airflow velocity in each
flow section, wj|y=qj

= vcj
and wj|y=0 = 0, and as a consequence vcj→0 when qj → 0. This implies a

‘soft’ collision of vocal folds. To obtain the elastic collisions that characterize the motion of vocal folds,
we use the approach proposed by Mora et al. (2018). We consider a threshold value ε, such that, the
fluid dynamics in Ωj and its effects on the mechanical structure are disabled when qj < ε. We define
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the switch matrix Sε = ST
ε as

Sε =
⎡
⎢⎣

sε1 · · · 0
...

. . .
...

0 · · · sεn

⎤
⎥⎦ (3.38)

where sεj = 1 when qj � ε and sεj = 0 otherwise.

The power transfer between the fluid and the structure systems is given by uT
mym = vc

TF. Then, we
define a matrix C that maps the output and input vectors of the mechanical model of the vocal folds to
the corresponding velocities and forces of the fluid model, i.e., SεC : ym → vc and CTST

ε : F → um.
Thus, we use the following power-preserving interconnection rule

[
vc
um

]
=

[
0 SεC

−CTST
ε 0

] [−F
ym

]
. (3.39)

Using the matrix Sε to able and disable the dynamics in each volume Ωj and the interconnection
(3.39), we can rewrite the fluid–structure dynamics as follows:

˙̂q =∂Hm

∂π
(3.40a)

π̇ = − ∂Hm

∂ q̂
− R1

∂Hm

∂π
+ G1CTST

ε F (3.40b)

v̇ = − SεR2

∂Hf

∂v
+ Sεϕ

∂Hf

∂ρ
− Sεgv

(
1

2
ṽ2

o + ĥo

)
(3.40c)

ρ̇ = − ϕTST
ε

∂Hf

∂v
+ gρQi − ϑSεCym (3.40d)

where F = Fc − F∗.
Note that term gρQi is not switched. This is given by the fact that the inlet mass flows enters through

the left half volume Ω0/2 (see Fig. 3), and this part of the fluid domain corresponds to the first lower
section of the glottal tract (i.e., the section at the left-hand side of the BCM in Fig. 2). Considering that
Ω0/2 have motionless walls, it is not necessary the use of switch variables to map Qi.

From (3.35), we have that F∗
j = ∂Hf

∂qj
, i.e., F∗ = ∂Hf

∂q where q = [q1 · · · qn]T is the set of velocity
section heights. Then, considering the definition of Fc in (3.31), we obtain that

F = ϑT
∂Hf

∂ρ
+ MT

o

(
1

2
ṽ2

o + ĥo

)
− ∂Hf

∂q
. (3.41)

On the other hand, the variation of fluid section heights by the motion of the structure system is
given by the following relationship q = (

q0 + CGT
1 q̂

)
where q0 is the set of velocity section heights at

the equilibrium point at reference pressure p0, and the term CGT
1 q̂ maps the displacement of the structure

masses to the variation of fluid section heights. This relationship allows us define the following partial
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derivative:

∂Hf

∂ q̂
= G1CTST

ε

∂Hf

∂q
. (3.42)

Matrix Sε is added to able and disable the corresponding fluid dynamics when the section heights cross
the threshold value ε.

Then, using (3.41), (3.42) and the definition of ym in (3.4a), the fluid–structure model can be
rewritten as

˙̂q =∂Hm

∂π
(3.43a)

π̇ = − ∂Hm

∂ q̂
− ∂Hf

∂ q̂
− R1

∂Hm

∂π
+ G1CTST

ε ϑT
∂Hf

∂ρ
+ G1CTST

ε MT
o

(
1

2
ṽ2

o + ĥo

)
(3.43b)

v̇ = − SεR2

∂Hf

∂v
+ Sεϕ

∂Hf

∂ρ
− Sεgv

(
1

2
ṽ2

o + ĥo

)
(3.43c)

ρ̇ = − ϕTST
ε

∂Hf

∂v
+ gρQi − ϑSεCGT

1
∂Hm

∂π
. (3.43d)

Remark 3.2 Consider t1j as the instant where sεj switches from 1 to 0, sεj : 1 → 0, and t2j as the
instant where sεj switch from 0 to 1, sεj : 0 → 1. From (3.43a), we obtain that the velocity dynamic in
Ωj is disable, v̇j(t) = 0, for the internal t ∈ [t1j, t2j]. Additionally, the kinetic energy in the j-th velocity
section is negligible, given that Ωj is smaller. Then, to able a soft transition at glottal opening, we set
to 0 the corresponding velocity variable. Similarly, for the j-th density section, we set to ρ0 the density
variable when the corresponding switch variables of adjacent velocity sections are equal to 0.

Finally, considering the total energy of the fluid–structure system as H = Hm + Hf , we obtain the
following switched port-Hamiltonian model for the vocal folds:

żfs =
[
Jfs − Rfs

] ∂H

∂zfs
+ gfsu (3.44a)

y =gT
fs

∂H

∂zfs
(3.44b)

where the state vector is given by zfs =
[
q̂T

πT vT ρT
]T

, the input u = [
Qi fo

]T , the output y =[
1
2 ṽ2

i + hi −Qo

]T
and matrices

Jfs =

⎡
⎢⎢⎣

0 I 0 0
−I 0 0 G1CTST

ε ϑT

0 0 0 Sεϕ

0 −ϑSεCGT
1 −ϕTST

ε 0

⎤
⎥⎥⎦ , Rfs =

⎡
⎢⎢⎣

0 0 0 0
0 R1 0 0
0 0 SεR2 0
0 0 0 0

⎤
⎥⎥⎦

gfs =

⎡
⎢⎢⎣

0 0
0 G1CTST

ε MT
o

0 −Sεgv
gρ 0

⎤
⎥⎥⎦ .



482 ENERGY-BASED FLUID-STRUCTURE MODEL OF THE VOCAL FOLDS

3.4. Inputs definition

In vocal fold models such as those proposed by Ishizaka & Flanagan (1972), Steinecke & Herzel
(1995) and Story & Titze (1995), it is common to use the variation of the subglottal pressure p̂i and
the supraglottal pressure p̂o as inputs of the dynamical system. Considering the pressure definition in
(3.10), we obtain that the subglottal and supraglottal airflow densities are given by

ρi = γ

c2
p̂i + ρ0 (3.45)

ρo = γ

c2 p̂o + ρ0. (3.46)

To define the inlet input, we describe the velocity in the inlet boundary x̃0 in terms of the pressures
in the upper and downer limits, x̃+

0 and x̃−
0 . From (3.15), note that when � → 0 the velocity response

tends to be instantaneous. Then, we use the Bernoulli equation to define inlet velocity as vi = sign(p̂i −
p̂1)

√
2|p̂i − p̂1|/ρ̃i where ρ̃i = (ρi + ρ1)/2 is the density in the inlet boundary and p̂1 and ρ1 are the

pressure and density at x̃+
0 , respectively. Then, the inlet input is given by

Qi =
⎧⎨
⎩Ai

√(
ρi + ρ1

)
(pi − p1), pi � p1

−Ai

√(
ρi + ρ1

)
(p1 − pi), pi < p1

(3.47)

where Ai is the cross-sectional area in the inlet boundary.
To define the outlet input, we neglect the vocal tract influence, i.e., the glottis end is open to the

atmosphere (Steinecke & Herzel, 1995). Under this condition, we obtain 1
2 ṽ2

o = 1
2 v2

o. Thus, considering
an average velocity outside the glottis equal to 0, we obtain

1

2
x̃0 + ĥo =ĥ|ρ=ρo

. (3.48)

4. Simulation results

In this section, we present simulation results for the proposed fluid–structure port-Hamiltonian model
of the vocal folds given in (3.44). For the evaluation of the results, we use as reference the body-
cover (BC95) model proposed by Story & Titze (1995) and the port-Hamiltonian fluid–structure model
(PH18) proposed by Mora et al. (2018). Simulation parameters for mechanical and fluid systems are
summarized in Table 1. Note that the parameters of the mechanical system are in correspondence with
the Table II, case C in Story & Titze (1995). Applying the proposed discretization to divide the fluid
domain in 38 velocity sections with uniform cross-sectional area and length � = 1.5 × 10−3m, the
glottal tract can be modeled as shown in Fig. 5, with 14 sections in subglottal part and 12 sections in
the supraglottal part of the glottis and 6 sections under each cover mass. The heights of each section are
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Table 1 Simulation parameters

Mechanical parameters

m1 = 1 × 10−5Kg m2 = 1 × 10−5Kg m3 = 5 × 10−5Kg ζi = 0.4, i ∈ {1, 2, 3}
ζ col

i = 0.4, i ∈ {1, 2} ζ col
3 = 0 k1 = 5N/m k2 = 3.5N/m

k3 = 100N/m kc1 = 15N/m kc2 = 10.5N/m k12 = 2N/m
ηi = 106m−2 i ∈ {1, 2, 3} ηci = 5 × 106m−2 i ∈ {1, 2}
Fluid parameter at 36◦C
ρ0 = 1.142Kg/m γ = 1.4 c = 352 m/s ε = 1.8 × 10−5m
L = 1 × 10−2m � = 2.5 × 10−4m n = 38

Fig. 5. Approximation of the glottal tract using the discretization method proposed, considering fluid sections with uniform
cross-sectional areas. Dotted line represents the midsagital plane. Circles denote the number of velocity section in each glottis
part.

initialized as following:

qj0 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2.5 × 10−2m, 1 � j � 3

[2.5 − 0.2(j − 3)] × 10−2m, 4 � j � 14

1.8 × 10−4m, 15 � j � 20

1.79 × 10−4m, 21 � j � 26

2.5 × 10−2m, 27 � j � 38.

(4.1)

For the inputs, we have considered the subglottal and supraglottal relative pressures, p̂i = 800 Pa
and p̂o = 0 Pa, respectively. Considering a motionless wall in the subglottal and supraglottal sections,
we define the interconnection matrix C as follows:

C =

⎡
⎢⎢⎣

014×1 014×1
16×1 06×1
06×1 16×1
012×1 012×1

⎤
⎥⎥⎦ (4.2)

where 16×1 = [1 1 1 1 1 1]T . Note that, given the definition of qj0 and C, we obtain that sε1 = · · · =
sε14 = 1, sε27 = · · · = sε38 = 1, sε15 = · · · = sε20 and sε21 = · · · = sε26 for all simulation time, i.e.,
from a computational point of view, only two switches are relevant. Simulations were done in Matlab
using the solver ODE23tb with an event location function to update the switch variables.
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Fig. 6. Displacement of the masses of the vocal fold mechanical structure. Solid line is the body mass displacement (m3 in Fig. 1)
and dashed and dash-dot-dotted lines are the displacements of upper and lower cover masses, respectively (m2 and m1 in Fig. 1,
respectively).

Fig. 7. Overlapping of cover masses during the vocal fold collisions. Solid line: deformation for the upper mass (m2 in Fig. 1).
Dash-dot-dotted line: deformation for the lower mass (m1 in Fig. 1).

The movement of each mass for BC95, PH18 and the proposed model is shown in Fig. 6. It can
be noticed that in the proposed model the masses exhibit oscillations with a fundamental frequency of
129.1 Hz, in contrast with the 127.5 Hz and 139.9 Hz of the BC95 and PH18 models, respectively.
The fluid–structure model PH18 presents a displacement almost parallel for the contact masses of
vocal folds, lower mass displacement q1 (dash-dot-dotted) and upper mass displacement q2 (dashed
line), respectively, increasing the oscillation amplitude of q2. In contrast, for the proposed model,
the movement of the contact masses presents a difference in the amplitude and phase between the
oscillations of q1 and q2, in correspondence with the wave propagation through the vocal fold structure,
obtaining similar oscillations to the BC95 model.

In lumped-parameter models of vocal folds, a collision occurs when the contact masses cross the
corresponding collision planes. In this work, given the hemi-larynx assumption, the collision plane for
the contact masses is the midsagittal plane. Then, the deformation of the vocal folds given by the elastic
collision is proportional to the overlapping, Δci, i ∈ {1, 2}, of cover masses, as shown in Fig. 7. Note that
the magnitude of tissue deformation in the PH18 model is around two times the one of the BC95 model.
The tissue deformation in the upper section of the vocal folds (solid line) is greater than the deformation
in the lower section (dash-dot-dotted line) for the PH18 model, i.e., the impact stress is minor in the
lower section of the vocal folds. On the contrary, in the proposed model, the tissue deformation and
impact stress are longer in the lower section of vocal folds. This behavior is similar to other lumped-
parameter models as the proposed by Ishizaka & Flanagan (1972) and Steinecke & Herzel (1995), and
it is consistent with the finite-element study presented by Tao et al. (2006).
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Fig. 8. Output flow in one vibrating cycle.

Fig. 9. Pressure distribution in three instants of the vibrating cycle. Upper row: coronal view of the glottis, where the dots
represents the heights of each velocity sections. Bottom row: pressure distribution in the glottis.

On the other hand, to compare the airflow, we analyze the output flows shown in Fig. 8. In general,
the maximum flow occurs in the maximum opening of the glottal tract on the vibrating cycle. In the
PH18 model, this happens in the first quarter of the cycle, and in the BC95 and the proposed models
the maximum flow occurs in the middle of the cycle. However, the output flow of the proposed model
shows a soft increase in the glottis opening with a fast decline when the vocal fold is closing. This shape
of the output flow is consistent with the results reported in Shurtz & Thomson (2013, Fig. 7).

Figure 9 shows the pressure distribution in the fluid in three instants of the vibration cycle, two
instants with a convergent shape of the vocal folds and one instant with a divergent shape. The pressure
distributions obtained are consistent with the results of the deep neural network based (DNN) flow
model proposed in Zhang et al. (2020, Figs 11–19).

Similarly, Fig. 10 shows the behavior of kinetic and potential energies of the mechanical part of the
vocal folds, Km and Pm, respectively, and the energies of the fluid, Kf , in one vibrating cycle. Note that
for the PH18 model, most of the energy is stored in the mechanical system. The opposite situation is
presented by the BC95 model. It is observed that the proposed model presents an intermediate behavior
between PH18 and BC95. Note that in the proposed model the maximum potential energy occurs in the
maximum opening of mass m1 and not in the maximum opening of the glottis as it happens in the PH18
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Fig. 10. Instantaneous energy in one vibrating cycle. (a) Kinetic energy Km of the mechanical part. (b) Potential energy Um of
the mechanical part. (c) Kinetic energy Kf and potential energy Uf of the fluid part.

model. It decreases when the glottis is closing and increases slightly again when the glottis is completely
closed. The latter is due to the energy stored during the elastic collision of the vocal folds. Regarding the
fluid energy note that the potential energy of the proposed model is basically negligible with respect the
kinetic energy. Regarding the fluid–structure energy transfer, we evaluated the energy transfer per cycle,
i.e.,

∫
Tcy

uT
mym dt = ∫

Tcy
FTvc dt where Tcy is the vibrating cycle period, obtaining a total of 20.2μJ in

the model proposed, in contrast with the 16.78μJ and 11.28μJ for the BC95 and PH18 models.
It is well known that the BC95 model describes appropriately the experimental results on the wave

propagation of the real vocal fold motion and the volumetric airflow in the supraglottal section of
the glottal tract. However, given the assumptions on the airflow (static and uniform flow), the energy
transfers between the fluid and mechanical parts of the model are not completely described and the
effects of the closing of the vocal folds on the output airflow are neglected. The proposed model solves
this drawback of the BC95 model, keeping the advantages on the mechanical motion of the vocal folds.
Additionally, the scalability of the proposed model is a clear advantage over the PH18 model.

5. Conclusion

In this paper, we have presented a novel model of the vocal folds given by a port-Hamiltonian
description. The port-Hamiltonian formalism is a framework that has allowed us to obtain an energy-
based model of the vocal fold behavior and their interaction with the intraglottal airflow. A scalable
port-Hamiltonian model for the airflow has been developed from the balance equations of fluids. This
port-Hamiltonian formulation allows the coupling with the mechanical model of the vocal folds using
a power-preserving interconnection by ports. The simulation results show that the proposed energy-
based model is able to replicate the oscillations and the collisions between the vocal folds. Moreover,
the amplitude of masses movements and the airflow velocity are consistent with previous lumped-
parameters models and real data. Similarly, the energy transfer estimated with the proposed model
is greater than the predicted with BC95 and PH18 models. In future works, we expect to exploit the
proposed model for parameter estimation using real clinical data.
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Appendix A Energy of the mechanical system

This appendix details the kinetic and potential energies associated to the structure and the fluid of the
proposed model.

The kinetic energy in the mechanical structure is given by the motion of masses. The kinetic energy
associated with the mass mi is given by

Kmj = 1

2

π2
j

mj
, j ∈ {1, 2, 3} (A.1)

and the total kinetic energy is given by Km = ∑
j Kmj, where

∂Km

∂πi
= πi

mi
= ˙̂qi (A.2)

describes the velocity of the i-th mass.
The potential energies in the mechanical structure are stored in six different springs. One coupling

spring between the cover masses, two collision springs and three lateral springs. The vocal fold tissue
is described as a hyper-elastic or viscoelastic material (Jiang et al., 2017; Shurtz & Thomson, 2013;
Zheng et al., 2011). Then, in the BCM (Story & Titze, 1995), lateral and collision springs are described
by non-linear forces having the form:

Fsj = kjΔj + kjηjΔ
3
j (A.3)

where Fsj and Δj are the force and the elongation of the j-th spring and k∗ and η∗ are the linear and
non-linear spring coefficients. Defining q̂i = qi(t) − qi0 as the displacement of mi, where qi0 is the
equilibrium position of the corresponding mass at reference pressure p0, the stored potential energy in
the connecting spring between the cover masses, m1 and m2, and the body mass m3 is given by

Umj = 1

2
kj

(
q̂j − q̂3

)2 + 1

4
kjηj

(
q̂j − q̂3

)4
, j ∈ {1, 2} (A.4)

where − ∂Umj

∂ q̂j
= −Fsj and − ∂Umj

∂ q̂3
= Fsj are the corresponding forces over the cover masses and the

body mass, respectively. Similarly, the stored energy in the spring that interconnect the body mass with
the gottal wall is given by

Um3 = 1

2
k3

(
q̂3

)2 + 1

4
k3η3

(
q̂3

)4 (A.5)

and the force applied over the body mass is given by − ∂Um3
∂ q̂3

= −Fs3. In the case of collision springs,

note that the elongation is given by Δci = qmisi = (
q̂i + qi0

)
si where si is a switch variable defined in
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Fig. A.1. Stored potential energy of collision spring (a) and the corresponding applied force over mass mi (b). Normalized
behavior, ki = 1 and ηi = 1, for i ∈ {1, 2}.

(3.1). Then, the energy stored in the collision springs of cover masses can be expressed as

Um4 = s1kc1

(
1

2
q2

m1 + 1

4
ηc1q4

m1

)
= s1kc1

(
1

2

(
q̂1 + q10

)2 + 1

4
ηc1

(
q̂1 + q10

)4
)

(A.6)

Um5 = s2kc2

(
1

2
q2

m2 + 1

4
ηc2q4

m2

)
= s2kc2

(
1

2

(
q̂2 + q20

)2 + 1

4
ηc2

(
q̂2 + q20

)4
)

(A.7)

where − ∂U4
∂ q̂1

= Fs4 and − ∂U5
∂ q̂2

= Fs5 are the forces applied by the collision springs over masses m1
and m2, respectively. Note that these energies and forces imply a switched Hamiltonian. However, as
shown in Fig. 11(left), the behavior of the potential energy stored in the collision spring is continuous.
This guarantees that the Hamiltonian has no discontinuities. Similarly, the applied force over the cover
masses shows a soft transition when the mass mi collides, qi�0, as shown in Fig. 11(right).

In BCM, the shear strain of the epithelial layer is modeled through a linear spring whose force takes
the form Fs6 = k12Δ12, where Δ12 = q̂2 − q̂1 is the spring elongation. Then, the stored potential energy
is this spring is given by

Um6 = 1

2
k12(q̂2 − q̂1)

2 (A.8)

where − ∂Um6
∂ q̂1

= Fs6 and − ∂Um6
∂ q̂2

= −Fs6 are the corresponding applied forces over masses m1 and m2,
respectively.

Denote by
(∑

Fs

)
i as the sum of forces applied by the springs over mass mi and Um = ∑

j Umj as
the total potential energy of the mechanical system. Then, from the discussion above, we obtain

(
∑

Fs)i = −∂Um

∂ q̂i
. (A.9)

Appendix B Dynamics of the intraglottal airflow

This appendix details the ordinary differential equations that describes the airflow in each section of
the glottal tract, as a consequence of Assumption 3.1. In this sense, the fluid dynamics described in
Proposition 3.1 is obtained as follows:
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Considering a uniform density distribution in the volume Ω̃j and integrating the continuity equation
using the Leibniz integral rule and Gauss divergence theorem (Bird et al., 2014) we obtain∫

Ω̃j

∂ρ

∂t
dΩ̃j = −

∫
Ω̃j

∇ · (ρv
)

dΩ̃j

Ω̃jρ̇j = Qj−1 − Qj − ρj

Ac,j−1

2
vc,j−1 − ρj

Ac,j

2
vc,j

ρ̇j = 1

Ω̃j

(
Qj−1 − Qj − ρj

Ac,j−1

2
vc,j−1 − ρj

Ac,j

2
vc,j

)
(B.1)

where Qj = Aj

(
ρv

) |x̃j
denotes the mass flow at x = x̃j, i.e., Qj−1 and Qj are the mass flow on the

inlet and outlet boundaries of j-th density section, {Ac,j, vc,j} and {Ac,j−1, vc,j−1} are the area and velocity

pairs of the adjacent contact surfaces, as shown in Fig. 4, and ρj = 1
Ω̃j

∫
Ω̃j

ρ dΩ̃j is the average density

in volume Ω̃j.
Similarly, applying the same procedure in the motion equation (3.13), we obtain

∫
Ωj

∂v

∂t
dΩj = −

∫
Ωj

∂

∂x

(
1

2
v2 + ĥ

)
+ μ̂

ρ

∂

∂x

∂v

∂x
dΩj

Ωjv̇j = Aj

(
1

2
ṽ2

j + ĥj −
(

1

2
ṽ2

j+1 + ĥj+1

))
−

∫
Ωj

μ̂

ρ

∂

∂x

∂v

∂x
dΩj

v̇j = 1

�

(
1

2
ṽ2

j + ĥj −
(

1

2
ṽ2

j+1 + ĥj+1

))
−Φj (B.2)

where 1
2 ṽ2

j = 1
2 v2|xj−1

and ĥj = ĥ|xj−1
, { 1

2 ṽ2
j , ĥj} and { 1

2 ṽ2
j+1, ĥj+1} are the pairs of kinetic energy per unit

mass and relative enthalpy on the inlet and outlet boundaries of the j-th velocity section, respectively,
Aj = Lqj is the corresponding cross-sectional area, Φj = 1

Ωj

∫
Ωj

μ̂
ρ

∂
∂x

∂v
∂x dΩj is the average velocity drop

due to energy losses in Ωj and vj = 1
Ωj

∫
Ωj

v dΩj is the average longitudinal velocity in the volume Ωj.

Appendix C Energy of the fluid system

In this appendix, we describe the kinetic and internal energies associated with the velocity and density
sections. In case of the j-th velocity section with volume Ωj, the corresponding kinetic energy Kfj
associated with longitudinal velocity is given by

Kfj =
∫

Ωj

1

2
ρv2 dΩj = Ωj

(
1

Ωj

∫
Ωj

1

2
ρv2 dΩj

)
(C.1)

where the term 1
Ωj

∫
Ωj

1
2ρv2 dΩj is the average kinetic energy density in volume Ωj = Aj�. Denoting

by ρ̃j and vj the average density and longitudinal velocity on Ωj, respectively, then, the average kinetic

energy density can be approximated as 1
2 ρ̃jv

2
j . Note that ρ̃j = ρ|x̃j

is given by the average of adjacent
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densities, i.e., ρ̃j = (ρj + ρj+1)/2, then, Kfj can be expressed as

Kfj = 1

4

(
ρj + ρj+1

)
Ωjv

2
j . (C.2)

Similarly, the internal energy in a density section with volume Ω̃j is given by
∫
Ω̃j

ρu(ρ) dΩ̃j, where
u is the internal energy per unit mass of the fluid. However, as previously mentioned, we use a non-
negative availability function ū(ρ) to describe the internal energy. Then, denoting by Ufj the total internal

energy in volume Ω̃j, we obtain

Ufj =
∫

Ω̃j

ρū(ρ) dΩ̃j (C.3)

where ū(ρ) is defined in (3.11). Denoting by ρj the average density in Ω̃j = (Ωj−1 +Ωj)/2, the average
internal energy in the j-th density section can be approximated as ρjū(ρj) where ū(ρj) = ū(ρ)(ρ)|ρj

.
Then, Uj can be expressed as

Ufj = 1

2

(
Ωj−1 + Ωj

)
ρjū(ρj). (C.4)

In the case of the first density section, note that Ω̃1 = Ω0/2 + Ω1/2 where Ω0/2 = Ai�/2 denotes
the half volume at the left part of the upstream region (see Fig. 3(b)), with Ai as the cross-sectional area
in the inlet boundary. For the n-th velocity section, we have that ρ̃s = (

ρn + ρo

)
/2 where ρo = ρ|xn

denotes the density in the last half volume Ωn/2 = An�/2 of the right downstream region (see Fig. 3(a)).
Then, to complete the characterization in the fluid domain, we define the kinetic energy in Ω0/2 as

Kf 0 = 1

4
ρ1Ai�v2

i (C.5)

where vi = v|x̃0
denotes the fluid velocity at x = x̃0. Similarly, we define the internal energy in Ωn/2 as

Ufn+1 = An�

2
ρoū(ρo). (C.6)

Then, the total energy of the fluid is given by the sum kinetic energy and internal energy of the
velocity and density sections, respectively, as shown in (3.16). Defining ρ̃j = ρ|x̃j

as the average density
of the corresponding adjacent sections, i.e., ρ̃j = (ρj + ρj+1)/2, then, the efforts associated with the
velocity and density of each section are given by

∂Hf

∂vj
= 1

2
Ωj

(
ρj + ρj+1

)
vj = 1

2
�Aj

(
ρj + ρj+1

)
vj

= �Qj (C.7)

∂Hf

∂ρj
= 1

4
Ωj−1v2

j−1 + 1

4
Ωjv

2
j + Ω̃jĥj

= Ω̃j

(
1

2
v2

j αj + 1

2
v2

j−1(1 − αj) + ĥj

)
(C.8)

where Qj = Aj
ρj+ρj+1

2 vj is mass flow at x = x̃j and αj = Aj/(Aj + Aj−1).
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