A Lyapunov Approach to Robust Regulation of Distributed Port-Hamiltonian Systems

Lassi Paunonen, Yann Le Gorrec and Héctor Ramírez

Abstract

This paper studies robust output tracking and disturbance rejection for boundary controlled infinite-dimensional port-Hamiltonian systems including second order models such as the Euler-Bernoulli beam. The control design is achieved using the internal model principle and the stability analysis using a Lyapunov approach. Contrary to existing works on the same topic no assumption is made on the external well-posedness of the considered class of PDEs. The results are applied to robust tracking of a piezo actuated tube used in atomic force imaging.

Index Terms-Distributed port-Hamiltonian system, boundary control system, robust output regulation, controller design.

I. Introduction

We consider robust output regulation for a class of linear partial differential equations (PDEs) with boundary control and observation, namely, port-Hamiltonian systems (PHS) [11], [13]

$$
\begin{align*}
\frac{\partial x}{\partial t}(z, t) & =P_{2} \frac{\partial^{2}}{\partial z^{2}}(\mathcal{H}(z) x(z, t))+P_{1} \frac{\partial}{\partial z}(\mathcal{H}(z) x(z, t)) \tag{1a}\\
& +\left(P_{0}-G_{0}\right)(\mathcal{H}(z) x(z, t))+B_{d}(z) w_{d i s t, 1}(t) \tag{1b}\\
W_{1}\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right] & =u(t)+w_{d i s t, 2}(t), W_{2}\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right]=w_{d i s t, 3}(t) \tag{1c}\\
y(t) & =\tilde{W}\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right] \tag{1d}
\end{align*}
$$

on a one-dimensional spatial domain $[a, b]$ (see Section II for detailed assumptions). In robust regulation, the purpose of the control $u(t) \in \mathbb{R}^{p}$ is to achieve the asymptotic convergence of the output $y(t) \in \mathbb{R}^{p}$ of (1) to a given reference signal $y_{\text {ref }}(t)$, i.e., $\left\|y(t)-y_{\text {ref }}(t)\right\| \rightarrow 0$ as $t \rightarrow \infty$, despite external disturbance signals $w_{\text {dist }}(t):=\left(w_{\text {dist }, 1}(t), w_{\text {dist }, 2}(t), w_{\text {dist }, 3}(t)\right)$. The signals $y_{r e f}(t)$ and $w_{\text {dist }}(t)$ are assumed to have the forms

$$
\begin{align*}
y_{r e f}(t) & =a_{0}+\sum_{k=1}^{q}\left[a_{k}^{1} \cos \left(\omega_{k} t\right)+a_{k}^{2} \sin \left(\omega_{k} t\right)\right] \tag{2a}\\
w_{d i s t}(t) & =b_{0}+\sum_{k=1}^{q}\left[b_{k}^{1} \cos \left(\omega_{k} t\right)+b_{k}^{2} \sin \left(\omega_{k} t\right)\right] \tag{2b}
\end{align*}
$$

[^0]for known frequencies $0=\omega_{0}<\omega_{1}<\cdots<\omega_{q}$ and unknown amplitudes $\left\{a_{k}^{1}\right\}_{k=0}^{q},\left\{a_{k}^{2}\right\}_{k=1}^{q} \subset \mathbb{R}^{p}$, and $\left\{b_{k}^{1}\right\}_{k=0}^{q},\left\{b_{k}^{2}\right\}_{k=1}^{q} \subset$ $\mathbb{R}^{n_{d, 1}+p+n_{d, 3}}$.

Several recent articles have considered output regulation for individual linear PDEs, such as 1D heat equations [4], beam equations [12] and wave equations [6]. In this paper we solve the control problem for a class of boundary controlled 1D PDEs (1), which covers many particular hyperbolic PDE systems such as boundary controlled wave equations, Schrödinger equations, Timoshenko and Euler-Bernoulli beam models with spatially varying physical parameters, and is used in modeling and control of flexible structures, heat exchangers, and chemical reactors. We focus here on impedance passive PHS (1), and solve the output regulation problem using a finite-dimensional dynamic error feedback controller

$$
\begin{align*}
\dot{x}_{c}(t) & =J_{c} x_{c}(t)+\delta_{c} B_{c}\left(y_{r e f}(t)-y(t)\right), \quad x_{c}(0) \in X_{c} \tag{3a}\\
u(t) & =\delta_{c} B_{c}^{*} x_{c}(t)+D_{c}\left(y_{r e f}(t)-y(t)\right) \tag{3b}
\end{align*}
$$

where J_{c} is skew-symmetric, $B_{c} \in \mathbb{R}^{p \times n_{c}}$, and $D_{c} \in \mathbb{R}^{p \times p}$ satisfies $D_{c} \geq 0$. Finally, $\delta_{c}>0$ is a gain parameter. In studying the class (1) of PDEs our aim is to design the controller (3) under assumptions that can be verified directly based on the properties of the original PDE (1) and the matrices $\left(P_{0}, P_{1}, P_{2}, G_{0}, W_{1}, W_{2}, \tilde{W}\right)$, without the need to reformulate (1) as an abstract system.

Our results for the class (1) are based on the theoretical results on robust output regulation of abstract boundary control and observation systems [3], [21] presented in this paper. They extend the theory related to internal model based controllers for passive well-posed linear systems and PHS in [7]-[10], [18], and they compose the main technical contributions of the paper. In particular, we introduce a new Lyapunov-type argument for the stability analysis of the closed-loop system consisting of the boundary control system and the controller (extending our earlier results in [16] for PHS with distributed control and observation). In addition, the controller design is done without assuming well-posedness of the original control system (which was assumed in [18]) and the analysis is completed directly in the abstract boundary control system framework (whereas in [9], [10] the boundary control inputs were first reformulated as distributed inputs using a state extension). The class (1) includes models which are not wellposed (in the sense of $[20, \mathrm{Sec} .2]$). The stability analysis of the closed-loop system is also related to references [14], [17] studying the stability of coupled impedance passive systems in a different context i.e. when the infinite dimensional system is undamped and the controller strictly input passive.

The paper is organised as follows. In Section II we define the considered class of boundary controlled PHS and state
our main result for the PDEs (1) (these are proved later in Section V). In Sections III-V we present our main results for abstract boundary control systems. The results are applied in solving a concrete output regulation problem in Section VI. The paper ends with some conclusions and perspectives.
Notation. If X and Y are Banach spaces and $A: X \rightarrow Y$ is a linear operator, we denote by $\mathcal{D}(A), \mathcal{N}(A)$ and $\mathcal{R}(A)$ the domain, kernel and range of A, respectively. The space of bounded linear operators from X to Y is denoted by $\mathcal{L}(X, Y)$. If $A: X \rightarrow X$, then $\sigma(A)$ and $\rho(A)$ denote the spectrum and the resolvent set of A, respectively. For $\lambda \in \rho(A)$ the resolvent operator is $R(\lambda, A)=(\lambda-A)^{-1}$. The inner product on a Hilbert space is denoted by $\langle\cdot, \cdot\rangle$. For $T \in \mathcal{L}(X)$ on a Hilbert space X we define $\operatorname{Re} T=\frac{1}{2}\left(T+T^{*}\right)$. $H^{k}\left(a, b ; \mathbb{R}^{n}\right)$ is the k th order Sobolev space of functions $f:[a, b] \rightarrow \mathbb{R}^{n}$. For $T \in \mathcal{L}(X)$ we denote $T>0$ if $T-\varepsilon I \geq 0$ for some $\varepsilon>0$.

II. The Main Results for PHS

In this section we summarise our main results for the class (1) of boundary controlled PDEs. The parameters $P_{2}, P_{1}, P_{0}, G_{0} \in \mathbb{R}^{n \times n}$ are assumed to satisfy $P_{2}=-P_{2}^{T}$, $P_{1}=P_{1}^{T}, P_{0}=-P_{0}^{T}, G_{0}=G_{0}^{T} \geq 0$, and $\mathcal{H}(\cdot)$ is a bounded and Lipschitz continuous matrix-valued function such that $\mathcal{H}(z)=\mathcal{H}(z)^{T}$ and $\mathcal{H}(z) \geq \kappa I$, with $\kappa>0$, for all $z \in[a, b]$. The distributed disturbance input profile is assumed to satisfy $B_{d}(\cdot) \in L^{2}\left(a, b ; \mathbb{R}^{n \times n_{d, 1}}\right)$ and can be unknown.

We consider first and second order PHS by assuming that either P_{2} is invertible (the system (1) is of order $N=2$) or $P_{2}=0$ and P_{1} is invertible (the system is of order $N=$ $1)$. The boundary inputs and ouputs are determined using the following boundary port variables.

Definition II.1. The boundary port variables $f_{\partial}(t)$ and $e_{\partial}(t)$ associated to the system (1) are defined as

$$
\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right]=R_{e x t} \Phi(\mathcal{H} x(t)), \quad \text { with } \quad R_{e x t}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
Q & -Q \\
I & I
\end{array}\right]
$$

where $Q \in \mathbb{R}^{2 n N \times 2 n N}$ and $\Phi(\cdot): H^{N}\left(a, b ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{2 n N}$ are defined so that

- if $N=2$, then

$$
Q=\left[\begin{array}{cc}
P_{1} & P_{2} \\
-P_{2} & 0
\end{array}\right], \quad \Phi(\mathcal{H} x):=\left[\begin{array}{c}
(\mathcal{H} x)(b) \\
\frac{\partial(\mathcal{H} x)}{\partial z}(b) \\
(\mathcal{H} x)(a) \\
\frac{\partial(\mathcal{H} x)}{\partial z}(a)
\end{array}\right]
$$

whenever $\mathcal{H} x \in H^{2}\left(a, b ; \mathbb{R}^{n}\right)$.

- if $N=1$, then $Q=P_{1}$ and $\Phi(\mathcal{H} x)=\left[\begin{array}{c}\mathcal{H} x(b) \\ \mathcal{H} x(a)\end{array}\right]$ whenever $\mathcal{H} x \in H^{1}\left(a, b ; \mathbb{R}^{n}\right)$.

The input $u(t) \in \mathbb{R}^{p}$, output $y(t) \in \mathbb{R}^{p}$ (the numbers of inputs and outputs are the same) and the disturbance inputs $w_{\text {dist }}(t)=\left(w_{\text {dist }, 1}(t), w_{\text {dist }, 2}(t), w_{\text {dist }, 3}(t)\right)^{T} \in \mathbb{R}^{n_{d, 1}+p+n_{d, 3}}$ of the system are defined as in (1). We assume the matrices W_{1}, W_{2}, and \tilde{W} determining the inputs and outputs satisfy the following (concrete and checkable) conditions. As shown later in Lemma V.3, part (b) of Assumption II. 2 guarantees that (1) is impedance passive.

Assumption II.2. Denote $\Sigma:=\left[\begin{array}{ll}0 & I \\ 1 & 0\end{array}\right] \in \mathbb{R}^{2 n N \times 2 n N}$. We assume $W_{1} \in \mathbb{R}^{p \times 2 n N}$ and $W_{2} \in \mathbb{R}^{n_{d, 3} \times 2 n N}$ with $n_{d, 3}=$ $n N-p$ and $\tilde{W} \in \mathbb{R}^{p \times 2 n N}$ satisfy the following
(a) $W:=\left[\begin{array}{l}W_{1} \\ W_{2}\end{array}\right] \in \mathbb{R}^{n N \times 2 n N}$ has full rank and $W \Sigma W^{T} \geq 0$
(b) $\left\langle\left(W_{1}^{T} \tilde{W}+\tilde{W}^{T} W_{1}-\Sigma\right) g, g\right\rangle \geq 0$ for all $g \in \mathcal{N}\left(W_{2}\right)$.

Our second assumption concerns stabilizability properties of (1). The system (1) is exponentially stable if there exist $M, \alpha>0$ such that with $u(t) \equiv 0$ and $w_{\text {dist }}(t) \equiv 0$ we have

$$
\|x(\cdot, t)\|_{L^{2}(a, b)} \leq M e^{-\alpha t}\|x(\cdot, 0)\|_{L^{2}(a, b)}
$$

for all $x(\cdot, 0) \in L^{2}\left(a, b ; \mathbb{R}^{n}\right)$ such that $\mathcal{H} x(\cdot, 0) \in$ $H^{N}\left(a, b ; \mathbb{R}^{n}\right)$ and for which (1c) hold for $t=0$.

Assumption II.3. For any $K \in \mathbb{R}^{p \times p}, K>0$, system (1) becomes exponentially stable with output feedback $u(t)=$ $-K y(t)$.

The output feedback $u(t)=-K y(t)$ alters the boundary conditions of the PDE (1) by changing W_{1} in (1c) to $W_{1}+K \tilde{W}$. By [10, Lem. 7] Assumption II. 3 holds in particular if $W_{1} \in \mathbb{R}^{n N \times 2 n N}$ (i.e., (1) has $p=n N$ inputs) and if Assumption II. 2 holds. For further results on stability of (1), see [1].

Definition II. 4 contains the construction of the controller (3). The controller has an internal model of the frequencies in (2) in the sense that $\left\{ \pm i \omega_{k}\right\}_{k=1}^{q} \cup\{0\}$ are eigenvalues of J_{c} with geometric multiplicities equal to p (see also Section IV).

Definition II.4. Given $0<\omega_{1}<\cdots<\omega_{q}$ in (2), choose the parameters of the controller (3) on $X_{c}=\mathbb{R}^{p(2 q+1)}$ so that $D_{c}>0, \delta_{c}>0$,

$$
\begin{align*}
J_{c} & =\operatorname{blockdiag}\left(J_{c}^{0}, J_{c}^{1}, \ldots, J_{c}^{q}\right) \tag{4a}\\
J_{c}^{0} & =0_{p}, \quad J_{c}^{k}=\left[\begin{array}{cc}
0 & \omega_{k} I_{p} \\
-\omega_{k} I_{p} & 0
\end{array}\right], \tag{4b}\\
B_{c} & =\left[\begin{array}{c}
B_{c}^{0} \\
\vdots \\
B_{c}^{q}
\end{array}\right], \quad B_{c}^{0}=I_{p}, \quad B_{c}^{k}=\left[\begin{array}{c}
I_{p} \\
0
\end{array}\right] . \tag{4c}
\end{align*}
$$

The following theorem is the main result of this section.
Theorem II.5. Let Assumptions II. 2 and II. 3 be satisfied and let $0=\omega_{0}<\omega_{1}<\cdots<\omega_{q}$. Assume (1) has no transmission zeros at $\left\{ \pm i \omega_{k}\right\}_{k=0}^{q} \subset i \mathbb{R}$. For every $D_{c}>0$ there exists $\delta_{c}^{*}>0$ such that for all $\delta_{c} \in\left(0, \delta_{c}^{*}\right)$ the controller in Definition II. 4 achieves output tracking and disturbance rejection for all signals in (2). In particular, there exists $\alpha>0$ (depending on $\delta_{c} \in\left(0, \delta_{c}^{*}\right)$) such that

$$
\begin{equation*}
e^{\alpha t}\left\|y(t)-y_{\text {ref }}(t)\right\| \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{5}
\end{equation*}
$$

for all $y_{\text {ref }}(t)$ and $w_{\text {dist }}(t)$ in (2) and for all initial states $x(\cdot, 0) \in L^{2}\left(a, b ; \mathbb{R}^{n}\right)$ and $x_{c}(0) \in \mathbb{R}^{p(2 q+1)}$ such that $\mathcal{H} x(\cdot, 0) \in H^{N}\left(a, b ; \mathbb{R}^{n}\right)$ and which satisfy the boundary conditions (1c) at $t=0$.

The controller is robust in the sense that the tracking (5) is achieved (with a modified $\alpha>0$) also if the parameters $\left(P_{2}, P_{1}, P_{0}, G_{0}, W_{1}, W_{2}, \tilde{W}, \mathcal{H}, B_{d}\right)$ of (1) are perturbed in such a way that Assumption II. 2 continues to hold and the closed-loop system remains exponentially stable.

The proof of Theorem II. 5 is presented in Section V. If $\omega_{0}=0$ is a transmission zero, then J_{c}^{0} and B_{c}^{0} can be removed from the controller parameters in (4) and Theorem II. 5 holds for $y_{\text {ref }}(t)$ and $w_{\text {dist }}(t)$ with $a_{0}=0$ and $b_{0}=0$.

III. Background on Boundary Control Systems

Our main abstract results are formulated for the general class of boundary control and observation systems [3], [19]

$$
\begin{align*}
\dot{x}(t) & =\mathfrak{A}_{0} x(t)+B_{d} w_{\text {dist }, 1}(t), \quad x(0)=x_{0} \in Z \tag{6a}\\
\mathfrak{B} x(t) & =u(t)+w_{\text {dist }, 2}(t) \tag{6b}\\
\mathfrak{B}_{d} x(t) & =w_{d i s t, 3}(t) \tag{6c}\\
y(t) & =\mathfrak{C} x(t) \tag{6d}
\end{align*}
$$

on a Hilbert space X. We present these abstract results only in the case $D_{c}=0$. This simplification does not result in loss of generality, because if $D_{c} \neq 0$, then (6b) becomes

$$
\begin{equation*}
\left(\mathfrak{B}+D_{c} \mathfrak{C}\right) x(t)=\tilde{u}(t)+\left(w_{d i s t, 2}(t)+D_{c} y_{r e f}(t)\right) \tag{7}
\end{equation*}
$$

(which has the same structure as (6b)) where $\tilde{u}(t)$ is the control produced by the controller (3) with $D_{c}=0$. We make the following standard assumptions on the parameters of (6).

Assumption III.1. We assume X and $Z \subset X$ are (complex) Hilbert spaces and $\mathfrak{A}_{0} \in \mathcal{L}(Z, X)$, $\mathfrak{B} \in \mathcal{L}\left(Z, \mathbb{C}^{p}\right)$, $B_{d} \in$ $\mathcal{L}\left(\mathbb{C}^{n_{d, 1}}, X\right), \mathfrak{B}_{d} \in \mathcal{L}\left(Z, \mathbb{C}^{n_{d, 3}}\right)$ and $\mathfrak{C} \in \mathcal{L}\left(Z, \mathbb{C}^{p}\right)$ have the properties:
(a) The operator $A:=\left.\mathfrak{A}_{0}\right|_{\mathcal{D}(A)}$ with $\mathcal{D}(A)=\mathcal{N}(\mathfrak{B}) \cap$ $\mathcal{N}\left(\mathfrak{B}_{d}\right)$ generates a contraction semigroup $T(t)$ on X.
(b) The operator $\left[\begin{array}{c}\mathfrak{B} \\ \mathfrak{B}_{d}\end{array}\right] \in \mathcal{L}\left(Z, \mathbb{C}^{p+n_{d, 3}}\right)$ is surjective.
(c) $\operatorname{Re}\langle\mathfrak{A} x, x\rangle \leq \operatorname{Re}\langle\mathfrak{B} x, \mathfrak{C} x\rangle_{\mathbb{C}^{p}}$ for all $x \in Z$.

By [15, Thm. 3.4] part (c) of Assumption III. 1 is equivalent to the system (6) being impedance passive in the sense that

$$
\frac{1}{2} \frac{d}{d t}\|x(t)\|_{X}^{2} \leq\langle u(t), y(t)\rangle_{\mathbb{C}^{p}}
$$

We also denote $\mathfrak{A}:=\left.\mathfrak{A}_{0}\right|_{\mathcal{D}(\mathfrak{A})}$ with $\mathcal{D}(\mathfrak{A})=\mathcal{N}\left(\mathfrak{B}_{d}\right)$, and in this notation we have $A=\left.\mathfrak{A}\right|_{\mathcal{D}(A)}$ and $\mathcal{D}(A)=\mathcal{D}(\mathfrak{A}) \cap \mathcal{N}(\mathfrak{B})$.

For $\lambda \in \rho(A)$ we denote the transfer function (from the input $u(t)$ to the output $y(t)$) of the system (1) by $P(\lambda)$. By [3, Thm. 2.9], for any $u \in U$ and $\lambda \in \rho(A)$ we have $P(\lambda) u=\mathfrak{C} x$ where $x \in Z$ is such that $(\lambda-\mathfrak{A}) x=0$ and $\mathfrak{B} x=u$. If we denote $\operatorname{Re} T=\frac{1}{2}\left(T+T^{*}\right)$, then the passivity of the system implies that $\operatorname{Re} P(i \omega) \geq 0$ for all $i \omega \in \rho(A) \cap i \mathbb{R}$, see [20].

We assume the controller (3) on $X_{c}=\mathbb{C}^{n_{c}}$ satisfies $J_{c}^{*}=$ $-J_{c} \in \mathbb{C}^{n_{c} \times n_{c}}, B_{c} \in \mathbb{C}^{n_{c} \times p}, D_{c} \in \mathbb{C}^{p \times p}$ with $D_{c} \geq 0$ and $\delta_{c}>0$ (as mentioned above, in Sections III-V we let $D_{c}=0$). We now show that the closed-loop system consisting of (6) and the controller (3) on $X_{c}=\mathbb{C}^{n_{c}}$ leads to a well-defined closedloop state $x_{e}(t):=\left(x(t), x_{c}(t)\right)^{T}$ and regulation error $e(t)$ for all reference and disturbance signals in (2). The closed-loop system (with $D_{c}=0$) has the form

$$
\begin{aligned}
& \dot{x}_{e}(t)=\left[\begin{array}{cc}
\mathfrak{A}_{0} & 0 \\
-\delta_{c} B_{c} \mathfrak{C} & J_{c}
\end{array}\right] x_{e}(t)+\left[\begin{array}{cc}
B_{d} & 0 \\
0 & \delta_{c} B_{c}
\end{array}\right]\left[\begin{array}{c}
w_{\text {dist }, 1}(t) \\
y_{\text {ref }}(t)
\end{array}\right] \\
& {\left[\begin{array}{cc}
\mathfrak{B} & -\delta_{c} B_{c}^{*} \\
\mathfrak{B}_{d} & 0
\end{array}\right] x_{e}(t)=\left[\begin{array}{l}
w_{\text {dist }, 2}(t) \\
w_{\text {dist }, 3}(t)
\end{array}\right] } \\
& e(t)=[\mathfrak{C}, 0] x_{e}(t)-y_{\text {ref }}(t)
\end{aligned}
$$

with state $x_{e}(t)=\left(x(t), x_{c}(t)\right)^{T} \in X_{e}:=X \times X_{c}$. We denote

$$
\begin{gathered}
\mathfrak{A}_{e}=\left[\begin{array}{cc}
\mathfrak{A}_{0} & 0 \\
-\delta_{c} B_{c} \mathfrak{C} & J_{c}
\end{array}\right], \mathfrak{B}_{e}=\left[\begin{array}{cc}
\mathfrak{B} & -\delta_{c} B_{c}^{*} \\
\mathfrak{B}_{d} & 0
\end{array}\right], \\
B_{e}=\left[\begin{array}{cc}
B_{d} & 0 \\
0 & \delta_{c} B_{c}
\end{array}\right], \text { and } \mathfrak{C}_{e}=[\mathfrak{C}, 0] .
\end{gathered}
$$

Proposition III.2. Under Assumption III. 1 and for $J_{c}^{*}=$ $-J_{c}$ and $D_{c}=0$ the operator $A_{e}:=\left.\mathfrak{A}_{e}\right|_{\mathcal{N}\left(\mathfrak{B}_{e}\right)}$ generates a strongly continuous contraction semigroup $T_{e}(t)$ on X_{e}. For any $y_{\text {ref }}(\cdot) \in C^{2}\left([0, \infty) ; \mathbb{C}^{p}\right)$ and $w_{\text {dist }}(\cdot) \in$ $C^{2}\left([0, \infty) ; \mathbb{C}^{n_{d, 1}+p+n_{d, 3}}\right)$ and for all initial states $x(0) \in$ Z and $x_{c}(0) \in X_{c}$ satisfying the compatibility conditions $\mathfrak{B} x(0)=\delta_{c} B_{c}^{*} x_{c}(0)+w_{\text {dist }, 2}(0)$ and $\mathfrak{B}_{d} x(0)=w_{\text {dist }, 3}(0)$ the closed-loop system has a state

$$
x(\cdot) \in C(0, T ; Z) \cap C^{1}(0, T ; X), \quad x_{c}(\cdot) \in C^{1}\left(0, T ; X_{c}\right)
$$

and $e(t)=y(t)-y_{\text {ref }}(t) \in C\left(0, T ; \mathbb{C}^{p}\right)$ for all $T>0$.
Proof. The closed-loop system is a boundary control and observation system on the spaces $Z \times X_{c}$ and $X_{e}=X \times X_{c}$. The operator \mathfrak{B}_{e} is surjective due to Assumption III.1(b). Our aim is to show that A_{e} generates a contraction semigroup on X_{e}. Since $\mathfrak{C}_{e} \in \mathcal{L}\left(Z \times X_{c}, \mathbb{C}^{p}\right)$ and B_{d} and B_{c} are bounded, the properties of the closed-loop system's state then follow (due to linearity) from [21, Prop. 4.2.10 and Prop. 10.1.8]. We now use the Lumer-Phillips Theorem. Let $x_{e}:=\left(x, x_{c}\right)^{T} \in \mathcal{N}\left(\mathfrak{B}_{e}\right)$. Then $\mathfrak{B} x=\delta_{c} B_{c}^{*} x_{c}$ and $\mathfrak{B}_{d} x=0$. In particular $x \in \mathcal{D}(\mathfrak{A})$ and $\mathfrak{A}_{0} x=\mathfrak{A} x$. The impedance passivity of $(\mathfrak{A}, \mathfrak{B}, \mathfrak{C})$ implies $\operatorname{Re}\langle\mathfrak{A} x, x\rangle \leq \operatorname{Re}\langle\mathfrak{B} x, \mathfrak{C} x\rangle$ for all $x \in Z$ [15, Thm. 3.4]. Thus

$$
\begin{aligned}
\operatorname{Re}\left\langle A_{e} x_{e}, x_{e}\right\rangle & =\operatorname{Re}\langle\mathfrak{A} x, x\rangle+\operatorname{Re}\left\langle J_{c} x_{c}-\delta_{c} B_{c} \mathfrak{C} x, x_{c}\right\rangle \\
& \leq \operatorname{Re}\langle\mathfrak{B} x, \mathfrak{C} x\rangle-\operatorname{Re}\left\langle\mathfrak{C} x, \delta_{c} B_{c}^{*} x_{c}\right\rangle=0
\end{aligned}
$$

since J_{c} is skew-adjoint and $\delta_{c} B_{c}^{*} x_{c}=\mathfrak{B} x$. Therefore A_{e} is dissipative, and it remains to show that $\lambda-A_{e}$ is surjective for some $\lambda>0$. Let $\lambda>0, y_{1} \in X$, and $y_{2} \in X_{c}$ be arbitrary. We will construct $x_{e}:=\left(x, x_{c}\right)^{T} \in \mathcal{N}\left(\mathfrak{B}_{e}\right)$ such that $\left(y_{1}, y_{2}\right)^{T}=\left(\lambda-A_{e}\right) x_{e}$. Recall that $P(\lambda)$ is the transfer function of $(\mathfrak{A}, \mathfrak{B}, \mathfrak{C})$ and denote $P_{c}(\lambda)=\delta_{c}^{2} B_{c}^{*} R\left(\lambda, J_{c}\right) B_{c}$. Since $\lambda>0$ is real, we have $P_{c}(\lambda) \geq 0$ and $P(\lambda) \geq 0$, and it can be shown that $Q_{1}(\lambda):=I+P(\lambda) P_{c}(\lambda)$ and $Q_{2}(\lambda):=I+$ $P_{c}(\lambda) P(\lambda)$ are boundedly invertible. Denote $R_{\lambda}=R(\lambda, A)$ and $R_{\lambda}^{c}=R\left(\lambda, J_{c}\right)$ for brevity. Due to the theory in [3], [21, Ch. 10] the "abstract elliptic problem"

$$
\begin{aligned}
(\lambda-\mathfrak{A}) x & =y_{1} \\
\mathfrak{B} x & =Q_{2}(\lambda)^{-1}\left(\delta_{c} B_{c}^{*} R_{\lambda}^{c} y_{2}-P_{c}(\lambda) \mathfrak{C} R_{\lambda} y_{1}\right)
\end{aligned}
$$

has a solution $x \in Z$. Now [3, Thm. 2.9] and linearity imply

$$
\begin{aligned}
\mathfrak{C} x & =\mathfrak{C} R_{\lambda} y_{1}+P(\lambda) Q_{2}(\lambda)^{-1}\left(\delta_{c} B_{c}^{*} R_{\lambda}^{c} y_{2}-P_{c}(\lambda) \mathfrak{C} R_{\lambda} y_{1}\right) \\
& =Q_{2}(\lambda)^{-1}\left(\mathfrak{C} R_{\lambda} y_{1}+\delta_{c} P(\lambda) B_{c}^{*} R_{\lambda}^{c} y_{2}\right)
\end{aligned}
$$

If we now define

$$
x_{c}=R_{\lambda}^{c} y_{2}-\delta_{c} R_{\lambda}^{c} B_{c} Q_{1}(\lambda)^{-1}\left(\mathfrak{C} R_{\lambda} y_{1}+\delta_{c} P(\lambda) B_{c}^{*} R_{\lambda}^{c} y_{2}\right)
$$

then

$$
\begin{aligned}
\delta_{c} B_{c}^{*} x_{c}= & \delta_{c} B_{c}^{*} R_{\lambda}^{c} y_{2} \\
& -P_{c}(\lambda) Q_{1}(\lambda)^{-1}\left(\mathfrak{C} R_{\lambda} y_{1}+\delta_{c} P(\lambda) B_{c}^{*} R_{\lambda}^{c} y_{2}\right) \\
= & Q_{2}(\lambda)^{-1}\left(\delta_{c} B_{c}^{*} R_{\lambda}^{c} y_{2}-P_{c}(\lambda) \mathfrak{C} R_{\lambda} y_{1}\right)=\mathfrak{B} x
\end{aligned}
$$

and thus $x_{e}:=\left(x, x_{c}\right)^{T}$ satisfies $\mathfrak{B}_{e} x_{e}=0$. A direct computation also shows that $-\delta_{c} B_{c} \mathfrak{C} x+\left(\lambda-J_{c}\right) x_{c}=y_{2}$, and thus indeed $\left(y_{1}, y_{2}\right)^{T}=\left(\lambda-A_{e}\right) x_{e}$.

IV. Robust tracking and disturbance rejection

In this section we formulate the robust output regulation problem and present a general condition for a controller (3) to solve this problem.
The Robust Output Regulation Problem. Let $0<\omega_{1}<$ $\cdots<\omega_{q}$. Choose a controller (3) in such a way that the following hold.
(a) The semigroup $T_{e}(t)$ generated by $A_{e}=\left.\mathfrak{A}_{e}\right|_{\mathcal{N}\left(\mathfrak{B}_{e}\right)}$ is exponentially stable.
(b) There exists $\alpha>0$ such that for all $y_{\text {ref }}(t)$ and $w_{\text {dist }}(t)$ of the form (2) and for all initial states $x(0) \in Z$ and $x_{c}(0) \in X_{c}$ satisfying the boundary conditions of (6) the regulation error satisfies

$$
e^{\alpha t}\left\|y(t)-y_{\text {ref }}(t)\right\| \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

(c) If $\left(\mathfrak{A}_{0}, \mathfrak{B}, \mathfrak{B}_{d}, B_{d}, \mathfrak{C}\right)$ in (6) are perturbed in such a way that Assumption III. 1 is satisfied and the perturbed closed-loop operator generates an exponentially stable semigroup, then (b) continues to hold for some $\tilde{\alpha}>0$.
The robust output regulation problem only has a solution if the control system does not have transmission zeros at $\left\{ \pm i \omega_{k}\right\}_{k=0}^{q}$ (a transmission zero at $\lambda \in \rho(A)$ is equivalent to $P(\lambda) \in \mathbb{C}^{p \times p}$ being singular). For impedance passive systems it is natural to make the following stronger assumption.

Assumption IV.1. Let $0=\omega_{0}<\omega_{1}<\cdots<\omega_{q}$. We assume $\pm i \omega_{k} \in \rho(A)$ and $\operatorname{Re} P\left(\pm i \omega_{k}\right)>0$ for all $k \in\{0, \ldots, q\}$.

The following theorem shows that a controller incorporating an internal model (in the sense of conditions (8) below) will solve the robust output regulation problem provided that the closed-loop system is exponentially stable. The result generalises [10, Thm. 4] by removing the assumption of regularity (and well-posedness) of the closed-loop system, and the proof is completed without reformulating (6) as a system with extended state and distributed inputs.

Theorem IV.2. Let $0=\omega_{0}<\omega_{1}<\cdots<\omega_{q}$. A controller (3) with $J_{c}^{*}=-J_{c}, D_{c}=0$ and $\delta_{c}>0$ solves the robust output regulation problem if $A_{e}=\left.\mathfrak{A}_{e}\right|_{\mathcal{N}\left(\mathfrak{B}_{e}\right)}$ generates an exponentially stable semigroup and

$$
\begin{align*}
\mathcal{R}\left(\pm i \omega_{k}-J_{c}\right) \cap \mathcal{R}\left(B_{c}\right) & =\{0\}, \quad \forall k \in\{0, \ldots, q\} \tag{8a}\\
\mathcal{N}\left(B_{c}\right) & =\{0\} . \tag{8b}
\end{align*}
$$

Then there exists $\alpha>0$ such that

$$
e^{\alpha t}\left\|y(t)-y_{r e f}(t)\right\| \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty
$$

for any $y_{\text {ref }}(t)$ and $w_{\text {dist }}(t)$ of the form (2) and for all $x(0) \in$ Z and $x_{c}(0) \in X_{c}$ satisfying the compatibility conditions $\mathfrak{B} x(0)=\delta_{c} B_{c}^{*} x_{c}(0)+w_{\text {dist }, 2}(0)$ and $\mathfrak{B}_{d} x(0)=w_{\text {dist }, 3}(0)$.

Proof. Assume the closed-loop system is exponentially stable and (8) are satisfied. Then there exist $M_{e}, \omega_{e}>0$ such that
$\left\|T_{e}(t)\right\| \leq M_{e} e^{-\omega_{e} t}$. Let $\left\{\mu_{k}\right\}_{k=-q}^{q}$ be such that $\mu_{k}=\omega_{k}$ for $k>0, \mu_{0}=0$, and $\mu_{k}=-\omega_{|k|}$ for $k<0$. We can then write

$$
y_{r e f}(t)=\sum_{k=-q}^{q} y_{r}^{k} e^{i \mu_{k} t}, \quad w_{\text {dist }}(t)=\sum_{k=-q}^{q}\left[\begin{array}{c}
w_{1 k} \\
w_{2 k} \\
w_{3 k}
\end{array}\right] e^{i \mu_{k} t}
$$

for some constant elements $\left\{y_{r}^{k}\right\}_{k},\left\{w_{1 k}\right\}_{k},\left\{w_{2 k}\right\}_{k}$, and $\left\{w_{3 k}\right\}_{k}$. Since $i \mu_{k} \in \rho\left(A_{e}\right)$ for all k, we have from [21, Sec. 10.1] that we can choose $\Sigma_{k} \in Z$ such that

$$
\begin{align*}
\left(i \mu_{k}-\mathfrak{A}_{e}\right) \Sigma_{k} & =B_{e}\left[\begin{array}{c}
w_{1 k} \\
y_{r}^{k}
\end{array}\right] \tag{9a}\\
\mathfrak{B}_{e} \Sigma_{k} & =\left[\begin{array}{c}
w_{2 k} \\
w_{3 k}
\end{array}\right] . \tag{9b}
\end{align*}
$$

Consider initial conditions $x(0) \in Z$ and $x_{c}(0) \in X_{c}$ satisfying the compatibility conditions $\mathfrak{B} x(0)=\delta_{c} B_{c}^{*} x_{c}(0)+$ $w_{\text {dist }, 2}(0)$ and $\mathfrak{B}_{d} x(0)=w_{\text {dist }, 3}(0)$. If we define $\Sigma(t)=$ $\sum_{k=-q}^{q} e^{i \mu_{k} t} \Sigma_{k} \in Z$, then

$$
\begin{aligned}
& \frac{d}{d t}\left(x_{e}(t)-\Sigma(t)\right) \\
& \quad=\mathfrak{A}_{e} x_{e}(t)+B_{e}\left[\begin{array}{c}
w_{\text {dist }, 1}(t) \\
y_{\text {ref }}(t)
\end{array}\right]-\sum_{k=-q}^{q} i \mu_{k} e^{i \mu_{k} t} \Sigma_{k} \\
& \quad=\mathfrak{A}_{e}\left(x_{e}(t)-\Sigma(t)\right)
\end{aligned}
$$

due to (9a). For all $t \geq 0$ we also have from (9b) that

$$
\mathfrak{B}_{e}\left(x_{e}(t)-\Sigma(t)\right)=\left[\begin{array}{l}
w_{d i s t, 2}(t) \\
w_{d i s t, 3}(t)
\end{array}\right]-\sum_{k=-q}^{q} e^{i \mu_{k} t} \mathfrak{B}_{e} \Sigma_{k}=0
$$

Thus $x_{e}(t)-\Sigma(t) \in \mathcal{D}\left(A_{e}\right)$ is a classical solution of the abstract Cauchy problem $\frac{d}{d t}\left(x_{e}(t)-\Sigma(t)\right)=A_{e}\left(x_{e}(t)-\Sigma(t)\right)$, and therefore $\left\|x_{e}(t)-\Sigma(t)\right\|=\left\|T_{e}(t)\left(x_{e}(0)-\Sigma(0)\right)\right\| \leq$ $M_{e} e^{-\omega_{e} t}\left\|x_{e}(0)-\Sigma(0)\right\|$.

If we write $\Sigma_{k}=\left[\begin{array}{c}\Pi_{k} \\ \Gamma_{k}\end{array}\right] \in Z \times X_{c}$, then (9a) and the conditions (8) imply

$$
\begin{aligned}
& {\left[\begin{array}{cc}
i \mu_{k}-\mathfrak{A}_{0} & 0 \\
\delta_{c} B_{c} \mathfrak{C} & i \mu_{k}-J_{c}
\end{array}\right]\left[\begin{array}{l}
\Pi_{k} \\
\Gamma_{k}
\end{array}\right]=\left[\begin{array}{c}
B_{d} w_{1 k} \\
\delta_{c} B_{c} y_{r}^{k}
\end{array}\right]} \\
& \Rightarrow \quad\left(i \mu_{k}-J_{c}\right) \Gamma_{k}=\delta_{c} B_{c}\left(y_{r}^{k}-\mathfrak{C} \Pi_{k}\right) \\
& \stackrel{(8 \mathrm{a})}{\Rightarrow} B_{c}\left(y_{r}^{k}-\mathfrak{C} \Pi_{k}\right)=0 \quad \stackrel{(8 \mathrm{~b})}{\Rightarrow} \quad y_{r}^{k}=\mathfrak{C} \Pi_{k}=\mathfrak{C}_{e} \Sigma_{k} .
\end{aligned}
$$

Using $\mathfrak{C}_{e} \Sigma_{k}=y_{r}^{k}$, we can write $e(t)=y(t)-y_{\text {ref }}(t)$ as

$$
\begin{aligned}
e(t) & =\mathfrak{C}_{e} x_{e}(t)-\sum_{k=-q}^{q} y_{r}^{k} e^{i \mu_{k} t}=\mathfrak{C}_{e} x_{e}(t)-\sum_{k=-q}^{q} \mathfrak{C}_{e} \Sigma_{k} e^{i \mu_{k} t} \\
& =\mathfrak{C}_{e}\left(x_{e}(t)-\Sigma(t)\right)
\end{aligned}
$$

Finally, since $\mathfrak{C}_{e} A_{e}^{-1} \in \mathcal{L}\left(X, \mathbb{C}^{p}\right)$ for boundary control systems, we have

$$
\begin{aligned}
\|e(t)\| & =\left\|\mathfrak{C}_{e}\left(x_{e}(t)-\Sigma(t)\right)\right\| \\
& =\left\|\mathfrak{C}_{e} A_{e}^{-1} T_{e}(t) A_{e}\left(x_{e}(0)-\Sigma(0)\right)\right\| \\
& \leq M_{e} e^{-\omega_{e} t}\left\|\mathfrak{C}_{e} A_{e}^{-1}\right\| \cdot\left\|A_{e}\left(x_{e}(0)-\Sigma(0)\right)\right\|
\end{aligned}
$$

and thus $e^{\alpha t}\|e(t)\| \rightarrow 0$ as $t \rightarrow \infty$ for any $0<\alpha<\omega_{e}$.
Since the proof can be repeated analogously for any perturbations of $\left(\mathfrak{A}_{0}, \mathfrak{B}, \mathfrak{B}_{d}, B_{d}, \mathfrak{C}\right)$ for which Assumption III. 1 is
satisfied and the closed-loop semigroup is exponentially stable, the controller satisfies part (c) of the robust output regulation problem.

V. A Passive Robust Controller

In this section we prove that if the system (6) is exponentially stable and the parameters of the controller (3) on $X_{c}=\mathbb{C}^{p(2 q+1)}$ are chosen as (real) matrices $D_{c}=0$,

$$
\begin{align*}
J_{c} & =\operatorname{blockdiag}\left(J_{c}^{0}, J_{c}^{1}, \ldots, J_{c}^{q}\right), \tag{10a}\\
J_{c}^{0} & =0_{p}, \quad J_{c}^{k}=\left[\begin{array}{cc}
0 & \omega_{k} I_{p} \\
-\omega_{k} I_{p} & 0
\end{array}\right], \tag{10b}\\
B_{c} & =\left[\begin{array}{c}
B_{c}^{0} \\
\vdots \\
B_{c}^{q}
\end{array}\right], \quad B_{c}^{0}=I_{p}, \quad B_{c}^{k}=\left[\begin{array}{c}
I_{p} \\
0
\end{array}\right], \tag{10c}
\end{align*}
$$

then the controller solves the robust output regulation problem for a range of gain parameters $\delta_{c}>0$. The following theorem is the main abstract result of the paper, and it is also used in proving Theorem II. 5 at the end of this section.

Theorem V.1. Let $0=\omega_{0}<\omega_{1}<\cdots<\omega_{q}$. Assume A generates an exponentially stable semigroup $T(t), C:=\mathfrak{C}_{\left.\right|_{\mathcal{D}(A)}}$ is admissible with respect to $T(t)$, and Assumption IV. 1 holds. Then there exists $\delta_{c}^{*}>0$ such that for all $\delta_{c} \in\left(0, \delta_{c}^{*}\right)$ the controller (3) on $X_{c}=\mathbb{C}^{p(2 q+1)}$ with parameters (10) and $D_{c}=0$ solves the robust output regulation problem for all $y_{\text {ref }}(t)$ and $w_{\text {dist }}(t)$ in (2).

The main part of the proof of Theorem V. 1 consists of showing the exponential stability of the closed-loop system for $\delta_{c} \in\left(0, \delta_{c}^{*}\right)$, and for this we use a new Lyapunov argument. Similar methods have been used in study of stability of coupled PHS especially in [14], [17]. Our situation is different from the previous references due to the fact that the infinitedimensional system (6) is exponentially stable and the unstable controller (3) is finite-dimensional. The proof of Theorem V. 1 begins with the definition of a component $H \in \mathcal{L}\left(X_{c}, X\right)$ of the Lyapunov candidate function in Lemma V.2. For the proofs we define a block-diagonal similarity transform $T=$ $\operatorname{blockdiag}\left(T_{0}, T_{1}, \ldots, T_{q}\right) \in \mathbb{C}^{n_{c} \times n_{c}}$ where $n_{c}=p(2 q+1)$ such that for $k \in\{1, \ldots, q\}$

$$
T_{0}=I_{p}, \quad T_{k}=\left[\begin{array}{cc}
I & I \\
i I & -i I
\end{array}\right], \quad T_{k}^{-1}=\frac{1}{2}\left[\begin{array}{cc}
I & -i I \\
I & i I
\end{array}\right] .
$$

Moreover, we define $G_{1}=T^{-1} J_{c} T \in \mathbb{C}^{p(2 q+1) \times p(2 q+1)}$ and $G_{2}=T^{-1} B_{c} \in \mathbb{C}^{p \times p(2 q+1)}$. A direct computation shows that

$$
\begin{aligned}
G_{1} & =\operatorname{blockdiag}\left(i \omega_{0} I_{p}, i \omega_{1} I_{p},-i \omega_{1} I_{p}, \ldots, i \omega_{q} I_{p},-i \omega_{q} I_{p}\right) \\
G_{2} & =\frac{1}{2}\left[I_{p}, I_{p}, \ldots, I_{p}\right]^{T}
\end{aligned}
$$

Lemma V.2. Let Assumption IV. 1 hold and assume A generates an exponentially stable semigroup on X. Let $X_{c}=$ $\mathbb{C}^{p(2 q+1)}$ and let J_{c} and B_{c} be as in (10). Then there exists $H \in \mathcal{L}\left(X_{c}, X\right)$ satisfying $\mathcal{R}(H) \subset Z$ such that

$$
\begin{equation*}
H J_{c}=\mathfrak{A} H \quad \text { and } \quad \mathfrak{B} H=-B_{c}^{*} \tag{11}
\end{equation*}
$$

and we have $\mathfrak{C} H \in \mathcal{L}\left(X_{c}, \mathbb{C}^{p}\right)$. Moreover, there exist constants $\delta_{0}^{*}, M_{c}>0$ such that for any $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$ we can choose $P_{c 0}>0$ such that $\left\|P_{c 0}\right\| \leq M_{c}$ and

$$
P_{c 0}\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right)+\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right)^{*} P_{c 0}=-\delta_{c}^{2} I .
$$

Proof. Since $J_{c}=T G_{1} T^{-1}$, an operator $H \in \mathcal{L}\left(X_{c}, X\right)$ with $\mathcal{R}(H) \subset Z$ satisfies (11) if and only if $H T G_{1}=$ $\mathfrak{A} H T$ and $\mathfrak{B} H T=-B_{c}^{*} T$. Due to the block-diagonal structure of G_{1}, the operator $H T$ has the form $H T=$ $\left(H_{0}, H_{1}, H_{-1}, \ldots, H_{q}, H_{-q}\right)$. Since $B_{c}^{*} T=[I, \ldots, I]$, for each $k \in\{0, \ldots, q\}$ the operators $H_{ \pm k}: \mathbb{C}^{p} \rightarrow X$ are determined by $z_{ \pm k}=H_{ \pm k} y$ for all $y \in \mathbb{C}^{p}$ where $z_{ \pm k}$ are the solutions of the abstact elliptic equations

$$
\left\{\begin{array}{l}
\left(\pm i \omega_{k}-\mathfrak{A}\right) z_{ \pm k}=0 \\
\mathfrak{B} z_{ \pm k}=-y
\end{array}\right.
$$

By [21, Prop. 10.1.2, Rem. 10.1.3 \& 10.1.5] the above equations have unique solutions and $H_{k} \in \mathcal{L}\left(\mathbb{C}^{p}, X\right)$ and $\mathcal{R}\left(H_{k}\right) \subset Z$ for all $k \in\{-q, \ldots, q\}$. Thus $H \in \mathcal{L}\left(X_{c}, X\right)$ and $\mathcal{R}(H) \subset Z$. We further have from [3, Thm. 2.9] that $\mathfrak{C} H_{ \pm k} y=\mathfrak{C} z_{ \pm k}=-P\left(\pm i \omega_{k}\right) y$ for all $y \in \mathbb{C}^{p}$ and $k \in\{0, \ldots, q\}$. Because of this, we have
$\mathfrak{C} H T=-\left[P\left(i \omega_{0}\right), P\left(i \omega_{1}\right), P\left(-i \omega_{1}\right), \ldots, P\left(i \omega_{q}\right), P\left(-i \omega_{q}\right)\right]$,
which in particular implies $\mathfrak{C} H \in \mathcal{L}\left(X_{c}, \mathbb{C}^{p}\right)$.
To prove the second claim, we first note that Assumption IV. 1 implies that $\operatorname{Re} \lambda>0$ for all $\lambda \in \sigma\left(P\left(\pm i \omega_{k}\right)\right)$ and k. Indeed, if $k \in\{0, \ldots, q\}$ and $\operatorname{Re} \lambda \leq 0$, then $\operatorname{Re} P\left(\pm i \omega_{k}\right)>0$ implies $\operatorname{Re}\left(P\left(\pm i \omega_{k}\right)-\lambda\right)=|\operatorname{Re} \lambda|+\operatorname{Re} P\left(\pm i \omega_{k}\right)>0$, and thus $P\left(\pm i \omega_{k}\right)-\lambda$ is nonsingular.

In the next step we use the results in [8, App. B] to show that there exist constants $M_{0}, \omega_{0}, \delta_{0}^{*}>0$ such that

$$
\begin{equation*}
\left\|\exp \left(\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right) t\right)\right\| \leq M_{0} e^{-\omega_{0} \delta_{c}^{2} t} \tag{12}
\end{equation*}
$$

for all $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$ and $t \geq 0$. If we denote $K=-\mathfrak{C} H T$, then

$$
J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H=T\left(G_{1}-\delta_{c}^{2} G_{2} K\right) T^{-1}
$$

Now $K=\left[K_{0}, K_{1}, K_{2}, \ldots, K_{2 q}\right]$ where $\operatorname{Re} \lambda<0$ for all $\lambda \in \sigma\left(K_{k}\right)$ and $k \in\{0, \ldots, 2 q\}$, and $G_{2}=\frac{1}{2}[I, \ldots, I]^{T}$. Thus $\left(G_{1}-\delta_{c}^{2} G_{2} K\right)^{*}=G_{1}^{*}-\delta_{c}^{2} K^{*} G_{2}^{*}$ is of the form of $A_{c}(\varepsilon)$ in [8, App. B] with $\varepsilon=\delta_{c}^{2} / 2$. The proof of Theorem 1 in [8, App. B] shows that there exist $M_{1}, \omega_{0}, \delta_{0}^{*}>0$ such that $\| \exp \left(\left(G_{1}^{*}-\right.\right.$ $\left.\left.\delta_{c}^{2} K^{*} G_{2}^{*}\right) t\right) \| \leq M_{1} e^{-\omega_{0} \delta_{c}^{2} t}$ for all $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$ and $t \geq 0$. This further implies that if we define $M_{0}=M_{1}\|T\|\left\|T^{-1}\right\|$, then (12) holds for all $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$ and $t \geq 0$.

Let $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$ and denote $T_{\delta_{c}}(t)=\exp \left(\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right) t\right)$ for brevity. Since $J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H$ is Hurwitz, we can choose $\tilde{P}_{c 0}>0$ such that

$$
\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right) \tilde{P}_{c 0}+\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right)^{*} \tilde{P}_{c 0}=-I
$$

Here $\tilde{P}_{c 0}=\int_{0}^{\infty} T_{\delta_{c}}(t)^{*} T_{\delta_{c}}(t) d t$, and thus (12) implies

$$
\left\|\tilde{P}_{c 0}\right\| \leq \int_{0}^{\infty}\left\|T_{\delta_{c}}(t)\right\|^{2} d t \leq M_{0}^{2} \int_{0}^{\infty} e^{-2 \omega_{0} \delta_{c}^{2} t} d t=\frac{M_{0}^{2}}{2 \omega_{0} \delta_{c}^{2}}
$$

Now the matrix $P_{c 0}:=\delta_{c}^{2} \tilde{P}_{c 0}$ has the required properties.

Proof of Theorem V.1. The proof of [7, Lem. 12] shows that $\mathcal{R}\left(\pm i \omega_{k}-G_{1}\right) \cap \mathcal{R}\left(G_{2}\right)=\{0\}$ for all $k \in\{0, \ldots, q\}$ and $\mathcal{N}\left(G_{2}\right)=\{0\}$, and by similarity the pair $\left(J_{c}, B_{c}\right)=$ ($T G_{1} T^{-1}, T G_{2}$) satisfies the conditions (8). By Theorem IV. 2 it is thus sufficient to show that the closed-loop system is exponentially stable (in the case $y_{r e f}(t) \equiv 0$ and $w_{\text {dist }}(t) \equiv 0$).

Let $H \in \mathcal{L}\left(X_{c}, X\right)$ and $\delta_{0}^{*}, M_{c}>0$ be as in Lemma V.2, and let $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$. We choose the Lyapunov function candidate V_{e} for the closed-loop system by

$$
V_{e}=\left\langle x+\delta_{c} H x_{c}, P\left(x+\delta_{c} H x_{c}\right)\right\rangle_{X}+\left\langle x_{c}, P_{c} x_{c}\right\rangle_{X_{c}}
$$

where $x=x(t)$ and $x_{c}=x_{c}(t)$ are the states of the plant and the controller, respectively, and P and P_{c} will be chosen later. Since the coordinate transform $\left(x, x_{c}\right) \rightarrow\left(x+\delta_{c} H x_{c}, x_{c}\right)$ is boundedly invertible, V_{e} is a valid Lyapunov function candidate whenever $P>0$ and $P_{c}>0$.

Let $\left(x(t), x_{c}(t)\right)^{T}$ be a classical solution of the closedloop system with $y_{\text {ref }}(t) \equiv 0$ and $w_{\text {dist }}(t) \equiv 0$. Since $\mathfrak{B} x(t)=\delta_{c} B_{c}^{*} x_{c}(t)$ and $\mathfrak{B} H=-B_{c}^{*}$, we have $\mathfrak{B}(x(t)+$ $\left.\delta_{c} H x_{c}(t)\right)=0$. Thus $x(t)+\delta_{c} H x_{c}(t) \in \mathcal{N}(\mathfrak{B})=\mathcal{D}(A)$ and $\mathfrak{A}\left(x(t)+\delta_{c} H x_{c}(t)\right)=A\left(x(t)+\delta_{c} H x_{c}(t)\right)$. If we denote $\tilde{A}=A-\delta_{c}^{2} H B_{c} C: \mathcal{D}(A) \subset X \rightarrow X$, then a direct computation using (11) shows that

$$
\begin{aligned}
\frac{1}{2} \dot{V}_{e} & =\operatorname{Re}\left\langle\dot{x}+\delta_{c} H \dot{x}_{c}, P\left(x+\delta_{c} H x_{c}\right)\right\rangle+\operatorname{Re}\left\langle\dot{x}_{c}, P_{c} x_{c}\right\rangle \\
= & \operatorname{Re}\left\langle\mathfrak{A} x+\delta_{c} H J_{c} x_{c}-\delta_{c}^{2} H B_{c} \mathfrak{C} x, P\left(x+\delta_{c} H x_{c}\right)\right\rangle \\
& +\operatorname{Re}\left\langle J_{c} x_{c}-\delta_{c} B_{c} \mathfrak{C} x, P_{c} x_{c}\right\rangle \\
= & \operatorname{Re}\left\langle\tilde{A}\left(x+\delta_{c} H x_{c}\right), P\left(x+\delta_{c} H x_{c}\right)\right\rangle \\
& +\operatorname{Re}\left\langle\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right) x_{c}, P_{c} x_{c}\right\rangle \\
& +\operatorname{Re}\left\langle\delta_{c}^{2} B_{c} \mathfrak{C} H x_{c}, \delta_{c} H^{*} P\left(x+\delta_{c} H x_{c}\right)\right\rangle \\
& -\operatorname{Re}\left\langle C\left(x+\delta_{c} H x_{c}\right), \delta_{c} B_{c}^{*} P_{c} x_{c}\right\rangle .
\end{aligned}
$$

Since A generates an exponentially stable semigroup $T(t)$ on X, there exists a unique $P_{1} \in \mathcal{L}(X)$ with $P_{1}>0$ such that $A^{*} P_{1}+P_{1} A=-2 I$. Moreover, the exponential stability also implies that C is infinite-time admissible with respect to $T(t)$, and by [21, Thm. 5.1.1] there exists $P_{2} \in \mathcal{L}(X)$ with $P_{2} \geq 0$ such that $2 \operatorname{Re}\left\langle A x_{1}, P_{2} x_{1}\right\rangle=-2\left\|C x_{1}\right\|^{2}$ for all $x_{1} \in \mathcal{D}(A)$. Thus if we define $P=P_{1}+P_{2} \in \mathcal{L}(X)$, then $P>0$ and

$$
2 \operatorname{Re}\left\langle A x_{1}, P x_{1}\right\rangle=-2\left\|x_{1}\right\|^{2}-2\left\|C x_{1}\right\|^{2} \quad \forall x_{1} \in \mathcal{D}(A) .
$$

The scalar inequality $2 a b \leq a^{2}+b^{2}$ implies that if $x_{1} \in \mathcal{D}(A)$, then

$$
\begin{aligned}
& 2 \operatorname{Re}\left\langle\tilde{A} x_{1}, P x_{1}\right\rangle=2 \operatorname{Re}\left\langle A x_{1}, P x_{1}\right\rangle-2 \delta_{c}^{2} \operatorname{Re}\left\langle C x_{1}, B_{c}^{*} H^{*} P x_{1}\right\rangle \\
& \quad \leq-2\left\|x_{1}\right\|^{2}-2\left\|C x_{1}\right\|^{2}+\delta_{c}^{2}\left\|C x_{1}\right\|^{2}+\delta_{c}^{2}\left\|P H B_{c}\right\|^{2}\left\|x_{1}\right\|^{2} \\
& \quad=-\left(2-\delta_{c}^{2}\left\|P H B_{c}\right\|^{2}\right)\left\|x_{1}\right\|^{2}-\left(2-\delta_{c}^{2}\right)\left\|C x_{1}\right\|^{2} \\
& \quad \leq-\left\|x_{1}\right\|^{2}-\left\|C x_{1}\right\|^{2}
\end{aligned}
$$

whenever $0<\delta_{c} \leq \delta_{1}^{*}$ with $\delta_{1}^{*}:=\min \left\{1,1 /\left\|P H B_{c}\right\|\right\}>0$.
Since $\delta_{c} \in\left(0, \delta_{0}^{*}\right)$ by assumption, we can choose $P_{c 0}>0$ (corresponding to this δ_{c}) as in Lemma V. 2 and define $P_{c}=$ $\varepsilon_{c} P_{c 0}>0$ for some $\varepsilon_{c}>0$. Then $\left\|P_{c}\right\| \leq M_{c} \varepsilon_{c}$ and

$$
P_{c}\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right)+\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right)^{*} P_{c}=-\varepsilon_{c} \delta_{c}^{2} I
$$

If $0<\delta_{c}<\min \left\{\delta_{0}^{*}, \delta_{1}^{*}\right\}$, we can estimate (using the inequality $2 \operatorname{Re}\left\langle z_{1}, z_{2}\right\rangle \leq 2\left\|z_{1}\right\|\left\|z_{2}\right\| \leq \frac{1}{2}\left\|z_{1}\right\|^{2}+2\left\|z_{2}\right\|^{2}$ in the last term)

$$
\begin{aligned}
\dot{V}_{e}= & 2 \operatorname{Re}\left\langle\tilde{A}\left(x+\delta_{c} H x_{c}\right), P\left(x+\delta_{c} H x_{c}\right)\right\rangle \\
& +2 \operatorname{Re}\left\langle\left(J_{c}+\delta_{c}^{2} B_{c} \mathfrak{C} H\right) x_{c}, P_{c} x_{c}\right\rangle \\
& +2 \operatorname{Re}\left\langle\delta_{c}^{2} B_{c} \mathfrak{C} H x_{c}, \delta_{c} H^{*} P\left(x+\delta_{c} H x_{c}\right)\right\rangle \\
& -2 \operatorname{Re}\left\langle C\left(x+\delta_{c} H x_{c}\right), \delta_{c} B_{c}^{*} P_{c} x_{c}\right\rangle \\
\leq & -\left\|x+\delta_{c} H x_{c}\right\|^{2}-\left\|C\left(x+\delta_{c} H x_{c}\right)\right\|^{2} \\
& -\varepsilon_{c} \delta_{c}^{2}\left\|x_{c}\right\|^{2}+\delta_{c}^{4}\left\|B_{c} \mathfrak{c} H x_{c}\right\|^{2}+\delta_{c}^{2}\left\|H^{*} P\left(x+\delta_{c} H x_{c}\right)\right\|^{2} \\
& +\frac{1}{2}\left\|C\left(x+\delta_{c} H x_{c}\right)\right\|^{2}+2 \delta_{c}^{2}\left\|B_{c}^{*} P_{c} x_{c}\right\|^{2} \\
= & {\left[-1+\delta_{c}^{2}\|P H\|^{2}\right]\left\|x+\delta_{c} H x_{c}\right\|^{2}-\frac{1}{2}\left\|C\left(x+\delta_{c} H x_{c}\right)\right\|^{2} } \\
& +\delta_{c}^{2}\left[-\varepsilon_{c}+\delta_{c}^{2}\left\|B_{c} \mathfrak{C} H\right\|^{2}+2 M_{c}^{2} \varepsilon_{c}^{2}\left\|B_{c}\right\|^{2}\right]\left\|x_{c}\right\|^{2} .
\end{aligned}
$$

We can now choose a sufficiently small fixed $\varepsilon_{c}>0$ and $\delta_{2}^{*}>0$ such that if $0<\delta_{c}<\delta_{c}^{*}:=\min \left\{\delta_{0}^{*}, \delta_{1}^{*}, \delta_{2}^{*}\right\}$, then

$$
\begin{aligned}
\dot{V}_{e} & \leq-\tilde{\varepsilon}_{e}\left(\left\|x+\delta_{c} H x_{c}\right\|^{2}+\left\|x_{c}\right\|^{2}\right) \\
& \leq-\tilde{\varepsilon}_{e} \max \left\{\left\|P^{-1}\right\|,\left\|P_{c}^{-1}\right\|\right\} V_{e}=:-\varepsilon_{e} V_{e}
\end{aligned}
$$

where $\varepsilon_{e}>0$ depends on the choice of $\delta_{c}>0$. Since $T_{e}(t)$ is contractive, this proves exponential closed-loop stability. \square

We now present the proof of Theorem II. 5 for PHS. To use Theorem V. 1 we formulate (1) as a boundary control system on $X=L^{2}\left(a, b ; \mathbb{C}^{n}\right)$ with norm defined by $\|x\|_{\mathcal{H}}=$ $\sqrt{\langle\mathcal{H} x, x\rangle_{L^{2}}}$ for $x \in X$ (since $\left(P_{2}, P_{1}, P_{0}, G_{0}, \mathcal{H}, W, \tilde{W}\right)$ are real, real-valued initial data for (1) and (3) leads to real-valued solutions). We begin by showing that the condition (b) in Assumption II. 2 implies impedance passivity of (1).

Lemma V.3. If Assumption II. 2 holds and $w_{\text {dist }}(t) \equiv 0$, then the classical solutions of (1) satisfy $\frac{1}{2} \frac{d}{d t}\|x(t)\|_{\mathcal{H}}^{2} \leq u(t)^{T} y(t)$.

Proof. Let $w_{\text {dist }}(t) \equiv 0$. The proof of [13, Thm. 4.2] and (b) imply that the solution of (1) satisfies

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{a}^{b} x(z, t)^{T} \mathcal{H}(z) x(z, t) d z \leq \frac{1}{2}\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right]^{T} \Sigma\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right] \\
& \quad \leq \frac{1}{2}\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right]^{T}\left(W_{1}^{T} \tilde{W}+\tilde{W}^{T} W_{1}\right)\left[\begin{array}{l}
f_{\partial}(t) \\
e_{\partial}(t)
\end{array}\right]=y(t)^{T} u(t)
\end{aligned}
$$

where we have used that $\left[\begin{array}{l}f_{\partial}(t) \\ e_{\partial}(t)\end{array}\right] \in \mathcal{N}\left(W_{2}\right)$ by (1c).
As shown in [13, Sec. 4-5], (1) becomes a boundary control system (6) on X with choices

$$
\begin{aligned}
\mathfrak{A}_{0} x & :=P_{2} \frac{\partial^{2}}{\partial z^{2}}(\mathcal{H} x)+P_{1} \frac{\partial}{\partial z}(\mathcal{H} x)+\left(P_{0}-G_{0}\right)(\mathcal{H} x) \\
\mathcal{D}\left(\mathfrak{A}_{0}\right) & =Z:=\left\{x \in L^{2}\left(a, b ; \mathbb{C}^{n}\right) \mid \mathcal{H} x \in H^{N}\left(a, b ; \mathbb{C}^{n}\right)\right\} \\
\mathfrak{B} x & =W_{1} R_{e x t} \Phi(\mathcal{H} x), \quad \mathfrak{B}_{d} x=W_{2} R_{e x t} \Phi(\mathcal{H} x) \\
\mathfrak{C} x & =\tilde{W} R_{e x t} \Phi(\mathcal{H} x), \quad B_{d} v=B_{d}(\cdot) v
\end{aligned}
$$

where $R_{\text {ext }}$ and $\Phi(\cdot)$ are as in Definition II.1. For these definitions the properties in Assumption III. 1 follow from [13, Thm. 4.2] and Lemma V.3.

Proof of Theorem II.5. To apply Theorem V. 1 we rewrite the feedthrough $D_{c}>0$ as in (7), in which case the boundary control system has the input operator $\mathfrak{B}+D_{c} \mathfrak{C}$ and the
controller (3) has no feedthrough. This corresponds to preliminary output feedback $u(t)=-D_{c} y(t)+\tilde{u}(t)$. Denote by $A_{D_{c}}=\left.\mathfrak{A}\right|_{\mathcal{N}\left(\mathfrak{B}+D_{c} \mathfrak{C}\right)}$ with $\mathcal{D}\left(A_{D_{c}}\right)=\mathcal{N}\left(\mathfrak{B}+D_{c} \mathfrak{C}\right)$.

By Lemma V.3, the original system is impedance passive, and since $D_{c}>0$, the output feedback preserves impedance passivity. The operator $A_{D_{c}}$ is dissipative, and straightforward perturbation arguments (similar to those in the proof of Proposition III.2) show that $\mathcal{R}\left(1-A_{D_{c}}\right)=X$. Thus $A_{D_{c}}$ generates a contraction semigroup by the Lumer-Phillips Theorem and this semigroup is exponentially stable by Assumption II. 3 (with $K=D_{c}$). As shown in [9, Prop. II.4]), $C=\mathfrak{C}_{\mathcal{D}_{\left(A_{D_{c}}\right)}}$ is admissible with respect to the semigroup generated by $A_{D_{c}}$.

Finally, we need to verify Assumption IV.1, i.e., that the transfer function $P_{D_{c}}(\lambda)$ of (1) with feedback $u(t)=$ $-D_{c} y(t)+\tilde{u}(t)$ satisfies $\operatorname{Re} P_{D_{c}}\left(\pm i \omega_{k}\right)>0$ for all k. Define $K_{0}=\frac{1}{2} D_{c}>0$ and denote the transfer function of (1) with output feedback $u(t)=-K_{0} y(t)+\tilde{u}(t)$ by $P_{K_{0}}(\lambda)$. By Assumption II. $3 P_{K_{0}}(\lambda) \in \mathbb{R}^{p \times p}$ is well-defined for $\lambda \in\left\{ \pm i \omega_{k}\right\}_{k=0}^{q}$, and since (1) has no transmission zeros at $\pm i \omega_{k}, P_{K_{0}}\left(\pm i \omega_{k}\right)$ are nonsingular for all k. Since $D_{c}=K_{0}+K_{0}$, we have $P_{D_{c}}\left(\pm i \omega_{k}\right)=P_{K_{0}}\left(\pm i \omega_{k}\right)(I+$ $\left.K_{0} P_{K_{0}}\left(\pm i \omega_{k}\right)\right)^{-1}=\left(P_{K_{0}}\left(\pm i \omega_{k}\right)^{-1}+K_{0}\right)^{-1}$ for all k. Since $\operatorname{Re}\left(P_{K_{0}}\left(\pm i \omega_{k}\right)^{-1}\right)+K_{0}>0$, it is easy to show that Assumption IV. 1 holds. The claims now follow from Theorem V.1.

VI. Application to Atomic Force Microscopy

As application example we consider the output tracking trajectory problem for a piezo actuated tube used in positioning systems for Atomic Force Microscopy (see Figure 1 (left)).

Fig. 1. Atomic Force Microscopy (left). The piezoelectric tube (right).

This actuator provides the high positioning resolution and the large bandwidth necessary for the trajectory control during scanning processes. The active part situated at the tip of the flexible tube is composed of three concentric layers: piezo material in between two cylindric electrodes (Figure 1 (right)). The deformation of the active material subject to an external voltage results in an torque applied at the extremity of the tube.

We consider the motion of the tube in one direction. In this case the structure of the system behaves as a clampedfree beam, represented by the Timoshenko beam model and actuated through boundary control stemming from the piezoelectric action at the tip of the beam. By choosing as state
variables the energy variables, namely the shear displacement $x_{1}(t)=\frac{\partial w}{\partial z}(\cdot, t)-\phi(\cdot, t)$, the transverse momentum distribution $x_{2}(t)=\rho \frac{\partial w}{\partial t}(\cdot, t)$, the angular displacement $x_{3}(t)=\frac{\partial \phi}{\partial z}(\cdot, t)$ and the angular momentum distribution $x_{4}(t)=I_{\rho} \frac{\partial \phi}{\partial t}(\cdot, t)$ for $t \geq 0$, where $w(z, t)$ is the transverse displacement and $\phi(z, t)$ the rotation angle of the beam, the port-Hamiltonian model of the uncontrolled Timoshenko beam has the form (1a)-(1b) with $\mathcal{H}(\cdot) \equiv \operatorname{diag}\left(K, \frac{1}{\rho}, E I, \frac{1}{I_{\rho}}\right) \in$ \mathbb{R}^{4},

$$
P_{1}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad P_{0}=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

and $G_{0}=\operatorname{diag}\left(0, b_{w}, 0, b_{\phi}\right)$ [13]. Here ρ, I_{ρ}, E, I and K are the mass per unit length, the angular moment of inertia of a cross section, Young's modulus of elasticity, the moment of inertia of a cross section, and the shear modulus respectively, b_{w}, b_{ϕ} the frictious coefficients. From Definition II. 1 considering that $N=1$ and $Q=P_{1}$ we get

$$
\left[\begin{array}{c}
\frac{\partial w}{\partial t}(b)-\frac{\partial w}{\partial t}(a) \\
K\left(\frac{\partial w}{\partial z}(b)-\phi(b)\right)-K\left(\frac{\partial w}{\partial z}(a)-\phi(a)\right) \\
\frac{\partial \phi}{\partial t}(b)-\frac{\partial \phi}{\partial t}(a) \\
E I \frac{\partial \phi}{\partial z}(b)-E I \frac{\partial \phi}{\partial z}(a) \\
K\left(\frac{\partial w}{\partial z}(b)-\phi(b)\right)+K\left(\frac{\partial w}{\partial z}(a)-\phi(a)\right) \\
\frac{\partial w}{\partial t}(b)+\frac{\partial w}{\partial t}(a) \\
E I \frac{\partial \phi}{\partial z}(b)+E I \frac{\partial \phi}{\partial z}(a) \\
\frac{\partial \phi}{\partial t}(b)+\frac{\partial \phi}{\partial t}(a)
\end{array}\right]
$$

The beam is clamped at point a, i.e., $\frac{1}{\rho} x_{2}(a, t)=$ $\frac{1}{I_{\rho}} x_{4}(a, t)=0$ for $t \geq 0$ and free/actuated at point b, i.e., $K x_{1}(b, t)=0$ and $E I x_{3}(b, t)=u(t)$ for $t \geq 0$. The angular velocity $\frac{\partial \phi}{\partial t}(b, t)$ at the tip of the beam is measured. The input and output of the system are then of the form (1) with

$$
\begin{aligned}
W_{1} & =\frac{1}{\sqrt{2}}\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right] \\
W_{2} & =\frac{1}{\sqrt{2}}\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\tilde{W} & =\frac{1}{\sqrt{2}}\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The matrix $W:=\left[\begin{array}{l}W_{1} \\ W_{2}\end{array}\right]$ has full rank and $W \Sigma W^{T}=$ 0 . Furthermore $\left\langle\left(W_{1}^{T} \tilde{W}+\tilde{W}^{T} W_{1}-\Sigma\right) g, g\right\rangle=0$ for all $g \in \mathcal{N}\left(W_{2}\right)$, the system is then impedance passive satisfying Assumption II.2. The system is also exponentially stable and Assumption II. 3 holds. From Proposition III. 2 the closed loop system has a solution and the regulation error is well defined.
We now build a controller to achieve the robust output tracking for the Piezoelectric tube model. We use the numerical values given in Table I to achieve a realistic approximation of the dynamics of the piezo actuated tube.

For the tracking we consider the reference signal

$$
y_{r e f}(t)=a \sin \left(\omega_{1} t\right)+b \cos \left(\omega_{2} t\right), \quad a, b \in \mathbb{R} \backslash\{0\}
$$

with two pairs of frequencies $\pm \omega_{k}$ where $\omega_{i}>0, k \in\{1,2\}$. As an input disturbance signal we consider the AC 50 Hz

Beam's parameters	Value	Simulation parameters	Value
Beam length	5 cm	N_{f}	50
Beam width	0.3 cm	a	$200 \mathrm{~cm} . \mathrm{s}^{-1}$
Beam thickness	0.2 cm	b	$100 \mathrm{~cm} . \mathrm{s}^{-1}$
Material Density	$936 \mathrm{~kg} . \mathrm{m}^{-3}$	c	$0.1 \mathrm{~N} . \mathrm{m}^{-1}$
Young's modulus	$4.14 \mathrm{G} . P a$	θ	0.6
Transverse diss.	10^{-4} N.s. m^{-1}	ω_{1}	$10 \mathrm{rad.s} \mathrm{~s}^{-1}$
coef.		ω_{2}	$15 \mathrm{rad.s}$
Rotational diss.	10^{-4} N.m.s.rd s^{-1}	ω_{3}	$50 \mathrm{rad} . \mathrm{s}^{-1}$
coef.		D_{c}	0.002
		δ_{c}	0.2

TABLE I
SIMULATION PARAMETERS.
noise coming from the electrical network, hence $w_{\text {dist,2 }}(t)=$ $c \sin (2 \pi 50 t+\theta)$ with unknown $c \in \mathbb{R}$ and $\theta \in[0,2 \pi]$. Since the piezo-actuated tube is a single-input single-output system, we can use a controller of the form (with $e(t)=y_{\text {ref }}(t)-y(t)$)

$$
\begin{aligned}
& \dot{x}_{c}(t)=\left[\begin{array}{cccccc}
0 & \omega_{1} & 0 & 0 & 0 & 0 \\
-\omega_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega_{2} & 0 & 0 \\
0 & 0 & -\omega_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \omega_{3} \\
0 & 0 & 0 & 0 & -\omega_{3} & 0
\end{array}\right] x_{c}(t)+\left[\begin{array}{c}
\delta_{c} \\
0 \\
\delta_{c} \\
0 \\
\delta_{c} \\
0
\end{array}\right] e(t) \\
& u(t)=\delta_{c}\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right] x_{c}(t)+D_{c} e(t)
\end{aligned}
$$

on $X_{c}=\mathbb{R}^{6}$. By Theorem II. 5 the controller achieves asymptotic output tracking of the reference signal $y_{\text {ref }}(t)$ if $i \omega_{1}, i \omega_{2}$, and $i \omega_{3}$ are not transmission zeros of the system, if $D_{c}>0$, and if $\delta_{c}>0$ is sufficiently small.

Fig. 2. Simulation results. The controlled output $y(t)$ (dashed red line) and the reference $y_{r e f}(t)$ (solid blue line).

For simulation the Timoshenko beam model was discretized using a structure preserving method based on the Mixed Finite Element Method [2], [5]. We denote by N_{f} the number of basis elements, and consequently the full finite dimensional system has order $4 N_{f}$. All the numerical values of the parameters related to the simulation can be found in table I. Figure 2 depicts the output tracking performance for the zero initial states of the system and the controller, and exhibits steady convergence of the tracking error to zero. Due to robustness the output tracking is achieved even if the physical parameters of the piezo actuated tube model contain uncertainties or experience changes, as long as the closed-loop system stability is preserved.

VII. Conclusions

In this paper we have proposed a constructive method for the design of impedance passive controllers for robust output
regulation of port-Hamiltonian systems with boundary control and observation. Our results use Lyapunov techniques and extend previous results on this topic by removing the assumption of wellposedness, which is often highly challenging to verify for concrete PDE models. Future research topics include the design of robust controllers for nonlinear PHS.
Acknowledgement. The authors are grateful to Jukka-Pekka Humaloja for helpful discussions on PHS.

References

[1] B. Augner and B. Jacob. Stability and stabilization of infinitedimensional linear port-Hamiltonian systems. Evol. Equ. Control Theory, 3(2):207-229, 2014.
[2] A. Baaiu, F. Couenne, L. Lefèvre, Y. Le Gorrec, and Melaz Tayakout. Structure-preserving infinite dimensional model reduction. application to adsorption processes. J. Process Control, 19(3):394-404, 2009.
[3] A. Cheng and K. Morris. Well-posedness of boundary control systems. SIAM J. Control Optim., 42(4):1244-1265, 2003.
[4] J. Deutscher. A backstepping approach to the output regulation of boundary controlled parabolic PDEs. Automatica J. IFAC, 57:56-64, 2015.
[5] G. Golo, V. Talasila, A. van der Schaft, and B. Maschke. Hamiltonian Discretization of Boundary Control Systems. Automatica J. IFAC, 40:757-771, 2004.
[6] Wei Guo, Hua-Cheng Zhou, and M. Krstic. Adaptive error feedback regulation problem for 1D wave equation. Internat. J. Robust Nonlinear Control, 28(15):4309-4329, 2018.
[7] T. Hämäläinen and S. Pohjolainen. Robust regulation of distributed parameter systems with infinite-dimensional exosystems. SIAM J. Control Optim., 48(8):4846-4873, 2010.
[8] T. Hämäläinen and S . Pohjolainen. A self-tuning robust regulator for infinite-dimensional systems. IEEE Trans. Automat. Control, 56(9):2116-2127, 2011.
[9] J.-P. Humaloja, M. Kurula, and L. Paunonen. Approximate robust output regulation of boundary control systems. IEEE Trans. Automat. Control, 64(6):2210-2223, 2019.
[10] J.-P. Humaloja and L. Paunonen. Robust regulation of infinitedimensional port-Hamiltonian systems. IEEE Trans. Automat. Control, 63(5):1480-1486, 2018.
[11] B. Jacob and H. Zwart. Linear Port-Hamiltonian Systems on InfiniteDimensional Spaces, volume 223 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2012.
[12] Feng-Fei Jin and Bao-Zhu Guo. Boundary output tracking for an EulerBernoulli beam equation with unmatched perturbations from a known exosystem. Automatica J. IFAC, 109:108507, 9, 2019.
[13] Y. Le Gorrec, H. Zwart, and B. Maschke. Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J. Control Optim., 44(5):1864-1892, 2005.
[14] A. Macchelli and F. Califano. Dissipativity-based boundary control of linear distributed port-Hamiltonian systems. Automatica J. IFAC, 95:5462, 2018.
[15] J. Malinen and O. J. Staffans. Impedance passive and conservative boundary control systems. Complex Anal. Oper. Theory, 1(2):279-300, 2007.
[16] L. Paunonen, Y. Le Gorrec, and H. Ramírez. A simple robust controller for port-Hamiltonian systems. In Proceedings of the 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Valparaiso, Chile, May 1-4 2018.
[17] H. Ramírez, Y. Le Gorrec, A. Macchelli, and H. Zwart. Exponential stabilization of boundary controlled port-Hamiltonian systems with dynamic feedback. IEEE Trans. Automat. Control, 59(10):2849-2855, 2014.
[18] R. Rebarber and G. Weiss. Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica J. IFAC, 39(9):1555-1569, 2003.
[19] D. Salamon. Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach. Trans. Amer. Math. Soc., 300(2):383-431, 1987.
[20] O. J. Staffans. Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems. Math. Control Signals Systems, 15(4):291-315, 2002.
[21] M. Tucsnak and G. Weiss. Observation and Control for Operator Semigroups. Birkhäuser Basel, 2009.

[^0]: This work was supported by the Academy of Finland Grants number 298182 and 310489 held by L. Paunonen, the Agence Nationale de la Recherche/Deutsche Forschungsgemeinschaft (ANR-DFG) project INFIDHEM, ID ANR-16-CE92-0028, and the EUROPEAN COMMISSION through H2020-ITN-2017-765579 - ConFlex, and AC3E basal project FB0008.

 Lassi Paunonen is with Mathematics, Faculty of Information Technology and Communication Sciences, Tampere University, PO. Box 692, 33101 Tampere, Finland (email: lassi.paunonen@tuni.fi).

 Yann Le Gorrec is with FEMTO-ST Institute, AS2M department, Université de Franche-Comté, Besançon, France (email: legorrec@femto-st.fr).
 Héctor Ramírez is with Universidad Tecnica Federico Santa Maria, Valparaiso, Chile (email: hector.ramireze@usm.cl).

