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Abstract
Currently, most of the piezoelectric structures are designed under deterministic conditions, where the
influence of uncertain factors on the output motion accuracy is ignored. In this work, a probabilistic
reliability-based topology optimization method for piezoelectric structure is proposed to deal with
the working voltage uncertainty. A nested double-loop optimization algorithm of minimizing the total
volume while satisfying the reliability requirement of the displacement performance is established,
where the PEMAP-P (piezoelectric material with penalization and polarization) model is used for
parameterization of stiffness matrix, piezoelectric coupling matrix and polarization direction. This
strategy consists of an inner loop for reliability analysis and an outer loop for topology optimization.
The reliability index approach based on most probable point (MPP) is used for realizing the evaluation
of reliability constraint in reliability analysis. The sensitivities of reliability constraint with respect to
the random variables and design variables are detailed using the adjoint variable method. Typical
examples are performed to illustrate the effectiveness of the proposed RBTO method. A comparison
of the optimization results for different reliability indexes, standard deviations of the voltage, spring
stiffnesses and displacement limits are conducted, as well as the deterministic topology optimization
results.
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Introduction
The piezoelectric effect is a special physical property involving the interconversion between mechanical
and electrical energy. Piezoelectric effect can be classified into the direct piezoelectric effect and the
inverse piezoelectric effect. The direct piezoelectric effect refers to the piezoelectric material producing
an electric field by being subjected to an external load, and the inverse piezoelectric effect refers to the
piezoelectric material generating a mechanical deformation when a voltage is applied. The utilization
of the inverse piezoelectric effect for piezoelectric materials has attracted significant interest in recent
years with the aim of providing an ideal displacement to drive or position. Smart structures made of
piezoelectric materials have many advantages including fast response, high displacement resolution, low
power consumption, large output force. These advantages make the piezoelectric smart structures widely
use in precision-positioning systems or precision-driving devices such as machine tools (Stöppler and
Douglas 2008), piezoelectric relay (Mitsuhashi et al. 1985), micro-electromechanical systems (MEMS)
(Conway et al. 2007; Rao et al. 2019) and atomic force microscopes (Croft et al. 2001).

The performance of piezoelectric smart structures is significantly dependent on the deformation
accuracy of piezoelectric materials. However, since piezoelectric materials are non-centrosymmetric
crystals, the working stroke is only a limited distance and is usually insufficient. This hinders further
development of the piezoelectric smart structures. In order to mitigate this issue, various approaches
have been developed to improve the efficiency of piezoelectric materials in piezoelectric smart structures.
Early optimization research of piezoelectric smart structures focused on the placement and size of the
piezoelectric actuators (Frecker 2003). Hać and Liu (1993) proposed a systematic methodology based
on the controllability and observability gramians to determine the location of actuators and sensors for a
simply supported beam and a rectangular plate. Han and Lee (1999) used genetic algorithms to search the
optimal locations of both piezoelectric sensors and actuators based on controllability, observability and
spillover prevention in smart composite structures. Suleman and Gonicalves (1999) proposed a multi-
objective optimization approach based on the Heaviside function for an adaptive composite beam, which
determines not only the position but also the size of the piezoelectric actuator. It can be noted that all
of the optimizing works mentioned above assume that host structures and piezoelectric actuators are
predetermined, which gives a topology restriction to the optimizing problems. Therefore, the design
of free topological distribution of piezoelectric materials or host structure materials has become a hot
research topic.
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Topology optimization (Bendsøe and Kikuchi 1988; Bendsøe 1989) is an efficient technology dealing
with material distribution. Based on topology optimization techniques, many approaches have been
greatly developed for the design of piezoelectric smart structures. Silva et al. (1997) first applied
the topology optimization method based on homogenization theory to piezoelectric materials, which
improved the performance characteristics of two-dimensional plane strain microstructure. However,
they only considered the eigenfrequency of a periodic unit cell, not the efficiency of the inverse
piezoelectric effect. Silva (1999) proposed a classical interpolation model of piezoelectric materials to
design piezoelectric transducers consisted of a flexible mechanical structure and a stack of piezoceramics
for maximizing the output displacement (or force) in some specified direction. Frecker and Canfield
(2000) introduced predefined ground structures of both truss and frame elements to design a compliant
mechanical amplifier for piezoceramic stack actuators by removing useless elements. Silva et al. (2000)
presented a general approach based on the homogenization method to design flextensional compliant
coupled to the piezoceramic under the placement and topology of the actuator are predetermined,
which can maximize the output displacement. Silva (2003) proposed a general method based on
topology optimization to design systematically a flexible structure for a linear piezoelectric motor, where
quasistatic or low-frequency applications are considered. However, these studies have focused on the
amplification of the output force or displacement for a fixed stacked actuator by a compliant mechanism.
This is better than size and placement optimization of actuators, but still does not fully exploit the
advantages of topology optimization. To further improve the performance of piezoelectric structures,
researches of smart structures composed of pure piezoelectric materials or embed with piezoelectric
actuators have also been developed. Buehler et al. (2004) developed a new unit cell by combining
smart (piezoelectric) and conventional materials through the homogenization technique to maximize
the deflection of any node of the structures. Kögl and Silva (2005) extended the conventional PEMAP
(piezoelectric material with penalization) model based on the density method by adding a new design
variable that describes the polarization of the piezoelectric material, for solving the piezoelectric actuators
problems. Zheng et al. (2007) proposed introducing a new electrode density based on the SIMP method
for the design of maximizing out-displacement of the piezoelectric actuator. Kang and Tong (2008)
proposed a topology optimization for the integrated optimization of structural layout and control voltage
of piezoelectric laminated plates using the material density method. Luo et al. (2009) presented an
indicator function formulated by several piecewise constants based on the level set method for shape
and topology optimization of compliant piezoelectric actuators with the in-plane motion. Kang et al.
(2011) presented a mathematical formulation that took the actuator voltage applied on piezoelectric
material into account and simultaneously optimized the layouts of the piezoelectric material and the
conventional material, as well as the actuation voltage. Wang et al. (2014) employed the level set
function to describe the geometrical shapes and placement of the piezoelectric actuators for optimizing
the positions of the movable actuators and the topology of the host structure based on independent point-
wise density interpolation (iPDI) approach. Schlinquer et al. (2020) designed a piezoelectric actuator
by topology optimization combining both piezoelectric material expansion and compression when the
voltage condition imposed to each plane-stress element was the same and performed experiments to
validate the obtained designs. However, while the working strokes of piezoelectric smart structures have
been extended successfully through the introduction of topology optimization, so far the uncertainty of
the overall structures has been completely neglected.
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Reliability-based design optimization (RBDO) (Cornell 1969; Youn et al. 2005; Meng et al. 2020)
integrates design optimization and reliability analysis under various uncertainties for engineering
structure. Maute and Frangopol (2003) introduced the concept of RBDO to topology optimization
technique, resulting in the so-called reliability-based topology optimization (RBTO). By this RBTO
method, they designed the reliable force inverter mechanisms accounting for uncertainties in material
properties and load conditions. Zhang and Ouyang (2008) presented a level set methodology for the
design of multiple inputs and outputs compliant mechanisms considering the uncertainties of the loads,
material properties, and member geometries. A recent work (Wang et al. 2019) provided a reliable design
of compliant mechanisms considering interval uncertainties. In these works, the design of compliance
mechanisms considering uncertainty factors is based on isotropic materials. However, it should be
emphasized that uncertainties such as geometric variation and load magnitude are equally inevitable
in piezoelectric smart structures. Whereupon, researchers begin to focus on the optimization problem
of piezoelectric smart structures considering uncertainty. Based on the reliability analysis of Monte
Carlo simulation method, Franco and Varoto (2012) applied multi-parameter Sequential Quadratic
Programming (SQP) optimization technique to the stochastic design of a beam type piezoelectric energy
harvesters. Seong et al. (2017) proposed a reliability-based design optimization method for designing
a reliable energy harvester satisfying the target reliability on power generation. Wan et al. (2020)
developed a new ensemble modeling approach of RBDO for the flexure-based bridge-type amplification
mechanisms. It should be noted that most of the existing studies of piezoelectric smart structures are based
on the framework of reliability-based design optimization, which is frequently applied to sizing and shape
optimization. To the best of our knowledge, there is only one work to integrate RBDO into the topology
optimization of piezoelectric smart structures. Sadeghbeigi Olyaie et al. (2013) introduced an optimum
finite method into the reliability-based topology optimization of a linear piezoelectric micromotor, where
the velocity at the beam endpoint of the suggested micro-motor is maximized. But this study only
considers the material distribution, completely ignoring the impact of polarization direction. Considering
polarization direction optimization can result in piezoelectric smart structures with improved motion
performance, allow piezoelectric materials to realize expansion and compression deformation in the same
plane with the same voltage condition. In addition, higher motion gains could be applied to piezoelectric
smart structures without exceeding a maximum voltage condition. It is necessary to propose an RBTO
method based on multi-parameters optimization for piezoelectric smart structures, which satisfies the
target reliability on output displacement with considering the uncertainty factors.

In this study, we propose an RBTO method of piezoelectric smart structures with multi-parameters
optimization based on the author’s previous work (Homayouni-Amlashi et al. 2020). The proposed
approach embeds reliability analysis into the entire topology optimization process, providing a proper
design that meets reliability requirements. The uncertainty of operation voltage is considered in the
reliability analysis using the Hasofer-Lind and Rackwitz-Fiessler (HL-RF) recursive algorithm. This
study considers not only the piezoelectric material distribution but also the configuration of polarization
direction. Topology configuration and electrode direction are simultaneously optimized to gain their
mobility from the flexibility of their structures. Three numerical examples are performed to illustrate
the effectiveness of the proposed RBTO method for design problem of piezoelectric smart structures
considering voltage uncertainty.
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Finite element analysis of piezoelectric structure
In this paper, the linear constitutive relation is formulated for describing the piezoelectric material by
neglecting thermal coupling. It reads (Zheng et al. 2009){

T
D

}
=

[
cE −e
et εS

]{
S
E

}
(1)

where T and S are the vectors of mechanical stresses and strains. E is the vector of electric field. D is the
vector of dielectric displacement. cE is the mechanical stiffness matrix for constant electric field E. εS is
the permittivity matrix for constant mechanical strain S. e is the piezoelectric matrix and the superscript
t means transposed.

The optimization model considered here is a thin piezoelectric plate sandwiched symmetrically
between two electrode plates, as shown in Fig.1. To produce only mechanical deformation in the plane,
the piezoelectric plate has the polarization direction parallel to the z direction. Neglecting the thickness
of electrode plates, a plane stress model for the piezoelectric plate is employed in this study. According
to plane-stress assumption, the constitutive relation of the piezoelectric layer can be expressed as (Junior
et al. 2009) 

T1

T2

T6

D3

 =


c∗11 c∗12 0 −e∗31
c∗12 c∗11 0 −e∗31
0 0 c∗66 0
e∗31 e∗31 0 ε∗33



S1

S2

S6

E3

 (2)

where e∗ij , c∗ij and ε∗ij are the piezoelectric coupling constants, stiffness constants and permittivity
constants. The values of these constants can be obtained from Junior et al. (2009).

Figure 1. Schematic diagram of a piezoelectric cantilever sandwiched between electrodes

Now, the finite element analysis model should be constructed. The piezoelectric layer is discretized
by four nodes square finite elements. The number of mechanical degrees of freedom of each node of
the element is 2, respectively in the x direction and y direction. Since the piezoelectric material plate
is covered by two fully conductive electrodes, one electrical degree of freedom is adequate to simulate
the electrical response of an element. Hence, the strain and electrical field of a single element can be
expressed by shape functions as (Lerch 1990)

Se = Buu
e (3)

Ee = Bϕϕ
e (4)
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Here, ue and ϕe are respectively mechanical displacement vector and electric potential value of a
single element. Bu and Bϕ are respectively the mechanical and electrical gradient matrices related to
the derivative of shape functions. Since the electric potential is assumed to vary linearly between two
electrode plates, the strain matrix is Bϕ = 1/h (Junior et al. 2009), where h is the thickness of the
piezoelectric plate.

By using the Virtual Work Principle (VWP), above equations and assembling the contributions of all
the finite elements, the linear expression of 2D global finite element for piezoelectric material is written
as [

Kuu Kuϕ

Kϕu −Kϕϕ

] [
u
ϕ

]
=

[
F
Q

]
(5)

where u denotes the global vector of displacement. ϕ denotes the global vector of electrical potential. F
denotes the global vector of imposed force. Q is the external charge. Kuu and Kϕϕ are respectively the
global mechanical stiffness matrix and global dielectric matrix. Kuϕ and Kϕu are the global piezoelectric
coupling matrices with Kuϕ = KT

ϕu.
Unlike the conventional structures stimulated by an external load, the piezoelectric plate is actuated

by the inverse piezoelectric effect. Thus, the external force F is null and the voltage imposed on the
electrodes is considered to be an external input. The displacement performance of the piezoelectric plate
is the focus of this study so that the second relation of Eq. (5) is ignored in the optimization process.
Hence, the global equilibrium equation of the piezoelectric plate can now be rewritten as

Kuuu+ Kuϕϕ = 0 (6)

Notice there exists a huge scale difference between mechanical stiffness matrix (Kuu) and dielectric
matrix (Kuϕ) in Eq. (6), which may generate numerical singularity in the finite element analysis. To avoid
this problem and ensure the accuracy of displacement response, normalization method is adopted as the
author’s previous work in (Homayouni-Amlashi et al. 2020). The normalization mechanical stiffness
matrix and the normalization piezoelectric coupling matrix are expressed as follows

K̃uu =
1

k0

NE∑
i=1

Ke
uu, K̃uϕ =

1

α0

NE∑
i=1

Ke
uϕ (7)

where k0 and α0 are the highest values of each element matrix. NE is number of elements used to
discretize the piezoelectric plate. Ke

uu and Ke
uϕ are the mechanical stiffness matrix and the dielectric

stiffness matrix for element, respectively, which can be defined as

Ke
uu =

∫
Ae

Bt
uc

EBudxdy, Ke
uϕ =

∫
Ae

Bt
ueBϕdxdy (8)

Then, substituting Eq. (7) into Eq. (6), the global finite element equation in normalized form for in-plane
motion can be written as

k0K̃uuu+ α0K̃uϕϕ = 0 ⇒ K̃uuũ+ K̃uϕϕ = 0 (9)

Here, ũ is the normalized displacement vector, which is formed by ũ = k0

α0
u.
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Reliability-based topology optimization
In this work, we want to seek the best design of a piezoelectric smart structure that meets the constraint for
reliability. The emphasis is to combine RBDO and topology optimization, resulting in reliability-based
topology optimization (RBTO). To show the forming process of RBTO, we first introduce the RBDO
problem and reliability evaluation. Then, a PEMAP-P interpolation model based on density distribution
is applied. Finally, the formulation of reliability-based topology optimization for piezoelectric structures
is presented.

Foundation formula for RBDO
It is widely recognized that engineering design should account for the stochastic nature of engineered
systems. Reliability-based design optimization (RBDO) integrates design optimization and reliability
analysis under various uncertainties for engineering structure, which makes utilization of failure
probability as constraint function to find an optimum design solution that satisfies a given reliability target
with respect to performance function. The general mathematical formula for RBDO can be expressed as
follows (Youn et al. 2005):

minimize Cost (d)
subject to PFi = Pr [Gi (d,X) 6 0] 6 P t

Fi
i = 1, 2, ..., np

dL 6 d 6 dU

(10)

where d denotes the vector of design variable. X denotes the vector of random variables. PF denotes the
failure probability. P t

F denotes the failure probability limit. Pr [·] denotes the probability operator. Gi (X)
denotes i-th limit state function used to evaluate the operating state of engineering structure. Gi (X) < 0
denotes structure failure. np denotes the number of limit state functions. dU and dL denote the upper
and lower limit of design variable vector. The probability of failure is defined by a multi-dimensional
integration in the failure domain, which can be expressed as (Jung et al. 2020)

PF = FG (0) =

∫
ΩF={X∈RN :G(X )60}

fX (X) dX (11)

where FG (·) is the cumulative distribution function (CDF). fX (X) is the joint probability density
function (PDF) of the random variable vector X. However, it is often very difficult to get joint
probability density function and evaluate the multi-dimensional integral of Eq. (11) in engineering
practice. Therefore, many approximate probability integration methods have been proposed to provide
efficient solutions, such as the most probable point (MPP)-based methods (e.g. the first order reliability
method (FORM) and the second order reliability method (SORM)), sampling methods (e.g. the Monte
Carlo simulation and importance sampling) and stochastic response surface methods. In general, the
value of failure probability limit P t

F in Eq. (11) should be less than 10−3 − 10−5. As it is impossible
to perform effectively RBTO with small probabilities, a series of practicable approaches has been
proposed to prescribe the probabilistic constraint, e.g. reliability index approach (RIA) and performance
measure approach (PMA). In this paper, the RBDO problem is founded by the RIA, which describes
the probabilistic constraint by a reliability index β. Here, β is the an inverse Gaussian transformation
of failure probability (β = −Φ−1 (PF )). Because of its high efficiency and stability, the FORM has a
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extensive application in the evaluation of the probabilistic constraint in RBDO problem. In FORM, the
random variable vector X in original space should be transformed to the random variable vector Y in
standard normal space by using the Rosenblatt transformation (Jung et al. 2020). The reliability index β
is defined as the shortest distance from the origin to the limit state surface in the standard normal space.
Therefore, the reliability index β is solved by a constrained optimization problem in the standard normal
space (Cheng et al. 2006; Santosh et al. 2006), i.e.

minimize β (Y) =
√(

YT Y
)

subject to G (Y) = 0
(12)

Hasofer-Lind and Rackwitz-Fiessler (HL-RF) recursive algorithm is currently the most popular method
for solving Eq. (12). The reliability index β in HL-RF iteration algorithm can be updated by the following
formula (Hasofer 1974; Cheng et al. 2006)

βi =
G
(
Yi

)
−
(
▽YG

(
Yi

))T Yi∥∥▽YG
(
Yi

)∥∥ (13)

where the superscript i represents the current iteration step. Subsequently, the random variable vector Y
is renewed via the following formula

Yi+1 = −βi ▽YG
(
Yi

)∥∥▽YG
(
Yi

)∥∥ (14)

PEMAP-P model and density filtering
The design domain is discretized by square finite elements. In a density-based approach, the material
distribution of each element is characterized by an pseudo density that can take either the value 0 (void)
or 1 (solid material). For conventional isotropic materials, the solid isotropic material with penalization
(SIMP) is used to associate the element pseudo density with the Young’s modulus. However, piezoelectric
materials are non-isotropic materials, and the material characteristic parameters are different in different
directions. Therefore, a well-known PEMAP-P interpolation model developed by Kögl and Silva (2005)
is used, which relates the element’s stiffness matrix and coupling matrix to its density and polarization.
The PEMAP-P model is given by

K̃
e

uu (ρ̃e) = ρ̃puu
e K̃

e

uu

K̃
e

uϕ (ρ̃e, Pe) = ρ̃
puϕ
e (2Pe − 1)

pP K̃
e

uϕ

(15)

where Pe denotes the variable of the element polarization and varies from 0 to 1. ρ̃e is the filtered element
density, defined by averaging the element densities over a number of elements in a circular region with
radius rmin. puu, puϕ and pP are penalization coefficients for the stiffness, coupling and polarization
values, respectively.

The optimization results in the density-based topology optimization method often suffer from the
checkerboard patterns. To obtain a checkerboard-free optimization result, one of the most widely used
algorithms is density filtering (Andreassen et al. 2011). Thus, the filtered element density ρ̃ in Eq.(15)
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can be expressed as

ρ̃e =

∑
j∈Ni

Hejρj∑
j∈Ni

Hej
(16)

where Ni is a set of elements adjacent to element e. The adjacency relation is defined as Ni =
{j : △ (e, j) ≤ rmin}, here the operator △ (e, j) is distance from element j center to element e center.
Hej is a weight factor defined as

Hej = max (0, rmin −△ (e, j)) (17)

Optimization formula for RBTO
This study attempts to minimize the relative volume fraction of piezoelectric structures that meet the
displacement reliability constraint under voltage uncertainty. A limit state function (or performance
function) with respect to displacement is defined as

G (ρ,X,P ) = Dlimit −D (ρ,X,P ) (18)

where Dlimit is the displacement limit of the appointed output point. D is the displacement of the
appointed output point, which can be obtained by D = −LT ũ. Here, L is a selection vector whose
corresponding value is 1 at the appointed output point and 0 at other points. Thus, the RBTO problem
based on RIA for piezoelectric structures can be expressed as

minimize V (ρ) =

NE∑
e=1

ρeve

subject to


K̃uuũ+ K̃uϕϕ = 0
βi (G (ρ,X,P ) ≥ 0) ≥ βt i = 1, 2, ..., N
0 ≤ ρe ≤ 1
0 ≤ Pe ≤ 1

(19)

where NE is the total number of elements used to discretize the design domain. N is the number of
constraints. ρe and Pe are the density ratio and the polarization direction of the e-th element, respectively.
ve is the volume of each element. βi represents the HL-RF reliability index, which can be calculated by
the HL-RF iterative algorithm. βt is the required reliability index.

For comparison, the deterministic topology optimization model with volume minimization as the
objective function and a specific displacement as the constraint function is also listed herein. The
mathematical formulation of deterministic topology optimization can be defined as

minimize V (ρ) =
NE∑
e=1

ρeve

subject to


K̃uuũ+ K̃uϕϕ = 0
G (ρ,X,P ) = Dlimit −D (ρ,X,P ) ≥ 0
0 ≤ ρe ≤ 1
0 ≤ Pe ≤ 1

(20)

The definition of parameters is the same as in Eq. (18) and Eq. (19).
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Design sensitivity analysis and solution procedure
Sensitivity analysis is always an important procedure in design optimization. Because the proposed
RBTO has two loops: the outer loop for topology optimization and the inner loop for reliability
evaluation, the sensitivity analysis for design variables and random variables should be performed,
respectively.

Sensitivity analysis for design variables
The design sensitivity of volume objective function is calculated straightly and its calculation is ignored
here. Hence, the emphasis of this section is to analyze the sensitivity of the constraint function with
respect to design variables. Here the adjoint variable method is used. The Lagrange function for the
current reliability index can be expressed as

βi (ρ,P ) =
Dlimit +LT ũ (ρ,X,P )− (▽YG)

T Y
∥▽YG∥

+ λT
ρ

(
K̃uu (ρ) ũ (ρ,P ) + K̃uϕ (ρ,P )ϕ

)
(21)

The corresponding sensitivity can be written as

∂βi

∂ρe
=

LT

∥▽YG∥
∂ũ

∂ρe
+ λT

ρ

∂
(
K̃uuũ+ K̃uϕϕ

)
∂ρe

=

(
LT

∥▽YG∥
+ λT

ρ K̃uu

)
∂ũ

∂ρe
+ λT

ρ

∂K̃uu

∂ρe
ũ+ λT

ρ

∂K̃uρ

∂ρe
ϕ

(22)

where λT
ρ = −K̃

−1 LT

∥▽YG∥ to remove the ∂ũ/∂ρe terms. Then, the sensitivity can be calculated as

∂βi

∂ρe
= −K̃

−1

uu

LT

∥▽YG∥
∂K̃uu

∂ρe
ũ− K̃

−1

uu

LT

∥▽YG∥
∂K̃uϕ

∂ρe
ϕ (23)

Similarly, the design sensitivity with respect to polarization P can be obtained as

∂βi

∂Pe
= −K̃

−1

uu

LT

∥▽YG∥
∂K̃uϕ

∂Pe
ϕ (24)

Sensitivity analysis for random variables
Traditionally, the sensitivity for HL-RF method has been assessed by the finite difference method or
direct derivation method. Here, we apply the adjoint method to calculate the sensitivity. The limit state
function can be rewritten as.

G (ρ,X,P ) = Dlimit +LT ũ (ρ,X,P ) + λT
(
K̃uu (ρ) ũ (ρ,X,P ) + K̃uϕ (ρ,P )ϕ (X)

)
(25)

The corresponding sensitivity can be expressed as

∂G

∂X
= LT ∂ũ

∂X
+ λT Kuu

∂ũ

∂X
+ λT Kuϕ

∂ϕ

∂X

=
(
LT + λT K̃uu

) ∂ũ

∂X
+ λT K̃uϕ

∂ϕ

∂X

(26)
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where λT = −K̃
−1

LT to remove the ∂ũ/∂X terms. Eventually, the sensitivity is can be written as
follows

∂G

∂X
= −K̃

−1

uuL
T K̃uϕ

∂ϕ

∂X
(27)

Solution procedure
Once the design sensitivities with respect to the design variables and random variables are obtained, the
method of move asymptotes (MMA) algorithm can be used to solve the RBTO optimization problem in
Eq. (19). The outer loop for topology optimization will be terminated when max {|ρk − ρk−1|} 6 0.001
or the number of iterations reaches up to 300. The inner loop based on HL-RF method is terminated when
{|βk − βk−1|} 6 0.001 is satisfied or 100 iterations is achieved. To clearly show the implementation
process, the numerical procedures for the RBTO algorithm of piezoelectric smart structures with voltage
uncertainty is shown in Fig. (2).

Figure 2. Flowchart of a nested double-loop algorithm for RBTO of piezoelectric smart structures

Design examples and discussions
In this section, several benchmark design examples are performed to illustrate the applicability and
validity of the presented RBTO formula for the design problem of piezoelectric smart structures, which
includes piezoelectric pusher, piezoelectric gripper and piezoelectric relay. In all the design examples,
the parameters for penalization coefficients are puu = 3, puϕ = 4 and pP = 1, and the thickness of
piezoelectric plate is 0.1mm. Unless other stated, the initial density of each element is ρe = 1. The
piezoelectric materials used are PZT 4, whose value of properties are presented in Table 1. Additionally,
all the voltage imposed on the upper electrode are assumed to obey normal distribution and their means
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are µ = 1 V. The lower electrode is grounded for all examples. It is notable that displacement response
(including D, Dlimit and ũ) is described by normalized form, which is expressed as a dimensionless value
in this paper. The real values of displacement response can be calculated by multiplying the normalized
value by α0/k0 and the unit is meter. All computation are carried out on an HP laptop equipped with 6
Intel Core i7-9750H 2.6Ghz processors, 16 GB RAM and Windows 10 64-bit operating system.

Table 1. Parameters for PZT 4
Parameter name Value Parameter name Value

c∗11 9.1187× 1010N/m2 c∗66 3.0581× 1010N/m2

c∗12 3.0025× 1010N/m2 e∗31 −14.9091C/m2

Piezoelectric pusher
As the first example, a well-known piezoelectric pusher with the overall dimension 10 mm×10 mm is
considered. The design domain and boundary condition are depicted in Fig.3a. Here, one output point
is set on the right edge of the design domain to produce one horizontal displacements Dout. To reduce
the calculation time, only half of the design domain is considered by making use of the symmetry, as
sketched in Fig.3b. The half design domain is discretized into 150×75 plane stress elements. A small
artificial spring with stiffness Ks = 0.01 is attached to the out point to simulate the workpiece. Besides,
the target reliability index βt and displacement limit Dlimit in Eq.(18) are set to be 4.00 and −125
respectively.

In this example, the influence caused by different standard deviations (σ = 0.08 V, 0.10 V, 0.12 V) of
voltage is investigated. To show the whole piezoelectric pusher, the obtained results are processed with
mirror symmetry. Fig.4 shows the topology configurations and polarization layouts of a typical iteration
step for the voltage standard deviation of 0.08 V. It can be seen that the density layouts and polarization
profile change smoothly, which means that the proposed method is stable. The final optimization results
for different standard deviations of σ = 0.08, 0.10, 0.12 V are presented in Fig.5. The inner HL-RF loop
converges after 3 iterations for different standard deviations. It can be seen from the final results that
the density layouts and polarization profile among different voltage standard deviations have obvious
differences, which indicates the standard deviations of voltage play an important role in the RBTO of
the piezoelectric pusher. It also shows the importance of considering voltage uncertainty in piezoelectric
smart structures.

Fig.6 illustrates iterative histories of objective function (i.e., relative volume fraction) for different
standard deviations of voltage. It is observed that a stable convergence of the objective function can be
obtained, which shows the present method has good stability and repeatability. The volume fraction,
reliability index of Monte Carlo simulation and computing cost for different voltage standard deviations
are listed in Table 2. 1000000 sample points are selected in the Monte Carlo simulation. From the results
of reliability index obtained using Monte Carlo simulation, it is found that the final structure obtained
based on the proposed RBTO method can meet the requirements of target reliability relatively well, which
means that the proposed method is effective. On the other hand, it can be seen that the relative volume
fraction is increased with the increase of standard deviation, which shows that more material is needed
to resist the structural insecurity resulting from the rising of standard deviation.
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Figure 3. Design domain and boundary condition of piezoelectric pusher

Figure 4. RBTO evolution of piezoelectric pusher with σ = 0.08 V

Table 2. Comparison of optimization results for DTO and RBTO

Voltage standard
deviation

Reliability index of
Monte Carlo simulation

Relative volume
fraction(%) Computing time(s)

0.08 V 4.0291 23.02 335.2817
0.10 V 4.0051 28.52 334.7764
0.12 V 4.0051 36.07 338.5953

Piezoelectric gripper
The second example optimized in this paper is a useful piezoelectric gripper with the overall dimension
10 mm×10 mm. The design domain and boundary condition are depicted in Fig.7a. A blank rectangular
region of 2 mm×2 mm located on the design domain is treated by passive elements technology (Sigmund
2001) in the optimization. Besides, two output points are set on the bottom to produce two horizontal
displacements Dout. The half design domain is considered for analysis, as shown in Fig.7b. The half
design domain is discretized into 100× 50 plane stress elements, in which the densities ρe of the passive
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Figure 5. RBTO results of piezoelectric pusher for different voltage standard deviations
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Figure 6. Iterative histories of the volume fraction for different standard deviations

elements of the blank region are set to be 0.001. To simulate the effect of the workpiece, a small artificial
spring is introduced and attached to the output point of the piezoelectric gripper. The standard deviation
of voltage is set as to σ = 0.10 V. Additionally, the displacement limit Dlimit is set to be −105.

To explore the influences of target reliability indexes on the optimization results of the piezoelectric
gripper, the values of target reliability indexes are set as βt = 3.50, 4.00, 4.50 with spring stiffness
Ks = 0.010. The traditional deterministic topology optimization (DTO) aimed at minimizing the relative
volume fraction under the limit of displacement is also considered for comparison. The same as the above
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example, the optimization results are symmetrized to represent the entire piezoelectric gripper. Fig.8
and Fig.9 respectively show the optimization results of DTO and RBTO with different target reliability
indexes. The inner HL-RF loop converges after 3 iterations for different target reliability indexes.
As expected, the density layouts and polarization profiles between DTO and RBTO have significant
difference, which shows the importance of considering voltage uncertainties in topology optimization of
piezoelectric gripper. The objective function results, reliability indexes and computing time of iterations
are listed in Table 3. Here, the reliability index of DTO is calculated by the Monte Carlo method. 100000
sample points are selected in the Monte Carlo simulation. From the data in Table 3, we can obviously
see that the larger the reliability index, the larger the volume fraction. That is to say, the improvement of
safety usually requires more material consumption.

Additionally, we investigate the RBTO by using different spring stiffness (Ks = 0.010, 0.012, 0.014)
under the target reliability index βt = 3.50. The optimization results are depicted in Fig.10. The inner
HL-RF loop converges after 3 iterations for different spring stiffness. By comparing the density layouts
of different spring stiffness, we can see that the area of topological configuration increase as the values
of spring stiffness increasing. That is, with the increase of the external workpiece effect, the piezoelectric
gripper is bound to need more area imposed by the voltage to complete the clamping action. The values
of the objective function (34.10%, 39.92% and 46.48%) for different spring stiffness also confirm this
view. Besides, the computing time of iterations are 171.1079 s, 173.2706 s and 172.6677 s.

Figure 7. Design domain and boundary condition of piezoelectric gripper

Table 3. Comparison of optimization results for DTO and RBTO

Design method Reliability index Relative volume fraction(%) Computing time(s)
DTO -0.0328 21.23 83.1816

RBTO
3.50 34.10 171.1079
4.00 39.22 170.5544
4.50 46.67 191.0835
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Figure 8. Deterministic topology optimization results of piezoelectric gripper with Dlimit = −120

Figure 9. RBTO results of piezoelectric gripper for different target reliability indexes

Piezoelectric relay

In this example, a simple piezoelectric relay with the overall dimension 15 mm×10 mm is optimized.
As shown in Fig.11a, a semicircular blank area with a radius of 4 mm is located on the design domain
and the down left side of the design domain is fixed. Like the optimization of the piezoelectric gripper,
the blank area is formed by passive elements with density ρe = 0.001. An output point placed at the
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Figure 10. RBTO results of piezoelectric gripper for different spring stiffnesses

lower-right corner is used to produce a vertical displacement Dout. To simulate the resistance from the
workpiece, a small artificial spring of stiffness Ks = 0.010 is linked at the output point, as depicted in
Fig.11b. The design domain is discretized with 150× 100 standard square plane stress elements. The
standard deviation value of voltage is set as 0.10 V.

The first case aims to investigate the influence of displacement limit on the optimization results of the
piezoelectric relay. Three different displacement limits (Dlimit = −265,−270,−275) are considered
under the target reliability index βt = 2.00. The DTO aimed at minimizing the relative volume fraction
under the limit of displacement is also carried out for the purpose of comparison. The optimized results
of different displacement limits are listed in Fig.12 for DTO and Fig.13 for RBTO. The inner HL-RF
loop converges after 2 iterations for different displacement limits. The results of deterministic topology
optimization between different displacement limits do not show significant difference in density layouts
and polarization profiles. In contrast, however, significant differences can be found in the results of RBTO
between different displacement limits. This indicates that the optimization results of piezoelectric relay
considering voltage uncertainty are particularly sensitive to changes in displacement limits. The objective
function results, reliability indexes and computing time of iterations are listed in Table 4. Here, the
reliability index of DTO is calculated by the Monte Carlo method. 100000 sample points are selected
in the Monte Carlo simulation. It can be seen from the data in Table 4 that the objective functions for
DTO are smaller than RBTO under same displacement limits, which reflects RBTO tends to provide a
conservative design compared with DTO.
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The second case in this example seek to investigate the impact caused by changes in reliability indexes
on optimization of piezoelectric relay. Three different target reliability indexes (βt = 1.00, 1.50, 2.00) are
considered under the displacement limit Dlimit = −270. Fig.14 shows the optimized result for different
target reliability indexes. The inner HL-RF loop converges after 2 iterations for different target reliability
indexes. The DTO of Dlimit = −270 in the prior case is applied here for comparison. It should be
noticed again that, significant differences in the density layouts and polarization profiles can be observed
between DTO and RBTO, as well as RBTO for different target reliability indexes. This well demonstrates
the importance of introducing uncertainty factors in the design of piezoelectric smart structures as well
as the engineering guidance. Moreover, the objective function, reliability indexes and computing times
of iterations for DTO and RBTO are listed in Table 5. The same as the piezoelectric gripper example, the
relative volume fraction increases as the reliability index increases. This again illustrates that increased
reliability requirements are often accompanied by increased material consumption.

Figure 11. Design domain and boundary condition of piezoelectric relay

Figure 12. Deterministic topology optimization results of piezoelectric relay for different displacement limits

Prepared using sagej.cls



19

Figure 13. RBTO results of piezoelectric relay for different displacement limits

Figure 14. RBTO results of piezoelectric relay for different target reliability indexes

Conclusions
In this research, an efficient reliability-based topology optimization approach is proposed for
piezoelectric smart structures with considering the voltage uncertainty. The proposed methodology
integrates the RIA-based reliability analysis into the design problem of piezoelectric smart structures,
where the PEMAP-P model is used for optimizing the topological configuration and electrode direction
simultaneously. Numerical examples show that the displacement-based RBTO design method designs
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Table 4. Comparison of optimization results for DTO and RBTO with different displacement limits
Displacement limit Design method Reliability index Relative volume fraction(%) Computing time(s)

Dlimit = −265
DTO -0.1840 30.76 246.6350

RBTO 2.00 45.07 543.2473

Dlimit = −270
DTO 0.0057 31.66 249.4814

RBTO 2.00 46.83 543.6571

Dlimit = −275
DTO 0.0005 32.59 250.5381

RBTO 2.00 47.95 542.5252

Table 5. Comparison of optimization results for DTO and RBTO with displacement limit Dlimit = −270

Design method Reliability index Relative volume fraction(%) Computing time(s)
DTO 0.0057 31.66 249.4814

RBTO
1.00 37.97 574.1570
1.50 41.90 553.2232
2.00 46.83 543.6571

innovative piezoelectric structures that meet the requirement of given failure probability. The structural
layouts and polarization profiles of the piezoelectric smart structures are significantly influenced by the
reliability index demands, and the relative volume fraction is increased with the increase of reliability
index demands. In addition, compared with deterministic topology optimization, RBTO can provide a
more reliable design under the same displacement limit.
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