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In this manuscript a general formulation of 3-dimensional compressible fluids based on the port-Hamiltonian framework
is presented, both for isentropic and non-isentropic assumptions, describing the energy flux between the mechanical,
chemical and thermal domains, with an explicit characterization of the first and the second law of Thermodynamics.
For isentropic fluids, the conversion of kinetic energy into heat by viscous friction is considered as energy dissipation
associated with the rotation and compression of the fluid. A dissipative port-Hamiltonian formulation is derived for
this class of fluids, including vorticity boundary conditions in the port variables. For non-isentropic fluids we consider
a fluid mixture with multiple chemical reactions. To describe the energy fluxes we propose a pseudo port-Hamiltonian
formulation, which includes the rate of irreversible entropy creation by heat flux, chemical reaction, diffusion of matter
and viscous friction.

NOTATION

Symbol Description
Ω Spatial domain, Ω ⊂ R

n

∂Ω Boundary surface enclosing Ω
H(Ω) Sobolev space of differentiable functions on Ω

ζi Spatial variable of the i-th axis
ζ Set of spatial variables, ζ ∈ Ω
t Time variable
∂t Partial time derivative, ∂t =

∂
∂ t

Dt Material derivative, Dt = ∂t + v ·grad

div Divergence of a vector field
grad Gradient of a scalar
curl Curl or rotational of a vector field
Div Divergence of a tensor

Grad Gradient of a vector field
⊤ Transpose of a vector or matrix

u1 ·u2 Dot product between 2 vectors u1 ·u2 = u⊤
1 u2

u1 ×u2 Cross product between two vectors
u1 ⊗u2 External product, u1 ⊗u2 = u1u

⊤
2

σ1 : σ2 Scalar product between 2 tensors
σ1 : σ2 = tr

(
σ⊤

1 σ2

)

u ·σ Left dot product between a vector and a tensor,
u ·σ = σ⊤u

σ ·u Right dot product between a tensor and a vector,
σ ·u= σu

ρ Fluid density
v Velocity field
p Static pressure
τ Viscous stress tensor
u Specific internal energy
h Specific enthalpy
s Specific entropy
T Temperature
ci Concentration of species i

c Set of species

Symbol Description
κ Thermal conduction tensor
ji Diffusive flux of species i

Υ Set of diffusive fluxes
ri Chemical reaction rate of species i

r Set of reaction rates
ηi Chemical potential of species i

η Set of chemical potentials
µ Shear viscosity
κ Dilatational viscosity
I Identity matrix of proper dimension
0 Zero matrix of proper dimension
n Outward unitary vector normal to ∂Ω

I. INTRODUCTION

This work presents a pseudo port-Hamiltonian description
of the dynamics of non-isentropic reactive and compressible
fluids, using the total energy as generating function, and a
skew-symmetric structure that describes the energy flux be-
tween the mechanical, chemical and thermal domains, with an
explicit characterization of the first and second laws of Ther-
modynamics.

The use of an appropriate model is fundamental in opti-
mization and control design methods. In particular, passivity-
based control strategies, such as Energy-Shaping, Damping-
Injection and Interconnection and Damping Assignment-
Passivity Based Control (IDA-PBC)1,2, require an accurate
description of the energetic behavior of the system, taking
into account the energy fluxes between the different compo-
nents of the system. These models are obtained using the
port-Hamiltonian framework (PHS). This framework has been
initially introduced in Refs. 3 and 4 for finite-dimensional
systems and extended in Refs. 5–7 for infinite-dimensional
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 2

systems defined on 1-dimensional (1D) domains. In this
framework, the system dynamics are described in terms of
driving forces expressed through variational derivatives of
a non-negative function that characterizes the total energy
stored in the system. Similarly, the boundary port variables
are power-conjugated, describing the power supplied through
the boundary surface. Additionally, the use of structure-
preserving spatial discretization methods, as the ones pro-
posed in Refs. 8–11, allows to preserve the properties of
the PHS formulation during the computational analysis of
distributed-parameter system. This approach has been used
in a variety of applications, such as in the description of
the thermo-magneto-hydrodynamics of plasma in Tokamak
reactors12, the modeling and control of nanotweezers for
classes of DNA-manipulators13, the characterization of sound
propagation in musical instruments14,15, among others.

In recent years, the role of the energy flux has become rel-
evant in the analysis and study of various phenomena in fluid
dynamics. For example, in the interaction of decaying tur-
bulences with thermal non-equilibrium16, the analysis of the
nonlinear saturation of thermal instabilities17, and the study
of turbulences energy cascade in stochastic fluid systems18.
On the other hand, some methods used in computational fluid
dynamics (CFD) require correction formulas for the compu-
tation of the energy flux in the numerical sequence as for in-
stance in the ALEDGKS method19, or present undesired non-
physical oscillations20. A formulation which explicitly takes
into account the energy flux associated with physical phenom-
ena of the system, as the port-Hamiltonian framework, may
help in the analysis and study of this kind of problems.

Different energy-based approaches have been presented in
literature to describe Newtonian fluids. However, these ap-
proaches are constrained due to the considered assumptions
that are made. For ideal isentropic fluids, Ref. 5 proposes a
PHS formulation for n-dimensional inviscid fluids. Refs. 21
and 22 present 1D PHS formulations of compressible fluids
where the vorticity effects are neglected as a consequence of
the 1D assumption. A 3-dimensional (3D) PHS model for
irrotational fluids is proposed in Ref. 23, considering only a
viscous dissipation due to the fluid dilatation. Ref. 24 pro-
poses general dissipative and pseudo PHS formulations for
non-reactive compressible fluids, considering isentropic and
non-isentropic assumptions, respectively. Refs. 25 and 26
present geometric PHS formulations, in a space of advected
quantities, for compressible and incompressible fluids. Re-
garding reactive fluids, Ref. 27 proposes a pseudo PHS for-
mulation to describe a 1D reactive mixture fluid of l species,
including the thermal domain.

Another way to describe the dynamics and thermodynamics
properties of complex fluids is the GENERIC approach28–30,
where the system dynamics are described through Poisson
and dissipative brackets defined with respect to the total en-
ergy and the entropy, respectively31,32. An alternative ap-
proach for systems defined on 1D domains is the irreversible
port-Hamiltonian systems (IPHS) formulation33. IPHS de-
scribe the dynamics using a formally skew-symmetric opera-
tor which depend on energy and co-energy variables. In IPHS
the thermodynamic driving forces are described through lo-

cally defined pseudo brackets with respect to the total energy
and entropy.

In this work, we extend the PHS formulations proposed in
Refs. 24 and 27 to the modeling of 3D isentropic and non-
isentropic compressible fluids. Under the isentropic assump-
tion, we present a dissipative PHS formulation where the con-
version of kinetic energy into heat by viscous friction is de-
scribed through dissipative terms associated with the vorticity
and compressibility of the flow. The boundary port variables
of the proposed formulation include vorticity boundary con-
ditions, neglected in Ref. 24. This formulation is useful for
applications where the temperature variation of the fluid can
be neglected. For example in the study and analysis of the
phonation aerodynamics34,35. On the other hand, in applica-
tions where the temperature variation is relevant, the second
law of Thermodynamics has to be taken into account in the
fluid model, otherwise the fluid dynamic can exhibit an in-
accurate behavior. For example, a fluid model that is con-
structed taking into account only the first law of Thermody-
namics (total energy conservation), could transfer all of its
internal energy into kinetic energy. The result is a very fast,
but very cold flow. As commented in Ref. 36, such flow con-
figuration has never been observed in nature. In the case of
reactive mixing fluid applications, as hydrogen-oxygen mix-
ture combustion chamber-superheater37, computational meth-
ods, such as the lattice Boltzmann method, take special care
dealing with the description of the energy and species mass
fractions38. For the non-isentropic case, we consider a fluid
mixture with multiple simultaneous reactions. Defining the
operators, and corresponding formal adjoints, that character-
izes each physical phenomenon, a pseudo PHS formulation
is proposed to describe the dynamics and thermodynamic be-
havior of the fluid. This formulation includes boundary con-
ditions associated with the diffusion flux of matter, extend-
ing the PHS formulations for non-isentropic fluids proposed
in Refs. 24 and 27. This result can be interpreted as a first
step towards a 3D IPHS formulation of complex fluids and
may have application in areas such as the study and analysis
of combustion systems39–42.

The manuscript is organized as follows: Section II presents
a brief background on port-Hamiltonian systems, and the en-
tropy creation in fluids. In Section III we derive a dissipa-
tive port-Hamiltonian formulation for 3D compressible flu-
ids under an isentropic assumption. In Section IV we de-
velop a pseudo PHS formulation for reactive fluids in a 3D
domain, defining the operators and formal adjoints associated
with each of the involved physical phenomenon and the corre-
sponding entropy creation. Conclusions are drawn in Section
V. The proof of the theorems and the main identities used in
this paper are given in an appendix section.

II. PORT-HAMILTONIAN SYSTEMS

Infinite dimensional PHS are dynamic systems described
by PDEs of the form ∂tx = J e where J is a formally skew
symmetric differential operators and e is the vector of driving
forces related to the energy through the variational derivative
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 3

of the total energy function with respect to the state x.
In Ref. 6 a parametrization of the boundary flow and effort

variables is given in order to define a Dirac structure for linear
systems defined on a 1D domain {ζ ∈ [a,b] ⊂ R}. In Ref. 5
a free coordinate PHS formulation based on differential ge-
ometry is given to describe distributed parameter systems on
n-dimensional spatial domains.

Let Ω be a 3D spatial domain with spatial variable ζ and
boundary ∂Ω. We denote by H(Ω) the Sobolev space of
weakly differentiable functions and by X⊂H(Ω), E ⊂H(Ω)
and F ⊂ H(Ω) the spaces of state variables, efforts and flows
on Ω, respectively. The total energy stored in the system with
state variables x(ζ , t) ∈ X is given by the following func-
tional:

H =

∫

Ω
H(x)dΩ (1)

where H : X → L2(Ω,R) denotes the energy density, such
that the co-energy variables e, also called efforts, are given
by the variational derivatives e = δxH . PHS formulation of
systems on a 3D space can be defined as follows.

Definition 1. A distributed-parameter PHS defined on a 3D

spatial domain Ω, boundary ∂Ω, state space X, and with

Hamiltonian H is given by

∂tx =J e (2)
[

f∂

e∂

]

= Rne|∂Ω (3)

where ∂tx ∈ F , J is a skew-symmetric differential operator,

f∂ and e∂ are the boundary flow and effort port variables,

Rn is an operator that describes the normal and tangential

projections on ∂Ω, induced by J , of the co-energy variables

e, such that,

Ḣ =

∫

∂Ω
f∂ · e∂ dγ (4)

where
∫

∂Ω f∂ ·e∂ dγ describes the power supplied to the system

through the boundaries.

When the system is isolated, i.e., considering boundary
conditions equal to 0, from (4) total energy H stored in the
system is constant along the trajectories of x. This implies
that Definition 1 is valid for conservative systems. In Ref. 7
an extension for dissipative systems defined on a 1D domains
is presented, and Ref. 43 shows a coordinate-free formula-
tion using differential geometry. For this class of systems, the
effects of the dissipative phenomena on the systems dynam-
ics are described through an additional term −G ∗SG e, i.e.,
∂tx = J e−G SG ∗e, where G is a differential operator, G ∗ is
the corresponding formal adjoint, and S ≥ 0 is a non-negative
matrix of appropriate dimensions. Defining fd = −G ∗e and
es = Sfd as the dissipative flow and effort variables, we then
have the following definition.

Definition 2. A distributed-parameter dissipative PHS de-

fined on a 3D spatial domain Ω, boundary ∂Ω, state space

X, and with Hamiltonian H is given by
[

∂tx

fd

]

=

[
J G
−G ∗ 0

]

︸ ︷︷ ︸

J̃

[
e

ed

]

(5)

[
f∂

e∂

]

=R̃n

[
e|∂Ω
ed |∂Ω

]

(6)

where ∂tx ∈F , J̃ is an extended formal skew-symmetric dif-

ferential operator, f∂ and e∂ are the boundary flow and effort

port variables, R̃n is an operator that describes the normal

and tangential projections on ∂Ω, induced by J̃ , of the co-

energy variables e and dissipative effort ed , such that,

Ḣ =

∫

∂Ω
f∂ · e∂ dγ −

∫

Ω
fd · ed dΩ ≤

∫

∂Ω
f∂ · e∂ dγ (7)

where
∫

∂Ω f∂ · e∂ dγ describes the power supplied to the sys-

tem through the boundaries and
∫

Ω fd · ed dΩ ≥ 0 the power

dissipated into heat by the internal phenomena.

Note that Definitions 1 and 2 are also valid for distributed
port-Hamiltonian systems on 2D spatial domains. For more
background on distributed-parameter port-Hamiltonian sys-
tems, we refer the reader to Refs. 5–7, and 43. In the next
Section we present a dissipative port-Hamiltonian formulation
for isentropic compressible fluids.

III. ISENTROPIC FLUIDS

In this section we consider the dynamics of a non-reactive
compressible fluid under an isentropic assumption. Denoting
by ρ = ρ(ζ , t) and v = v(ζ , t) the fluid density and the ve-
locity field, respectively, with ζ ∈ Ω as the vector of spatial
variables, the governing equations for this kind of fluids are
given by the mass balance

∂tρ =− div ρv, ∀ζ ∈ Ω (8)

and the equation of motion

ρ∂tv =− (ρv ·grad )v− grad p−Div τ , ∀ζ ∈ Ω (9)

where p = p(ζ , t) is the fluid pressure and τ is the viscous
stress tensor. For Newtonian fluids, τ satisfies the Newton’s
law of viscosity, i.e., shear stress is proportional to the velocity
gradient44, as shown in Section 3.1.

Given the isentropic assumption, the Gibbs equation that
describes the changes of the specific internal energy in a non-
reactive compressible fluid reduces to

du =−pd
1

ρ
(10)

where u denotes the specific (per unit mass) internal energy.
Replacing d by the material derivative Dt on both sides of (10)
and using (8), the specific internal energy rate of change is
given by

∂tu+ v ·grad u =−
p

ρ
div v (11)
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 4

This implies that the effects of the thermal domain on the
dynamics of the internal energy are neglected. Then, the total
energy of system (8)-(9) is defined as:

H =
∫

Ω

(
1

2
ρv ·v+ρu(ρ)

)

dΩ (12)

with the following co-energy variables:

e =

[
δρH
δvH

]

=

[
1
2 v ·v+h

ρv

]

, ∀ζ ∈ Ω (13)

where h = h(ζ , t) is the specific enthalpy defined as h = u+
p/ρ and p = ρ2∂ρu.

Note that, as a consequence of (10), the relation 1
ρ grad p =

grad h is obtained. Similarly, using (A1), we have that

(v ·grad )v = grad

(
1

2
v ·v

)

+Gω ·v

where Gω is the gyroscope tensor defined as follows45,46.

Definition 3. The gyroscope Gω ∈ L2
(
Ω,R3×3

)
is the skew-

symmetric second order tensor that satisfies the identity ω×
v = Gω ·v, where ω = curl v denotes the vorticity vector. Ac-

cording to Ref. 47, Gω is given by

Gω = 2Ξ (14)

where Ξ = 1
2

[

Grad v− [Grad v]⊤
]

is the skew-symmetric

part of the velocity gradient.

Then, the momentum equation (9) can be rewritten as

∂tv =−grad

(
1

2
v ·v+h

)

−Gω ·v−
1

ρ
Div τ (15)

Remark 1. The cross product and the curl operator are de-

fined on 3D spatial domains, i.e., the vorticity vector ω =
curl v and the term ω×v are valid only on 3D spaces. For the

2D space Ω2D, two definitions which allow to extend the curl

operator are found in the literature48,49. The scalar curl oper-

ator, curl2D : R2 → R defined as curl2Du := ∂ζ1
u2 − ∂ζ2

u1

for a given vector u = [u1 u2]
⊤ ∈ L2(Ω2D,R

2). The vec-

tor curl operator curl∗2D : R → R
2 defined as curl∗2Du :=

[∂ζ2
u − ∂ζ1

u]⊤ for a given scalar u. Note that curl∗2D is

the formal adjoint of curl2D
50. Then, the vorticity in a 2D

space Ω2D is a scalar defined as ω = curl2Dv. The rota-

tional effects on the momentum equation, given by the term

ω× v for 3D spaces, are expressed as ωW · v for 2D spaces,

where W =

[
0 −1
1 0

]

is a rotation matrix. Moreover, note that

ωW =
[

Grad v− [Grad v]⊤
]

. This implies that the defini-

tion of Gω in (14) can be also used, i.e., ωW ·v = Gω ·v. As

a consequence, the expression (15) for the momentum equa-

tion based on the Gyroscope Gω , is also valid for fluids in 2D

spaces under these considerations.

A. Viscous friction and kinetic energy dissipation

The term 1
ρ Div τ in (15) describes the conversion of kinetic

energy into heat by viscous friction. The viscous stress tensor
τ of Newtonian fluids44 is given by

τ =−µ
[

Grad v+[Grad v]⊤
]

+

(
2

3
µ −κ

)

(div v)I (16)

where I is the identity matrix, µ is the shear viscosity of the
fluid (or simply viscosity) and κ is the dilatational viscosity,
also referred to as the bulk viscosity. Assuming that the vis-
cosities µ and κ are constant, the term 1

ρ Div τ can be ex-

pressed as a dissipative element7, as shown in the following
lemma.

Lemma 1. Consider a viscous Newtonian fluid. Define the

operators Gr(⋆) = curl
(

1
ρ ⋆
)

and Gc(⋆) = div
(

1
ρ ⋆
)

, and

the corresponding formal adjoints G ∗
r (⋆) =

1
ρ curl (⋆) and

G ∗
c (⋆) =− 1

ρ grad (⋆). The rate of change of the velocity asso-

ciated with the viscous tensor, 1
ρ Div τ , can be expressed as a

dissipative port-Hamiltonian term associated with the veloc-

ity effort δvH = ρv, namely,

1

ρ
Div τ = G ∗

τ SτGτρv (17)

where G ∗
τ =

[
G ∗

r G ∗
c

]
, Sτ =

[
µI 0
0 µ̂

]

≥ 0 and Gτ =

[
Gr

Gc

]

,

with µ̂ = 4
3 µ +κ .

Proof. See Appendix B 1.

As shown in Appendix B1, the dissipative term in (17) can
be expressed as 1

ρ Div τ = G ∗
r µGr [ρv]+G ∗

c µ̂Gc [ρv], i.e., the
dissipation of kinetic energy into heat due to the molecular
friction is given by two physical phenomena: the flow rotation
and the dilatation-compression of the fluid. As a consequence,
if the fluid is incompressible and the flow is irrotational, then
the system (8)-(9) is conservative.

Remark 2. Similarly to the Gyroscope, the dissipative for-

mulation in (17) for the divergence of the viscous tensor

can be extended for fluids in 2D spaces. In this case, op-

erators Gr and G ∗
r are defined as Gr(⋆) = curl2D

(
1
ρ ⋆
)

and

G ∗
r (⋆) =

1
ρ curl∗2D(⋆), respectively.

B. Dissipative PHS formulation

Using Lemma 1, governing equations of an isentropic and
non-reactive compressible fluid can be expressed as a dissipa-
tive port-Hamiltonian system, as shown in the following the-
orem.

Theorem 1. Consider an isentropic Newtonian fluid with

state variables given by x = [ρ v⊤]⊤. The fluid dynamics can
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 5

be expressed by the following dissipative port-Hamiltonian

system:

[
∂tx

fd

]

=

[
J −G ∗

G 0

][
e

ed

]

, ζ ∈ Ω (18)

where fd and ed = Sτ fd are the dissipative flows and efforts,

respectively, and operators J , G ∗ and G are given by

J =

[
0 −div

−grad − 1
ρ Gω·

]

, G ∗ =

[
0

G ∗
τ

]

, and G =
[
0 Gτ

]

(19)

The energy balance reads

Ḣ ≤ 〈f∂ ,e∂ 〉∂Ω (20)

where

f∂ =

[

−
(

n · δvH
ρ

)

δvH
ρ |∂Ω

]

and e∂ =

[(
ρδρH + ec

)
|∂Ω

−n× er|∂Ω

]

(21)

are the boundary port variables, with er and ec the efforts

associated with the power dissipation by the flow rotation and

fluid compression phenomena, respectively.

Proof. Considering Lemma 1 and fluid efforts (13), system
(8)-(15) can be rewritten as:

∂t

[
ρ
v

]

=

[
−div δvH

−grad δρH − 1
ρ Gω ·δvH −G ∗

τ SτGτδvH

]

We denote by fr = Gr(δvH ) and er = µfr, the dissipative
flow and effort associated with the flow rotation, respectively,
and by fc = Gc(δvH ) and ec = µ̂ fc the dissipative flow and

effort associated with the fluid compressibility, with Gr and
Gc defined as in Lemma 1. Then, governing equations can be
expressed as






∂tρ
∂tv

fr

fc




=







0 −div 0 0
−grad 1

ρ Gω· −G ∗
r −G ∗

c

0 Gr 0 0
0 Gc 0 0












δρH
δvH

er

ec




 (22)

Considering the state vector x = [ρ v⊤]⊤, the dissipative

flow and effort can be expressed as fd =

[
fr

fc

]

=
[
0 Gτ

]
e

and ed =

[
er

ec

]

=

[
µI 0

0 µ̂

]

fd , respectively. Then, defining

the operators J , G ∗ and G as in (19), the dissipative port-
Hamiltonian formulation (18) is obtained.

On the other hand, the time derivative of the total energy is
given by:

Ḣ =

∫

Ω
e ·∂txdΩ

=

∫

Ω
e ·J edΩ−

∫

Ω
δvH ·G ∗

r er dΩ−

∫

Ω
δvH ·G ∗

c ec dΩ

with J defined in (19). Due to the skew-symmetry of Gω,
we have that
∫

Ω
e ·J edΩ =−

〈
δρH ,div δvH

〉

L2 −
〈
δvH ,grad δρH

〉

L2

=−

∫

Ω
div

(
δρH δvH

)
dΩ

Using the Gauss-Ostrogradsky divergence theorem, consider-
ing the definition of Gr and Gc in Lemma 1, and applying The-
orems 3 and 4, Ḣ can be rewritten as

Ḣ =−

∫

∂Ω

(

δρH (δvH ·n)+ ec

(
δvH

ρ
·n

)

+

[

er ×
δvH

ρ

]

·n

)

dγ −

∫

Ω
(ec (Gc(δvH ))+ er · [Gr(δvH )]) dΩ

Using the definition of the dissipation efforts and the cross
product identity [u1 ×u2] ·n = u2 · [n×u1], Ḣ writes

Ḣ =−〈fr,µfr〉L2 −〈 fc, µ̂ fc〉L2 −

∫

∂Ω

δvH

ρ
· [n× er] dγ

−
∫

∂Ω

(
ρδρH + ec

)
(

δvH

ρ
·n

)

dγ

On the other hand, using

[
f∂

e∂

]

= R̃n






δρH |∂Ω

δvH |∂Ω

er|∂Ω

ec|∂Ω




 (23)

with

R̃n =







0 − 1
ρ n· 0 0

0 1
ρ 0 0

ρ 0 0 1
0 0 −n× 0







we obtain the boundary flows and efforts in (21). Then, the
rate of change of the fluid total energy can be written as

Ḣ =−〈fd ,Sτ fd〉Ω + 〈f∂ ,e∂ 〉∂Ω (24)

where 〈fd,Sτ fd〉Ω =
∫

Ω fd · [Sτ fd] dΩ and 〈f∂ ,e∂ 〉∂Ω =
∫

∂Ω f∂ ·
e∂ dγ . Finally, given that µ ≥ 0 and µ̂ ≥ 0 we have that
〈fd ,Sτ fd〉Ω ≥ 0, as stated in (20).

Note that the boundary effort −n× er|∂Ω = µω× n|∂Ω is
equivalent to the vorticity boundary condition51 ω × n|∂Ω,
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 6

Mechanical energy: H

Internal energy

Mechanical Domain

Reversible fluid work

(compression-expansion)

Kinetic energy

convection div , grad

Heat

Thermal Domain

viscous friction

G ∗
τ Sτ Gτ

D
issipation

rotation
1
ρ

Gω

FIG. 1. Energy flux of the PHS formulation of isentropic compress-
ible fluids, described in Theorem 1. Black arrows: reversible energy
exchange. Red arrow: irreversible energy transformation.

using only the tangential part of the classical kinematic
condition52 ω|∂Ω. Similarly, equation (23) denotes the bound-
ary port variables for the extended skew-symmetric operator
in (22), and it is equivalent to the boundary port variables
definition for 1D dissipative systems7. Additionally, from an
energetic point of view, the rate of irreversible work dissipated
into heat by viscous friction in the fluid is described through
the term 〈fd ,Sτ fd〉Ω ≥ 0 in (24).

Figure 1 shows an illustration of the energy flux described
by the system (18) where the reversible energy flux of the fluid
are described by operator J . Operators div and grad are
associated with the conversion between the reversible work
of the internal energy and the kinetic energy due to the fluid
convection. The energy exchange between the components
of the velocity field, due to the fluid rotation, is described
through the Gyroscope tensor. Note that in the PHS formula-
tion described in Theorem 1 the functional H contains only
the mechanical energy of the fluid. As a consequence, the ir-
reversible conversion of kinetic energy into heat by viscous
friction, described by operator G and G ∗ (red arrow of Figure
1), is considered as a mechanical energy dissipation.

An application example of this kind of fluid model, where
the fluid viscosity is pertinent but the thermal domain is ne-
glected, is the study and analysis of the human voice produc-
tion. The viscosity have a relevant role in the performance and
prediction capacity of finite elements models of the phonation
aerodynamics34. Moreover, the energy exchange between the
vocal folds and the intraglottal airflow have a great impact in
the study the vocal folds vibration35. In this sense, a model
focused on the energy flux of the fluid, as the one proposed in
Theorem 1, may be useful for this class of applications.

In the following remarks we show that the fluid model pro-
posed in (18) allows to cope with different models of isen-
tropic fluids described in the literature under different assump-
tions.

Remark 3. Consider that the isentropic fluid has an irrota-

tional flow. This implies that operators Gr and G ∗
r , and gyro-

scope tensor Gω vanish. Then, the port-Hamiltonian formu-

lation in Theorem 1, can be written as




∂tρ
∂tv

fc



=





0 −div 0
−grad 0 −G ∗

c

0 Gc 0









δρH
δvH

ec



 (25)

satisfying the balance equation Ḣ ≤ 〈f∂ ,e∂ 〉∂Ω, with bound-

ary ports f∂ ,e∂ given by f∂ = −(n ·δvH ) |∂Ω and e∂ =
(

δρH + ec
ρ

)

|∂Ω, leading to the fluid model proposed in

Ref. 23.

Remark 4. Consider the fluid as isentropic and inviscid. This

implies that the operators associated with the viscous tensor

vanish. Then, the port-Hamiltonian formulation in Theorem

1, reduces to
[

∂tρ
∂tv

]

=

[
0 −div

−grad −Gω

ρ

][
δρH
δvH

]

(26)

satisfying the balance Ḣ = 〈f∂ ,e∂ 〉∂Ω, with boundary ports

given by f∂ = −(n ·δvH ) |∂Ω and e∂ = δρH |∂Ω. This for-

mulation is equivalent to the one given in Ref. 5.

Remark 5. Note that, as shown in Remarks 1 and 2, the

terms associated with the curl operator in (22), Gω , Gr and

G ∗
r , can be extended to 2D spaces. The dissipative port-

Hamiltonian formulation in Theorem 1 is then also valid for

2D isentropic compressible fluids. To simplify the derivation

of the boundary fluid and efforts, in Ref. 24 we considered

the following equivalent definitions of the 2D curl operator,

curl2D(⋆) =−div [W⋆] and curl∗2D(⋆) =W⊤grad (⋆), where

W is the rotation matrix defined in Remark 1.

IV. NON ISENTROPIC REACTIVE FLUIDS

In this section a port-Hamiltonian formulation for reactive
and non-isentropic compressible reactive fluids is proposed.
Due to the non-isentropic assumption, we first analyze the ir-
reversible phenomena in the fluids and the associated entropy
production.

A. Irreversible phenomena and entropy production in
compressible fluids

Fluid dynamics may involve several irreversible processes,
such as diffusion, thermal conduction and viscosity, that
are sources of mechanical/chemical energy dissipation into
heat53. The entropy creation related to these irreversible phe-
nomena is described below leading to an appropriate char-
acterization of the second law of Thermodynamics for non-
isentropic compressible fluids.

1. Viscosity and molecular momentum flux

The molecular momentum flux is the transport mechanism
associated with the motion, interaction and collisions of fluid
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 7

molecules44. This mechanism is described by the viscous
stress tensor τ in (16). As described in Ref. 44, p. 87 the irre-
versible production of heat per unit of volume due to viscous
friction of fluids is given by −τ : [Grad v], i.e., considering
a local version of the second law of Thermodynamics54 we
have

−
1

ρT
τ : [Grad v]≥ 0 (27)

that describes the specific entropy production rate due to the
conversion of kinetic energy into heat by viscous friction.

2. Heat and diffusion fluxes

The heat flux q describes the energy transport due to ther-
mal conduction. According to Ref. 55, the density of entropy
production by heat flux is given by

q ·

[

grad
1

T

]

=−
q

T 2
· [grad T ]≥ 0 (28)

where T is the absolute temperature of the fluid.
On the other hand, in multi-species fluids, the diffusion flux

j describes the mass transport due to the equalization of con-
centrations by molecular transfer of species, from one part of
the fluid to another53. The entropy production density associ-
ated with diffusion of l species is given by55

−
l

∑
i=1

ji ·grad
ηi

T
=−Υ : Grad

η

T
≥ 0 (29)

where ηi is the chemical potential of the i-th species, Υ =
[j1, . . . , jl ]

⊤ and η = [η1, . . . ,ηl ]
⊤.

The heat and diffusion fluxes are given by the presence of
concentration and temperature gradients. It is commonly as-
sumed that q depends only on the temperature gradient, and j

only on the concentration gradient. However, in general, these
fluxes depend on both gradients; see Refs. 44, 53, and 55 for
more details. This implies that the heat flux q is related to the
diffusion flux j, i.e.,

q =−κ ·grad T +
l

∑
i=1

ηiji + q(D) (30)

where the first term describes the heat conduction, containing
the thermal conductivity, the second term describes the heat
diffusion due to the mass flux of the fluid species, and finally
q(D) is the Dufour term44, containing the thermal diffusion
coefficients and mass fluxes. This Dufour term is usually ne-
glected. In this work, for simplicity, we consider the heat flux
definition (30) without this Dufour term. Then, considering
a fluid without mass diffusion, ji = 0 for all i, we obtain that
the heat flux is only given by the heat conduction term, i.e.,
q = −κ · grad T , where κ = κ⊤ ≥ 0 is a symmetric second
order tensor called the thermal conductivity tensor.

Regarding the diffusion flux, the computation of convec-
tive transfer phenomena in multi-species systems is generally

complicated56, and simplifications are required to make this
problem tractable. Under proper assumptions on the diffusion
coefficients, the diffusion equation for multi-species fluids is
equivalent to the diffusion equation of binary systems. Then,
the most simple formula for the diffusive mass flux is given
by44,55

ji =−Digrad ci , (31)

which is derived from the Fick’s law, where Di is the diffu-
sion coefficient of species i. An alternative formulation can
be found in Ref. 55. Fick’s formulation was obtained through
empirical studies, and the parameter Di can be obtained ex-
perimentally.

3. Chemical Reactions

We consider now a general chemical reaction of the form:

ξ : a1C1 + · · ·+ akCk ⇋ ak+1Ck+1 + · · ·+ alCl (32)

where ai are the stoichiometric reaction coefficients, Ci, i ∈
[1, . . .k] are the reactant species, and Ci, i ∈ [k + 1, . . . l] are
the product species. Due to the reaction stoichiometry, the
changes in the mole amounts, Ni with i ∈ [1, ..., l], of species
satisfy

−
dN1

a1
= · · ·=−

dNk

ak

=
dNk+1

ak+1
= · · ·=

dNl

al

= dξ

where dξ denotes the change of reaction ξ . The affinity A of
this reaction is defined as

A =
k

∑
i=1

aiηi −
l

∑
i=k+1

aiηi . (33)

The entropy production by the chemical reaction is given
by A

T
ξ̇ ≥ 0 where ξ̇ is the reaction velocity55. Defining

υ := ξ̇/V , the reaction velocity per unit volume, we obtain
that Aυ/T ≥ 0 is the density of entropy production by reaction
ξ . In the case of M simultaneous reactions, we have that the
production rate of species i is defined as ri = ∑M

m=1±amiυm,
where the positive sign is used when the species Ci is a reac-
tant of reaction ξm and the negative sign when it is a product.
Then, the density of entropy production per unit volume is
given by

m

∑
i=1

Ai

T
υi =

l

∑
i=1

ηi

T
ri =

η

T
·r ≥ 0 (34)

where r = [r1, . . . ,rl ]
⊤ denotes the set of species reaction

rates.

B. Balance equations

Assuming a fluid with l species, additionally to equations
(8) and (15), we consider the following constitutive equation
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 8

to describe the dynamics of species i, ρ Dtci := ρ (∂t + v ·
grad )ci =−div ji − ri, i.e.:

∂tci =− v ·grad ci −
1

ρ
div ji −

1

ρ
ri (35)

where ci denotes the concentration (mol/kg) of the i-th compo-
nent, ji and ri are the corresponding diffusive flux and produc-
tion rate due to the chemical reactions, as shown in Sections
IV A 2 and IV A 3, respectively. Then, the dynamics of the l

species can be expressed as

∂tc=−v · [Grad c]−
1

ρ
Div Υ−

1

ρ
r (36)

where c = [c1, . . . ,cl ]
⊤, η = [η1, . . . ,ηl ]

⊤ and r= [r1, . . . ,rl ]
⊤

are the vectors of size l, that group the concentration, chemical
potential and reaction rate of the fluid species, respectively,
and Υ= [j1, . . . , jl ]

⊤ is a the second order tensor of size l × n

associated with the diffusion flux of species.

Given the non-isentropic assumption, we consider the effect
of the thermal domain in the internal energy dynamics. In the
non-isentropic case the constitutive equation for the specific
internal energy is given by44

∂tu =−v ·grad u−
p

ρ
div v−

1

ρ
τ : Grad v−

1

ρ
div q (37)

where q is heat flux, described in Section IV A 2, and − 1
ρ τ :

Grad v describes the irreversible rate of internal energy pro-
duction per unit mass by viscous dissipation.

On the other hand, considering the thermal domain and the
chemical species, Gibbs equation can be written as

du =−pd
1

ρ
+Tds+

l

∑
i=1

ηidci=−pd
1

ρ
+Tds+η ·dc (38)

where s denotes the specific entropy of the fluid. Consider-
ing the local thermodynamic equilibrium assumption Dtu =

p

ρ2 Dtρ +T Dts+∑l
i=1 ηiDtci, then the following constitutive

equation for the specific entropy is obtained:

∂ts =− v ·grad s−
1

ρT
τ : Grad v−

1

ρT
div q

+
1

ρT
η · [r+Div Υ] (39)

Similarly, assuming that ρ , s and ci are independent vari-
ables, such that p = ρ2∂ρu, from Gibbs equation (38) we ob-
tain the relation 1

ρ grad p = grad h−Tgrad s−η · [Grad c]

and considering 1
ρT

η · Div Υ = 1
ρT

div (η ·Υ) − 1
ρT

Υ :
Grad η, the governing equation of fluid dynamics can be ex-

pressed as:

∂tρ =− div ρv (40a)

∂tv =− grad

(
1

2
v ·v+h

)

−Gω ·v+Tgrad s (40b)

+[Grad c] ·η−
1

ρ
Div τ

∂tc=− v · [Grad c]−
1

ρ
Div Υ−

1

ρ
r (40c)

∂ts =− v ·grad s−
1

ρT
τ : [Grad v]−

1

ρT
Υ : [Grad η]

+η ·
r

ρT
−

1

ρT
div q(h) (40d)

where q(h) := q−∑l
i=1 ηiji = q−η ·Υ is the heat flux modi-

fied by the diffusional enthalpy flux44.

C. Pseudo port-Hamiltonian formulation

In Section III, due to the isentropic assumption, the thermal
domain was neglected, i.e., heat effects were not accounted
for in the internal energy description. As a consequence, the
conversion of kinetic energy into heat by viscous friction was
characterized as a dissipation of energy, and a dissipative port-
Hamiltonian formulation was obtained. For non-isentropic re-
active fluids, the thermal and chemical domains are described
through the dynamics of the specific entropy s and the con-
centrations of fluid species c, respectively. The aim of this
section is to obtain a formulation of the form

∂tx = J (x,e)e

where J (x,e) is a formally skew-symmetric operator that de-
scribes the energy fluxes between the mechanical, chemical
and thermal domains of the fluid dynamics, including the irre-
versible processes, and satisfying the first and the second law
of Thermodynamics.

The chemical and thermal energies are now considered as
a part of the total energy, as shown in (38). This implies that
u is a function of the specific entropy and the species con-
centrations. Then, the total energy stored in system (40) with
domain Ω is given by:

H̄ =

∫

Ω

(
1

2
ρv ·v+ρu(ρ ,s,c)

)

dΩ (41)

leading to the following co-energy variables

e =







δρH̄
δvH̄
δcH̄
δsH̄






=







1
2 v ·v+u+ρ∂ρu

ρv

ρη
ρT







(42)

To obtain the port-Hamiltonian formulation for these reac-
tive fluids, we first identify the operators that describe the en-
ergy fluxes in(40), as shown in the following lemmas.
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 9

Lemma 2. Let Ac : L2 (Ω,Rn) → L2
(
Ω,Rl

)
,

As : L2 (Ω,Rn) → L2 (Ω,R) and R : L2 (Ω,R) → L2
(
Ω,Rl

)

be the unbounded differential operators defined by

Ac(⋆) = (⋆) ·
[

Grad c

ρ

]

, As(⋆) = (⋆) ·
[

grad s
ρ

]

and

R(⋆) =− 1
ρ2T

r (⋆) , respectively. Then, A ∗
c (⋆) =

Grad c

ρ · (⋆),

A ∗
s (⋆) =

grad s
ρ (⋆) and R∗(⋆) = −(⋆) · r

ρ2T
are the formal

adjoint operators of Ac, As and R, respectively.

Proof. See Appendix B 2.

Lemma 3. Let Dτ : L2 (Ω,R) → L2 (Ω,Rn), DΥ :
L2 (Ω,R) → L2 (Ω,R) and Dq : L2 (Ω,R) → L2 (Ω,R) be

the unbounded differential operators defined as Dτ (⋆) =

− 1
ρ Div

[
τ

ρT
(⋆)
]

, DΥ(⋆) = − 1
ρ Div

[
Υ

ρT
(⋆)
]

and Dq(⋆) =

− 1
ρ div

[
q(h)

ρT 2 (⋆)
]

, respectively. Then, D∗
τ (⋆)=

τ
ρT

: Grad
(⋆)
ρ ,

D∗
Υ
(⋆) = Υ

ρT
: Grad

(⋆)
ρ and D∗

q(⋆) =
q(h)

ρT 2 · grad
(⋆)
ρ are the

formal adjoint operators of Dτ , DΥ and Dq, respectively, sat-

isfying the following relations:

〈
δvH̄ ,Dτ (δsH̄ )

〉

L2 −
〈
D∗

τ (δvH̄ ),δsH̄
〉

L2

=−

∫

∂Ω

δvH̄

ρ
· [τ ·n] dγ (43)

〈
δcH̄ ,DΥ(δsH̄ )

〉

L2 −
〈
D∗

Υ(δcH̄ ),δsH̄
〉

L2

=−

∫

∂Ω

δcH̄

ρ
· [Υ ·n] dγ (44)

〈
δsH̄ ,Dq(δsH̄ )

〉

L2 −
〈
δsH̄ ,D∗

q(δsH̄ )
〉

L2

=−

∫

∂Ω

δsH̄

ρ

[

q(h)

T
·n

]

dγ (45)

Proof. See Appendix B 3.

Note that As(δvH̄ ) = δvH̄ · grad s
ρ = v · grad s and

As(δvH̄ ) = δvH̄ · Grad c
ρ = v ·Grad c describe the advec-

tion terms of the specific entropy and the species concentra-
tion dynamics. Similarly, R(δsH̄ ) = − r

ρ2T
δsH̄ = − r

ρ de-

scribes the variation rate of the species concentrations due to
chemical reactions, and −R(δcH̄ ) = r

ρ ·η the correspond-

ing rate of specific entropy production. Then, Dτ (δsH̄ ) =
− 1

ρ Div τ and DΥ(δsH̄ ) = − 1
ρ Div Υ describe the viscous

friction of fluid velocity dynamics and the diffusion phe-
nomena of the species concentration, with −D∗

τ (δvH̄ ) =
− τ

ρT
: Grad v and −D∗

Υ
(δvH̄ ) = − Υ

ρT
: Grad v as the cor-

responding rate of irreversible entropy production. Finally,

Dq(δsH̄ ) = − 1
ρ div q(h)

T
and −D∗

q(δsH̄ ) = − q(h)

ρT2 · grad T

characterize the entropy diffusion and creation by heat flux.

Theorem 2. Consider a reactive and compressible Newtonian

fluid whose total energy H̄ on domain Ω is defined by (41),
with state variables x = [ρ v⊤c⊤ s]⊤ and takes into account

the non-negative conditions (27), (28), (29) and (34). The

fluid dynamics can be expressed by the following pseudo port-

Hamiltonian system:

∂tx = J (x,e)e , (46)

where J (x,e) is a state and co-energy dependent skew-

symmetric operator given by

J (x,e) =







0 −div 0 0

−grad − 1
ρ Gω· A ∗

c A ∗
s +Dτ

0 −Ac 0 R+DΥ

0 −As−D∗
τ −R∗−D∗

Υ
Dq −D∗

q







(47)

The energy and entropy balances

˙̄H =〈f∂ ,e∂ 〉∂Ω (48)

Ṡ =

∫

Ω
σs dΩ+

〈
f∂ ,e

s
∂

〉

∂Ω
(49)

satisfy the first and second law (σs ≥ 0) of Thermodynamics,

respectively, and

f∂ =








−νn

−νt

−Υ|∂Ω ·n

−
(

q(h)

T

∣
∣
∣
∂Ω

·n
)








and e∂ =









ρδρH̄
∣
∣
∂Ω

+ τn

τt

δcH̄
ρ

∣
∣
∣
∂Ω

δsH̄
ρ

∣
∣
∣
∂Ω









(50)

are the boundary port variables, νn|∂Ω = v|∂Ω · n and νt =
v|∂Ω · t are the magnitude of the normal and orthogonal pro-

jections of the fluid velocity on ∂Ω. τn and τt are the pro-

jections of the viscous tensor and
q(h)

T
the entropy flux. n is

the unitary outward vector normal to ∂Ω, and t the tangential

unitary vector orthogonal to n such that (v ·t)t=−n× [n×v].
The term

〈
f∂ ,e

s
∂

〉

∂Ω
describes the entropy exchange with the

environment through ∂Ω, with es
∂ = [ρs|∂Ω 0 0 1]⊤, and

σs =−τ
T

: Grad v+ r
ρT

·η− Υ

T
: Grad η− q(h)

T 2 ·grad T ≥ 0
characterizes the density of the internal entropy production of

the fluid.

Proof. Considering that 1
ρT

div q(h) = q(h)

ρT 2 ·grad T + 1
ρ div q(h)

T

and using the co-energy variables defined in (42), the govern-
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 10

ing equations can be rewritten as:

∂tρ =− div δvH̄

∂tv =− grad δρH̄ −
1

ρ
Gω ·δvH̄ +

grad s

ρ
δsH̄

+
[Grad c]

ρ
·δcH̄ −

1

ρ
Div

[
τ

ρT
δsH̄

]

∂tc=− δvH̄ ·
[Grad c]

ρ
−

1

ρ
Div

[
Υ

ρT
δsH̄

]

−
1

ρ2T
rδsH̄

∂ts =− δvH̄ ·
grad s

ρ
−

1

ρT
τ :

[

Grad
δvH̄

ρ

]

−
1

ρT
Υ :

[

Grad
δcH̄

ρ

]

+
r

ρ2T
·δcH̄

−
q(h)

ρT 2
grad

δsH̄

ρ
−

1

ρ
div

[

q(h)

ρT 2
δsH̄

]

Then, defining the state variables as x =
[
ρ v⊤ c⊤ s

]⊤
,

computing the co-energy variables by (42), and using the op-
erators Ac, As, R, Dτ , DΥ, Dq and the corresponding for-
mal adjoints defined in Lemmas 2 and 3, we obtain the port-
Hamiltonian formulation (46), with the skew-symmetric oper-
ator J (x,e) defined in (47).

On the other hand, the rate of change of the total energy is
given by:

˙̄H =

∫

Ω
δxH̄ ·∂txdΩ =

∫

Ω
e · [J (x,e)e] dΩ

=−
〈
δρH̄ ,div δvH̄

〉

L2 −
〈
grad δρH̄ ,δvH̄

〉

L2

+
〈
δvH̄ ,Dτ (δsH̄ )

〉

L2 −
〈
D∗

τ (δvH̄ ),δsH̄
〉

L2

+
〈
δcH̄ ,DΥ(δsH̄ )

〉

L2 −
〈
D∗

Υ(δcH̄ ),δsH̄
〉

L2

+
〈
δsH̄ ,Dq(δsH̄ )

〉

L2 −
〈
δsH̄ ,D∗

q(δsH̄ )
〉

L2

Using identity (A3), the Gauss-Ostrogradsky divergence
theorem and the relations given in Lemma 3, we obtain

˙̄H =−

∫

∂Ω

(

δρH̄
(
δvH̄ ·n

)
+

δvH̄

ρ
· [τ ·n]

)

dγ

−
∫

∂Ω

(

δcH̄

ρ
· [Υ ·n]+

δsH̄

ρ

(

q(h)

T
·n

))

dγ

Consider now the tangential plane Γ to the boundary sur-
face ∂Ω, and the unitary vector t ∈ Γ orthogonal to n, i.e.,
n · t = 0, such that (v · t)t =−n× [n× v], ∀ζ ∈ ∂Ω, describes
the orthogonal projection of the fluid velocity with respect to

the boundary surface. Then, given that δvH̄
ρ · [τ ·n] = τ :

[
δvH̄

ρ n⊤
]

and δvH̄
ρ =

(
δvH̄

ρ ·n
)

n+
(

δvH̄
ρ · t

)

t, ∀ζ ∈ ∂Ω,

the boundary conditions associated with the viscous tensor
can be rewritten as:

δvH̄

ρ
· [τ ·n] = νnτn +νtτt, ∀ζ ∈ ∂Ω

where νn =
δvH̄

ρ |∂Ω ·n= v|∂Ω ·n and νt =
δvH̄

ρ |∂Ω ·t= v|∂Ω ·t

are the magnitude normal and orthogonal projections of the

fluid velocity at ∂Ω, and τn = τ : [n⊗n] and τt = τ : [t⊗n] the
corresponding projections of the viscous tensor. This implies

that ˙̄H can be expressed as:

˙̄H =−

∫

∂Ω

((
ρδρH̄ + τn

)
νn + τsνs

)
dγ

−

∫

∂Ω

(

δcH̄

ρ
· [Υ ·n]+

δsH̄

ρ

(

q(h)

T
·n

))

dγ

=

∫

∂Ω
e∂ · f∂ dγ = 〈e∂ , f∂ 〉∂Ω

where f∂ and e∂ are the boundary port variables defined in
(50).

Regarding the total entropy S =
∫

Ω ρsdΩ, with δxS =
[
s 0 0 ρ

]⊤
, we have that its rate of change is given by:

Ṡ =
∫

Ω
δxS · [J (x)e] dΩ

=−

∫

Ω

(
s div δvH̄ +ρAs(δvH̄ )−ρDq(δsH̄ )

)
dΩ

+

∫

Ω
σs dΩ

=−

∫

Ω

(

s div δvH̄ + δvH̄ ·grad s+ div
q(h)

T

)

dΩ

+
∫

Ω
σs dΩ

where σs = −ρ
(
D∗

τ (δvH̄ )+R∗(δcH̄ )+D∗
Υ
(δcH̄ ) +

D∗
q(δsH̄ )

)
denotes the density of internal entropy produc-

tion of the reactive fluid dynamics. Using identity (A3) and
the Gauss-Ostrogradsky divergence theorem, we obtain

Ṡ =

∫

Ω
σs dΩ+

∫

∂Ω

(

sδvH̄ +
q(h)

T

)

·ndγ

=
∫

Ω
σs dΩ+

〈
f∂ ,e

s
∂

〉

∂Ω

where es
∂ = [ρs|∂Ω 0 0 1]⊤. Considering the non-

negative conditions (27), (28), (29) and (34) we have that

σs =−ρ
(
D∗

τ (δvH̄ )+R∗(δcH̄ )+D∗
Υ
(δcH̄ )+D∗

q(δsH̄ )
)

=−
τ

T
: Grad v+

r

ρT
·η−

Υ

T
: Grad η−

q(h)

T 2
·grad T

=−
τ

T
: Grad v+

l

∑
i=1

riηi

ρT
−

l

∑
i=1

ji ·grad
ηi

T
−

q

T 2
·grad T

≥0

If the system is isolated, the boundary conditions (50)

are equal to 0, and ˙̄H = 0, i.e., system (46) is conserva-
tive. Similarly, the rate of change of the entropy is given by
Ṡ =

∫

Ω σs dΩ≥ 0, i.e., the port-Hamiltonian formulation (46)
satisfies the first and second laws of Thermodynamics.
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 11

Total energy: H̄

Internal energy

Mechanical Domain

Reversible fluid work

(compression-expansion)

Kinetic energy

rotation
1
ρ

Gω

convection div , grad

Heat, Entropy

Thermal Domain

Chemical energy

Chemical Domain

Dτ , D∗
τ

viscous friction

A ∗
s , As

advection

reactions

R, R∗

diffusion

Dϒ, D∗
ϒ

A ∗
c , Ac

Dq,D∗
q heat flux

FIG. 2. Energy flux of the PHS formulation of non-isentropic fluids proposed in Theorem 2. Black arrows: reversible energy exchange. Red
arrows: irreversible energy transformation.

The PHS formulation described in Theorem 2 can be used
in applications where the chemical and thermal domains are
relevant for the fluid dynamics, and not only the mechanical
domain as in the isentropic case. As for example, in the study
and analysis of combustion systems39–42.

Figure 2 shows the energy flux of the PHS formulation pro-
posed in Theorem 2 due to the physical phenomena of the flu-
ids dynamics. Note that, unlike the isentropic case, the ther-
mal and chemical domains are included in the model of re-
active nonisentropic compressible fluids. Additionally to the
reversible energy exchange due to the fluid convection and
rotation present in the isentropic model, non-isentropic flu-
ids present chemical-mechanical and thermal-mechanical re-
versible energy transformations. These transformations are
associated with the advection terms, described by operators
As and Ac, in the entropy and chemical species dynamic
equations, respectively, and the corresponding adjoints in the
momentum equation. Similarly, the chemical-thermal energy
transformation associated with the irreversible entropy cre-
ation due to chemical reactions and diffusion are described
by operators R, DΥ and the corresponding adjoints. Finally,
entropy production and diffusion by heat flux are described by
operators D∗

q and Dq, respectively.

Remark 6. Note that different definitions of

f∂ and e∂ can be proposed such that ˙̄H =

−
∫

∂Ω

((
ρδρH̄ + τn

)
νn + τtνt+

δcH̄
ρ · [Υ ·n]

)

dγ −
∫

∂Ω
δsH̄

ρ

(
q(h)

T ·n
)

dγ = 〈e∂ , f∂ 〉∂Ω. We selected the realiza-

tion described in (50), such that f∂ contains the fluxes of

matter and heat between the system (46) and its environment,

simplifying the analysis of the energy and entropy when the

system is isolated.

Remark 7. The skew-symmetric operator J (x,e) in (46)
explicitly depends on the co-energy variable δsH̄ = ρT, as

shown in Dτ , DΥ, Dq, R and the corresponding formal ad-

joint operators in Lemma 3. This implies that J (x,e) does

not satisfy the Jacobi identity and, as a consequence, the

model (46) is not a port-Hamiltonian system.

Similarly to the isentropic case, rotational effects in the
momentum equation are characterized using the Gyroscope
Gω. As a consequence, from Remark 1, the structure of the
pseudo-PHS formulation in Theorem 2, is conserved for the
description of 2D reactive non-isentropic compressible fluids.

V. CONCLUSION

In this paper, PHS formulations for isentropic and non-
isentropic compressible fluids have been proposed. For isen-
tropic fluids, differential operators and corresponding formal
adjoints have been presented to describe the dissipation of
kinetic energy into heat viscous friction associated with the
vorticity and compressibility of the fluid, separately, leading
to a dissipative PHS formulation. Additionally, the bound-
ary port variables include some vorticity boundary condi-
tions, that have not been previously considered in previous
works. For the non-isentropic case, a mixture compressible
fluid with multiple simultaneous reactions was considered.
Operators and corresponding adjoints were defined to char-
acterize the diffusion flux of matter, chemical reactions and
the entropy creation associated with these phenomena. The
resulting pseudo-PHS is conservative, satisfies the first and
second laws of Thermodynamics, and the boundary port vari-
ables consider boundary conditions associated with the ther-
mal conduction and diffusive flux of matter of the fluid.

As future work, we consider the development of structure-
preserving discretization methods based on finite volumes, fi-
nite differences, and/or partitioned finite elements. The aim
of these structure-preserving methods is to preserve the prop-
erties of the system with respect to the first and second laws
of Thermodynamics during numerical implementation of the
PHS models in Theorems 1 and 2. In the case of incompress-
ible fluids, a challenge for the discretization methods is the
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 12

appropriate characterization of the static pressure, such that
the structure and properties of the PHS formulation are pre-
served. On the other hand, we consider the application of
passivity-based methods for the control of fluids, and the in-
terconnection of the proposed model with other physical sys-
tems, such as in fluid-structure interaction processes. The ex-
tension of the PHS formulation to non-Newtonian fluids, such
as Maxwell’s viscoelastic fluids, is also an interesting topic to
consider in the future.
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Appendix A: Useful identities and theorems

Mathematical identities44 used in this work are listed be-
low:

(u ·grad )u= grad

(
1

2
u ·u

)

+[curl u]×u (A1)

σ : [Grad u] = div [σ ·u]−u ·Div σ (A2)

div [ fu] = [grad f ] ·u+ f div u (A3)

Div (Grad u) = grad (div u)− curl [curl u] (A4)

Div
(

[Grad u]⊤
)

= grad (div u) (A5)

Div [(div u) I] = grad (div u) (A6)

div [u× v] = v · [curl u]−u · [curl v] (A7)

where f is a scalar, u is a vector of dimension 3 and σ is a
symmetric second order tensor of dimension 3× 3.

In the following theorems some useful operators and their
adjoints are given, as well as the associted boundary condi-
tions that are used to obtain the port-Hamintonian formula-
tions of fluids. Firstly, we set the adjoint and boundary condi-
tions associated with a modulated rotational operator.

Theorem 3. Let α ∈ C1
(
Ω̄,R

)
be a continuously differen-

tiable scalar function, such that (α u) ∈ Hcurl(Ω,R3),∀u ∈
Hcurl(Ω,R3). Denoting by curl : L2(Ω,R3)→ L2(Ω,R3) the

curl operator, also called rotational, then, α curl (⋆) is the

adjoint of curl (α ⋆) satisfying the relation

〈u1,curl (α u2)〉L2 −〈α curl u1,u2〉L2

=

∫

∂Ω
α [u2 ×u1] ·ndγ (A8)

for all (u1,u2) ∈ Hcurl(Ω,R3), where n ∈ R
3 is the outward

unitary vector to ∂Ω.

Proof. Using (A7) and the Gauss-Ostrogradsky divergence
theorem, the inner product 〈u1,curl (αu2)〉L2 can be ex-
pressed as

〈u1,curl (αu2)〉L2 =

∫

Ω
u1 · [curl (αu2)] dΩ

=

∫

Ω
div [(αu2)×u1] dΩ

+

∫

Ω
[αcurl u1] ·u2 dΩ

=〈αcurl u1,u2〉L2

+

∫

∂Ω
[(αu2)×u1] ·ndγ

Rewriting the previous equation, we obtain relation (A8).
Similarly. As a special case, considering boundary condi-
tions equal to 0, 〈u1,curl (α u2)〉L2 = 〈α curl u1,u2〉L2 , i.e.,
curl (α ⋆) is the formal adjoint of α curl (⋆).

The following theorems define the adjoint and associ-
ated boundary conditions for modulated gradient and diver-
gence operators. Note that these theorems are defined on n-
dimensional spatial domains, with n ∈ {2,3}.

Theorem 4. Let α ∈ C1
(
Ω̄,R

)
be a continuously differen-

tiable scalar function, such that (α u) ∈ Hdiv(Ω,Rn),∀u ∈
Hdiv(Ω,Rn). Denoting by div : L2(Ω,Rn) → L2(Ω,R) the

divergence of a vector of size n, and by grad : L2(Ω,R) →
L2(Ω,Rn) the gradient of a scalar function, then, α grad (⋆)
is the formal adjoint of div (α ⋆), satisfying the relation

〈 f ,div (α u)〉L2 −〈α grad f ,u〉L2 =

∫

∂Ω
f (α u ·n) dγ

(A9)

for all u ∈ Hdiv(Ω,Rn) and f ∈ H1(Ω,R) and where n ∈ R
n

is the outward unitary vector to ∂Ω.

Proof. The proof follows by using (A3) and Gauss-
Ostrogradsky divergence theorem and following a similar pro-
cedure as in the proof of Theorem 3.

Theorem 5. Let F ∈ C1(Ω̄,Rn) and α ∈ C1(Ω̄,R) be con-

tinuously differentiable vector and scalar functions, respec-

tively, such that, for any f ∈ H1(Ω,R) we obtain that (F f ) ∈
H1(Ω,Rn) and (α f ) ∈ H1(Ω,R). Define the operator D :
L2(Ω,R)→ L2(Ω,R) as D f = α div (F f ). Then, the formal

adjoint D∗ : L2(Ω,R) → L2(Ω,R) of D is given by D∗ f =
−F ·grad (α f ).

Proof. Let f j , j ∈ {1,2} be a continuous differentiable scalar
function. Consider f α

j ∈H1(Ω,R) and fF
j ∈H1(Ω,Rn) as the

scalar and vector functions defined as f α
j =α f j and fF

j =F f j,
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 13

respectively. Using the inner product 〈 f1,D f2〉L2 , we obtain

〈 f1,D f2〉L2 =
∫

Ω
f1αdiv (F f2) dΩ =

∫

Ω
fα
1 div fF

2 dΩ

=−

∫

Ω
[grad f α

1 ] ·fF
2 dΩ+

∫

∂Ω
fα
1

(
fF
2 ·n
)

dγ

=−

∫

Ω
[grad (α f1)] ·F f2 dΩ+

∫

∂Ω
fα
1

(
fF
2 ·n
)

dγ

=−

∫

Ω
(F ·grad (α f1)) f2 dΩ

+

∫

∂Ω
f α
1

(
fF

2 ·n
)

dγ (A10)

Then, considering boundary conditions equal to 0, we ob-
tain that 〈 f1,D f2〉L2 = 〈−F ·grad (α f1) , f2〉L2 , i.e., D∗(⋆) =
−F ·grad (α⋆) is the formal adjoint of D .

Theorem 6. Let D̄ : L2(Ω,R) → L2(Ω,R) be an unbounded

differential operator defined as D̄ f = F · grad (α f ) +
α div (F f ) where α and F are continuously differentiable

functions, such that, for any f ∈ H1(Ω,R) we obtain that

fF = F f ∈ Hdiv(Ω,Rn) and f α = α f ∈ H1(Ω,R). Then, D̄
is a formally skew-adjoint operator, satisfying

〈 f , D̄ f 〉L2 =
∫

∂Ω
f α
(
fF ·n

)
dγ (A11)

Proof. Let f j , j ∈ {1,2} be a square integrable scalar func-
tion. Consider f α

j ∈ H1(Ω,R) and fF
j ∈ H1(Ω,Rn) as the

continuous differentiable scalar and vector functions defined
as f α

j = α f j and fF
j = F f j, respectively. Then, inner product

is given by

〈
f1,D̄ f2

〉

L2 =

∫

Ω
( f1F ·grad (α f2)+ f1αdiv (F f2)) dΩ

=

∫

Ω

(
fF

1 ·grad f α
2 + f α

1 div fF
2

)
dΩ

and, using (A10), we have that

〈
f1,D̄ f2

〉

L2 =

∫

∂Ω

(
f α
1

(
fF

2 ·n
)
+ f α

2

(
fF

1 ·n
))

∂Ω

−
∫

Ω

(
fF

1 ·grad f α
2 + f α

1 div fF
2

)
dΩ

=−
〈
D̄ f1, f2

〉

L2

+
∫

∂Ω

(
f α
1

(
fF

2 ·n
)
+ f α

2

(
fF

1 ·n
))

dγ

Considering boundary conditions equal to 0, from (A11)
we have that

〈
f1,D̄ f2

〉

L2 =
〈
−D̄ f1, f2

〉

L2 . This implies that

the formal adjoint of D̄ is given by D̄∗ = −D̄ , i.e., D̄ is a
formally skew-adjoint operator. Finally, setting f1 = f2 = f ,
relation (A11) is obtained.

Regarding the divergence of second order tensors, the cor-
responding formal adjoint in the space of symmetric tensors
is carefully proved in Ref. 57, and extended to non-symmetric
square tensors in Ref. 24. In the next result we generalize
this approach to second order tensors of size l × n on an n-
dimensional spatial domain Ω, with n ∈ {2,3}.

Theorem 7. Denote by Div : L2
(
Ω,Rl×n

)
→ L2

(
Ω,Rl

)
the

divergence operator for second order tensors of size n× l and

by Grad : L2
(
Ω,Rl

)
→ L2

(
Ω,Rl×n

)
the gradient of a vector

field of size l. Then, the formal adjoint of Div is −Grad ,

satisfying the relation

〈u,Div σ〉L2 + 〈Grad u,σ〉L2 =

∫

∂Ω
u · [n ·σ] dγ (A12)

for all u ∈ H1
(
Ω,Rl

)
and σ ∈ Hdiv

(
Ω,Rn×l

)
.

Proof. Consider u =






u1
...

ul




 and σ =






σ1
...

σl




 where σi =

[σi1, . . . ,σin],∀i ∈ {1, . . . , l} is the i-th row of tensor σ. By
definition we have that

Grad u=








∂ζ1
u1 . . . ∂ζn

u1

∂ζ1
u2 . . . ∂ζn

u2
...

. . .
...

∂ζ1
ul . . . ∂ζn

ul







=






[grad u1]
⊤

...
[grad ul]

⊤




and

Div σ =








∂ζ1
σ11 + · · ·+ ∂ζn

σ1n

∂ζ1
σ21 + · · ·+ ∂ζn

σ2n

...
∂ζ1

σl1 + · · ·+ ∂ζn
σln







=






div
(
σ⊤

1

)

...
div

(
σ⊤

l

)






Then, the inner product 〈u,Div σ〉L2 is given by:

〈u,Div σ〉L2 =

∫

Ω
u · [Div σ] dΩ =

∫

Ω

l

∑
i=1

uidiv
(

σ⊤
i

)

dΩ

(A3)
= −

∫

Ω

l

∑
i=1

[grad ui]
⊤ ·σ⊤

i dΩ

+

∫

Ω

l

∑
i=1

div
[

σ⊤
i ui

]

dΩ

=−
∫

Ω
tr
(

[Grad u]σ⊤
)

dΩ

+
∫

∂Ω

l

∑
i=1

uiσ
⊤
i ·ndγ

=−〈σ,Grad u〉L2 +

∫

∂Ω
u · [σ ·n] dγ

Regrouping terms, (A12) is obtained. Considering bound-
ary conditions equal to 0 as a special case, we have
〈Div σ,u〉L2 = 〈σ,−Grad u〉L2 , i.e., −Grad is the formal
adjoint of Div .

Theorem 8. Let χ ∈ C1
(
Ω̄,Rl×n

)
be a continuous and

differentiable second order tensor, and (α,β ) ∈ C1(Ω̄,R)
be 2 strictly positive continuous and differentiable scalar

functions, such that, χ

β f ∈ Hdiv
(
Ω,Rl×n

)
,∀ f ∈ H1(Ω,R)

and u
α ∈ H1

(
Ω,Rl

)
,∀u ∈ H1

(
Ω,Rl

)
. Then, D∗

χ(⋆) =
χ

β :
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 14

[
Grad ⋆

α

]
is the formal adjoint of Dχ(⋆) = − 1

α Div
[
χ

β ⋆
]

,

satisfying the relation

〈u,Dχ f 〉L2 −
〈
D∗

χu, f
〉

L2 =−

∫

∂Ω

[
f

β
χ ·n

]

·
u

α
dγ (A13)

Proof. Consider the inner product 〈u,Dχ f 〉L2 given by

〈u,Dχ f 〉L2 =

∫

Ω
u ·Dχ f dΩ =−

∫

Ω

u

α
·Div

[
χ

β
f

]

dΩ

Denoting by ũ = u/α ∈ H1(Ω,Rl) and σ̃ = χ f/β ∈
Hdiv(Ω,Rn×l) and using Theorem 7, we obtain

〈u,Dχ f 〉L2 =−

∫

Ω
ũ ·Div σ̃dΩ

=

∫

Ω
σ̃ : Grad ũdΩ−

∫

∂Ω
ũ · [σ̃ ·n] dγ

=

∫

Ω
f
χ

β
: Grad

u

α
dΩ−

∫

∂Ω

u

α
·

[
f

β
χ ·n

]

dγ

=
〈
D∗

χu, f
〉

L2 −

∫

∂Ω

u

α
·

[
f

β
χ ·n

]

dγ

Regrouping the terms, we obtain (A13). Considering bound-
ary conditions equal to 0, we have that 〈u,Dχ f 〉L2 =
〈
D∗

χu, f
〉

L2 , i.e., D∗
χ is the formal adjoint of Dχ.

Appendix B: Proof of Lemmas

1. Proof of Lemma 1

From Theorem 3, considering α = 1/ρ , we have that
G ∗

r (⋆) = 1
ρ curl (⋆) is the formal adjoint of Gr(⋆) =

curl
(

1
ρ ⋆
)

. Similarly, G ∗
c (⋆) =− 1

ρ grad (⋆) is the formal ad-

joint of Gc(⋆) = div
(

1
ρ ⋆
)

, as shown in Theorem 4. Consider-

ing the viscosity tensor (16) and the isotropic assumption, i.e.,
µ and κ constant, we have that

1

ρ
Div τ =

1

ρ
Div

[

−µ
[

Grad v+[Grad v]⊤
]]

+
1

ρ
Div

[(
2

3
µ −κ

)

(div v)I

]

=−
µ

ρ
Div [Grad v]−

µ

ρ
Div

[

[Grad v]⊤
]

+

(
2
3 µ −κ

)

ρ
Div [(div v)I]

Applying (A4), (A5) and (A6), the terms on the right hand

side of previous equation can be rewritten as

−
µ

ρ
Div [Grad v] =−

µ

ρ
grad (div v)+

µ

ρ
curl [curl v]

=G ∗
c (µGc[ρv])+G ∗

r [µGr[ρv]]

−
µ

ρ
Div [Grad v]⊤ =−

µ

ρ
grad (div v)

=G ∗
c (µGc[ρv])

(
2
3 µ −κ

)

ρ
Div [(div v)I] =

(
2
3 µ −κ

)

ρ
grad (div v)

=G ∗
c

((
2

3
µ −κ

)

Gc[ρv]

)

Then, the divergence of the fluid viscosity tensor can be
expressed as the sum of two dissipative terms, namely:

1

ρ
Div τ =G ∗

r µGrρv+G ∗
c µ̂Gcρv

=
[
G ∗

r G ∗
c

]
[

µI 0

0 µ̂

][
Gr

Gc

]

ρv (B1)

where µ̂ = 4
3 µ + κ , G ∗

r µGrρv is associated with the energy
dissipation by the fluid rotation and G ∗

c µ̂Gcρv with the energy
dissipation by fluid compression. Finally, rearranging terms,
we obtain (17).

2. Proof of Lemma 2

Consider the weakly differentiable vectors a ∈ H1
(
Ω,Rl

)

and u ∈ H1 (Ω,Rn) of size l and n, respectively. Then, the
inner product 〈a,Acu〉L2 is given by:

〈a,Acu〉L2 =

∫

Ω
a ·

[

u ·
Grad c

ρ

]

dΩ

=

∫

Ω

l

∑
j=1

a j

(

u ·
grad c j

ρ

)

dΩ

=

∫

Ω
u ·

[
l

∑
j=1

a j
grad c j

ρ

]

dΩ

=
∫

Ω
u ·

[
Grad c

ρ
·a

]

dΩ

=

〈
Grad c

ρ
·a,u

〉

L2

i.e., the formal adjoint of Ac is given by A ∗
c (⋆) =

[
Grad c

ρ

]

·

(⋆). Following a similar procedure, it is easy to verify that
A ∗

s (⋆) =
grad s

ρ (⋆) and R∗(⋆) = (⋆) · r

ρ2T
are the formal ad-

joint operators of As and R, respectively.

3. Proof of Lemma 3

The proof that D∗
τ (⋆) =

τ
ρT

: Grad
(⋆)
ρ is the formal adjoint

of Dτ (⋆) = − 1
ρ Div

[
τ

ρT
(⋆)
]

follows from Theorem 8. Con-
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On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids 15

sidering χ= τ , α = ρ and β = ρT , we have that
〈
δvH̄ ,Dτ (δsH̄ )

〉

L2 −
〈
D∗

τ (δvH̄ ),δsH̄
〉

L2

=
∫

∂Ω

δvH̄

ρ
·

[
τ

ρT
δsH̄ ·n

]

dγ

Then, since τ is square and symmetric, and δsH̄ = ρT

we obtain relation (43). The same procedure is used to prove

that D∗
Υ
(⋆) = Υ

ρT
: Grad

(⋆)
ρ is the formal adjoint of DΥ(⋆) =

− 1
ρ Div

[
Υ

ρT
(⋆)
]

and to obtain (44).

On the other hand, using Theorem 5, considering F =

q(h)/ρT2 and α = 1/ρ we can verify that D∗
q(⋆) =

q(h)

ρT 2 ·

grad
(⋆)
ρ is the formal adjoint of Dq(⋆) = − 1

ρ div
[

q(h)

ρT2 (⋆)
]

.

Finally, we note that
〈
δsH̄ ,Dq(δsH̄ )

〉

L2 −
〈
δsH̄ ,D∗

q(δsH̄ )
〉

L2

=
〈
δsH̄ ,D̄(δsH̄ )

〉

L2

where D̄ = Dq −D∗
q is a formally skew-symmetric operator.

Then, using Theorem 6, relation (45) is obtained.
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