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Abstract 19 

Metamaterials are extensively utilized to manipulate ground surface waves for 20 

vibration isolation within the bandgap frequency ranges whereas topological crystals 21 

allow the creation of robust edge states immune to scattering by defects. In this work, 22 

we propose a topological surface wave metamaterial working in the Hertz frequency 23 

range, constituted of triangle shape concrete pillars arranged in a honeycomb lattice and 24 

deposited on the soil ground. Based on the analogue of quantum valley Hall effect, a 25 

non-trivial bandgap is formed from the degeneracy lifting of the Dirac cone at the K 26 

point of the Brillouin zone by breaking the inversion symmetry of the two pillars in 27 

each unit cell. A topological interface is created between two different crystal phases 28 

and a topological edge state based on surface acoustic wave propagation is 29 

demonstrated. The robustness of the topologically protected edge state is quantitatively 30 

analyzed in presence of various defects and disorders. Finally, we take advantage of the 31 

robust and compact topological edge state for designing a harvesting energy device. 32 

The results demonstrate the functionality of the proposed structure for both robust 33 
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surface vibration reduction as well as energy harvesting by designing proper topological 34 

waveguides.  35 

Keywords: Surface wave metamaterial, topological insulator, vibration attenuation, 36 

energy harvesting, robustness. 37 

 38 

1. Introduction 39 

Mechanical vibrations in urban areas resulting from engineering construction and 40 

ground transportation may damage buildings and bridges, impact the operation of 41 

sophisticated instruments in high-tech laboratories and intrude residents’ slumber. Apart 42 

from the airborne acoustic wave, the energy of these vibrations is generally 43 

concentrated in the depth of one wavelength underneath the ground surface, that is, 44 

primarily propagating in the form of surface waves, and the frequency range is usually 45 

below 20.0 Hz[1, 2].  46 

Mechanical metamaterials[3] whose configurations can be artificially fabricated 47 

and modulated have been proven to manipulate the propagation of mechanical waves 48 

with new effects such as wave isolation[4-9], topological insulator[10-19], Fano 49 

resonance[20-23], chirality[24], focusing and imaging[25], among others. Especially, 50 

surface wave metamaterials[1, 26-36] are designed mainly for transmission suppression 51 

of low-frequency surface wave in certain frequency ranges based on the conception of 52 

hybridized bandgaps. Nonetheless, energy harvesting and signal detection of the 53 

subwavelength ground surface wave can be additional functions for surface wave 54 

metamaterials, remaining a meaningful and challenging issue that has hitherto received 55 

few attentions. It is possible to transform the surface wave into available electric energy 56 

and detect ground dynamics for potential catastrophe early warning.  57 

For practical applications, defects and disturbances are ubiquitous in surface wave 58 

metamaterials, hence the surface wave control with high robustness is a crucial 59 

challenge. Recently, the rapid development of metamaterial topological insulator 60 

provides an efficient way to realize robust surface wave metamaterials. Topology 61 

provides a method to describe global wave properties over a band structure which is 62 
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able to be conserved under certain local perturbations. In recent years, the development 63 

of topological insulators extended from condensed matter physics to classic wave 64 

systems such as acoustic and elastic waves. In general, Dirac cone dispersion results 65 

from the lattice symmetry which is protected by the space inversion and the time-66 

reversal symmetry. Different mechanisms like the quantum Hall, quantum spin Hall 67 

and valley Hall effects are proposed to open a bandgap from the Dirac cone[12]. 68 

According to the elastic analog of the quantum valley Hall effect, topological phases 69 

associated to opened bandgaps from the degeneracy lifting of the Dirac cone can be 70 

achieved via the inversion symmetry breaking [37]. When combining two bulk 71 

metamaterials with the opposite topological phases, topologically protected edge states 72 

can be induced showing strong energy localization at the interface within certain 73 

frequency ranges. The effect has been employed successfully in Lamb wave 74 

manipulation with significant robustness[37-43], revealing a great potential in the 75 

ground surface waves manipulation. For the application to surface acoustic waves, 76 

Wang et al. reported robust guiding valley-dependent edge states for Rayleigh waves 77 

excited by chiral sources at around 30 MHz[44]; Topological chiral edge state is also 78 

realized on a periodically corrugated surface[45].  79 

For ground surface waves in macro scale, industrial and traffic activities induced 80 

vibrations are different from chiral excitations. In this work, we study the topological 81 

protected edge modes based on surface acoustic waves within the non-trivial bandgap 82 

of a pillared metamaterial. The edge states are excited by a force point source with 83 

either out-of-plane or in plane polarization. Indeed, these are the main polarizations of 84 

the typical surface waves such as Rayleigh or Love waves. In Sec. 2, we describe the 85 

models and the implemented methods for designing non-trivial bandgaps and 86 

topological edge modes of the pillared metamaterial based on surface acoustic waves. 87 

In Sec. 3, we quantitatively study the robustness of the designed topological edge mode 88 

against three kinds of perturbations. In Sec. 4, we adopt the robust and compact 89 

topological edge mode whose path can be designed, according to the need, to study 90 

energy harvesting properties by using piezoelectric materials. Finally, a summary of the 91 
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main results is presented in Sec. 5.  92 

 93 

2. Models and Methods 94 

We propose a design constituted by a honeycomb lattice of equilateral triangular 95 

section pillars made of concrete on the surface of soil. We are interested by ground 96 

surface waves with frequency range under 20.0 Hz, so we chose a lattice constant of a 97 

= 2.0 m and the parameters of the pair of identical pillars in the unit cell are fixed as 98 

edge length d = 0.8 m and height h = 2.0 m. The design and the unit cell for the 3D 99 

simulation model are shown in FIG. 1(a). To prevent the physical surface modes being 100 

perturbed by the unphysical Lamb type waves of the thick substrate plate in the 101 

simulation model, the depth of soil in the unit cell is chosen to be H = 30.0 m and a 102 

numerical low-reflecting boundary is applied at the bottom surface to avoid wave 103 

reflection. The soil (Young’s modulus Es = 10 MPa, Possion’s ratio νs = 0.3, mass 104 

density ρs = 1800 kg/m3) and concrete pillars (Young’s modulus Ec = 40 GPa, Possion’s 105 

ratio νc = 0.25, mass density ρc = 2500 kg/m3) are assumed to be homogeneous, isotropic 106 

and linearly elastic materials[1]. Therefore, the equation of motions in solids can be 107 

written with harmonic time dependence assumption as 108 

ω2ρui = − σij, j                          (1) 109 

 σij = cijkluk, l                           (2) 110 

where ω  is the angular frequency, ui  the displacement component, σij  the stress 111 

tensor and cijkl the stiffness tensors that can be expressed as a function of the Young’s 112 

modulus E and Poisson ratio v. To obtain the dispersion relations, Bloch periodic 113 

conditions are applied on the four vertical surfaces of the unit cells based on Bloch 114 

theorem[46] as  115 

 u(r + a) = u(r)eik∙a (3) 116 

where a is the lattice vector, r the position vector, and k = [ kx , ky ] the wave vector. In 117 

addition, stress-free conditions are applied on the other top boundaries of the simulation 118 

model. We sweep the wave vector along the high-symmetry axes Γ − K − M − Γ in the 119 
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first irreducible Brillouin zone of the honeycomb lattice (see FIG. 1(c)) and search the 120 

eigenvalues to find dispersion relations with the help of the finite element method. It is 121 

worth mentioning that this work is dealing with the interaction between surface waves 122 

and pillars, thereby the vibrating modes are represented only under the sound cone of 123 

the substrate which means below the bulk shear wave[4, 47] (shown as the solid black 124 

lines in FIGs. 1(c)-(d)) where the propagation is prohibited towards the bulk. When the 125 

two pillars in the unit cell are identical as in FIG. 1(a), a Dirac cone based on surface 126 

waves dispersion curves emerges at 11.02 Hz at the K point in FIG. 1(c). The frequency 127 

of the Dirac cone is dependent on the pillar’s resonant frequency[48]. Thus, the working 128 

frequency of the Dirac cone can be further tuned by designing the proper pillar’s 129 

geometry. 130 

Then, we decrease the edge length of one equilateral triangular pillar in the unit 131 

cell to d1 = 0.7 m while we increase that of the other to d2 = 1.0 m, and keep unchanged 132 

the distance between the two triangle centroids (see FIG. 1(b)). Thereby, the inversion 133 

symmetry of the unit cell is broken while the C3v symmetry is maintained, which further 134 

induces a non-trivial bandgap in the range [10.22, 11.44] Hz. The degeneracy of the 135 

Dirac point is lifted and the limits of the bandgap at the K point occur at the points, D1 136 

(11.61 Hz) and D2 (10.22 Hz) with the inverted symmetry eigenmodes as shown in 137 

FIGs. 1(e)-(f). The elastic energy flux travels anticlockwise and clockwise around the 138 

pillars for D1 and D2 valleys, respectively. If d1 = 1.0 m and d2 = 0.7 m, the chirality of 139 

the valley states for the lower and higher bands associated to the opened bandgap 140 

becomes inverted. Therefore, the valley Chern number associated with this lower and 141 

upper bands have opposite signs [16, 41], which further supports an elastic analog of 142 

quantum valley Hall effect. As a consequence, the opened bandgap becomes non-trivial. 143 

The wavelength of referenced Rayleigh wave propagating along the free surface 144 

without pillars at the center frequency of the non-trivial bandgap is about 4 m, also 145 

demonstrating a subwavelength property of the pillared metamaterial. The induced non-146 

trivial bandgap is able to provide robust surface wave attenuation.  147 
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 148 

FIG. 1 (a) A honeycomb lattice with two identical triangular shape pillars in the unit cell. The soil 149 

below the pillars is represented by a thick (gray) substrate. (b) The honeycomb lattice with two 150 

different pillars in the unit cell breaking the inversion symmetry while preserving the C3v symmetry. 151 

(c) Dispersion curves of the surface waves (red lines) for the structure shown in (a) displaying a 152 

Dirac point (D point, 11.02 Hz). The blue shaded area represents the sound cone. The light red 153 

hexagon and the crimson right triangle indicate the first Brillouin zone and the first irreducible 154 

Brillouin zone, respectively. (d) Dispersion curves of the surface waves (red lines) for the structure 155 

shown in (b) showing the lifting of the Dirac point degeneracy towards the points D1 (11.61 Hz) 156 

and D2 (10.22 Hz). The light blue and gray areas represent the propagating bands of the substrate 157 

and the bandgap within [10.22, 11.44] Hz, respectively. (e) and (f) The eigenmodes (real part of the 158 

out-of-plane displacement uz) of D1 and D2. In the color bar, the red and blue colors refer to the 159 

positive and negative values of the real part of uz, respectively. Elastic energy flux is shown as green 160 

arrows. 161 

 162 

We turn now our attention to the design of a topological interface supporting an 163 

edge mode. Based on the unit cell shown in FIG. 1(b), we consider two types of 164 

topological interfaces by the juxtaposition of two crystals connected either by two large 165 
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pillars (called L-L) or two small pillars (called S-S). We design two strips consisting of 166 

20-unit cells with either an L-L or an S-S interface at the middle (FIGs. 2(c)-(d), 167 

respectively). Periodic and stress-free boundary conditions are respectively applied to 168 

the wider horizontal surfaces and to the narrower vertical surfaces. The detailed 169 

information can be found in Appendix A. We sweep the wave vector around kx = π/a 170 

along the x direction, and calculate the dispersion diagram shown in FIGs. 2(a)-(b) for 171 

the L-L and the S-S types of interfaces, respectively. To detect the presence of an edge 172 

mode, localized in the vicinity of each interface, we propose a localization ratio β 173 

defined as the ratio of the integrals of the kinetic energy density (
2 2 2

( ) / 2x y zu u u = + + ) 174 

over the two pillars at the interface and over all the pillars. The localization ratio is 175 

expressed as 176 

       𝛽 =
∭ 𝜅interface d𝑉

∭ 𝜅all d𝑉
                           (4) 177 

A high value of β indicates that the eigenmode is mostly concentrated at the interface, 178 

revealing an interface mode. In FIGs. 2(a)-(b), the dispersion diagrams display a bright 179 

edge mode around 10.86 Hz for the L-L type interface and within the interval [10.34, 180 

10.45] Hz for the S-S type interface. The other branches appearing in the bandgap of 181 

surface waves result from the band folding of the bulk modes belonging to the soil. We 182 

also present the dominant out-of-plane displacement fields of the eigenmodes at the 183 

points A and B in FIGs. 2(c)-(d). One can clearly recognize edge modes localized 184 

around the interfaces, with a higher confinement for mode B as compared to mode A. 185 

The two pillars at the interface show a dipolar and a monopolar motion in FIGs. 2(c)-186 

(d), respectively. Since the edge modes based on surface acoustic waves are constructed 187 

within the non-trivial bandgap (shaded grey zone), they are expected to exhibit 188 

topological protected properties such as showing high robustness against certain 189 

perturbations and being free of backscattering.  190 

 191 
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 192 

FIG. 2 Two strips are constructed by placing two topologically distinct lattices adjacently, each of 193 

them containing 10 unit cells and the interface at the middle being defined by two neighboring large 194 

(L-L) or small (S-S) pillars. (a) and (b) Dispersion diagrams for the L-L type and S-S type interfaces. 195 

The color represents the value of localization ratio β. The grey zones in (a) and (b) stand for the 196 

non-trivial bandgaps. (c) and (d) the out-of-plane displacement of the edge modes A and B in (a) 197 

and (b). The unit cells besides the interface are marked out by the green boxes. 198 

 199 
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 200 

FIG. 3 Out-of-plane displacement fields with the out-of-plane point force excitation for the zig-zag 201 

waveguide (black curves) for (a) the L-L type and (b) the S-S type at 10.75 Hz and 10.40 Hz, 202 

respectively. 1 and 2 refer to the two distinct topological phases. In (c) and (d), the diagrams of 203 

the kinetic energy density at the dots 1 and 2 along the soil depth are plotted for the two types. 204 

Panels (e) to (h) show the same information as (a)-(d), respectively, but for in-plane force excitation 205 

of the point source. 206 

 207 

To demonstrate the robustness of the topological edge modes, we design a zigzag 208 
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interface separating the two bulk metamaterials 1 and 2 with the L-L and S-S 209 

interfaces respectively. Since typical surface waves such as Rayleigh and Love waves 210 

have different polarizations, we study the surface wave-based topological edge modes 211 

by using both out-of-plane and in-plane force excitations.  212 

A point source represented by an out-of-plane force (marked as the green star in 213 

FIGs. 3(a)-(b)) is excited at the entrance of the zig-zag interface. Low-reflecting 214 

boundaries are applied to the surrounding boundaries to eliminate the reflection effects. 215 

The edge modes are excited at 10.75 Hz and 10.40 Hz and their propagation presented 216 

for the L-L (FIG. 3(a)) and S-S (FIG. 3(b)) types interfaces, respectively. In both 217 

structures, the wave entering the waveguide travels towards the end and passes the 218 

sharp bending corners without a significant backscattering. To further demonstrate that 219 

the edge mode is essentially based on surface acoustic waves, we plot the kinetic energy 220 

density at the green dots 1 and 2 as a function of the depth in the soil in FIGs. 3(c)-(d) 221 

for the two structures. The mode exhibits a high confinement near the surface, with 222 

most of the energy localized within one wavelength depth from the ground surface. This 223 

behavior supports the conclusion that the designed topological edge states are based on 224 

nonleaky surface waves that do not radiate into the bulk. In addition, the energy density 225 

at the dot 2 near the exit is a bit smaller than that at the dot 1 near the entrance, remaining 226 

at relatively the same level, which also supports high transmission and backscattering 227 

immunity of the topological edge mode.   228 

We now perform similar calculations for an excitation by an in-plane point source 229 

force with the same amplitude as above. The results are presented in FIGs. 3(e)-(h). The 230 

generated surface wave displays a higher weight of the in-plane displacement over total 231 

displacement than the case of the out-of-plane force excitation. One can see in FIGs. 232 

3(e)-(f) similar high transmission and backscattering immunity of the topological edge 233 

state as above. However, the kinetic energy density (FIGs. 3(g)-(h)) is now smaller than 234 

before. 235 

From the dispersion diagram shown in FIG. 2, one can note that the edge mode of 236 

the S-S type interface covers a certain frequency range, which makes it a good candidate 237 
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for energy harvesting. In the following section, we focus on the edge mode of the S-S 238 

type excited by the out-of-plane force source for robustness analysis and energy 239 

harvesting. 240 

3. Robustness of the topological edge mode 241 

 242 
FIG. 4 The robustness of the edge state at the S-S type interface in presence of defects and disorder 243 

in height of the pillars at 10.40 Hz. The upper panels show the out-of-plane displacement along the 244 

waveguide for a particular choice of disorder whereas the lower panels give the attenuation in the 245 

transmission for various degrees of disorder. (a) & (d) The effect of removing m strips on each side 246 

of the interface in the middle part of the waveguide. The blue strip supercell constituting the 247 

interface area contains 6 unit cells. The out-of-plane displacement is detected at the black arcs at the 248 

exit of the zigzag path. (b) & (e) The effect of introducing n defects in the unit cells contained in the 249 

blue area close to the interface. (c) & (f) The effect of height disorder by a factor η for the 24 units 250 

in the blue area. The light blue domain in (f) demonstrates the standard deviation of the transmission 251 

for different realizations of the disorder at each η. In the lower panels, the calculations are performed 252 

for discrete values of the abscissa and the continuous lines are a guide for the eyes. 253 

 254 

We investigate the robustness of the edge state to propagate along the waveguide, 255 

by calculating the loss in the transmission coefficient in presence of a perturbation. 256 

Therefore, we define the ratio Δ1/Δ2, where Δ1 and Δ2 represent the integrated 257 

displacements along the green arcs at the exit of the waveguide with and without 258 

perturbations, respectively. We consider three kinds of perturbations to quantitatively 259 

study the robustness of the topological edge state.  260 

The first perturbation consists of removing m strips on each side of the interface 261 

in the middle part of the waveguide as shown in FIG. 4(a). The area delimited by two 262 

blue strips on each side of the waveguide is constituted by 6 unit cells. When one strip 263 
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of defect is introduced (m = 1), FIG. 4(d) shows that the transmission decreases 264 

suddenly to about 75%; then, by increasing further m, it slightly oscillates around the 265 

level (70% -75%), exhibiting a good robustness to stronger disorder. The displacement 266 

field for m = 7 is calculated and presented in FIG. 4(a), showing a preserved zigzag 267 

edge state. Such high robustness is mainly attributed to the strong localization of the 268 

topological edge mode in the vicinity of the interface.  269 

The second perturbation (FIGs. 4(b) and (e)) consists of randomly removing n 270 

units at the left side of the middle part of the zigzag waveguide. From FIG. 4(e) one 271 

can observe that when the defect number n increases from 0 to 4, the transmission 272 

decreases by a large amount to about 20% of the unperturbed situation, due to the 273 

appearance of backscattering effect; then the level of transmission keeps at about 20% 274 

when the defect number continues to increase until 7. The transmission field at n = 7 is 275 

shown in FIG. 4(b) which indicates that although the major part of the wave is reflected, 276 

there still remain weak monopolar edge state after the 7-unit-defect along the last 277 

horizontal part of the zigzag path, showing a good robustness in edge mode shape.  278 

The third perturbation is dealing with the effect of disorder in the height of a set 279 

of 24 pillars located in the blue shaded region of FIG. 4(c). These heights are randomly 280 

distributed within the interval [h − Δh, h + Δh], thus defining a disorder degree η = Δh/h. 281 

For a given disorder degree, the average transmission coefficient is evaluated over 30 282 

random samplings and the results are shown as the solid line in FIG. 4(f). We also 283 

evaluate the standard deviation of transmissions and plot it as the shaded blue domain 284 

around the solid line in FIG. 4(f). The stable level of the standard deviation supports 285 

that the random sampling number of 30 should be sufficient. Generally, when the 286 

disorder degree η increases from 0 to 60%, the average transmission decreases quasi-287 

linearly, exhibiting that the backscattering effect also becomes stronger. We show the 288 

transmission field at η = 60% in FIG. 4(c). Despite the backscattering effect, the relative 289 

weak propagating wave along the last horizontal part of the zigzag path still conserves 290 

the monopolar edge state property, showing a strong robustness of the topological edge 291 

mode.  292 
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 293 

4. Topological edge mode for energy harvesting 294 

The robust and compact topological edge mode has a great potential for energy 295 

harvesting from a practical point of view. We adopt piezoelectric PZT-5H patches and 296 

attach them to the top surface of soil. With the electro-mechanical coupling effect, the 297 

vibrating energy of soil can be transformed to electric power. We choose five identical 298 

square PZT patches with sides l = 0.1 m and thicknesses t = 0.001 m, and arrange them 299 

alternately as shown by the five yellow squares in FIG. 5(b). A simple circuit powered 300 

by each PZT patch with a resistance R = 1000 Ω is devised, whose average output power 301 

Pi is calculated by 302 

Pi = 
Vi

√2

Ii

√2
 = 

RIi
2

2
           (5) 303 

where Vi is the output voltage, Ii is the loop current to be measured. The detailed 304 

information can be found in Appendix B. We sum the total power 

5

1

i

i

P P
=

=   of all the 305 

six PZT patches, and present the transmission spectra together with the color 306 

information of localization ratio β (Eq. (4)) in FIG. 5(a). From FIG. 5(a), the topological 307 

edge mode with bright color is successfully captured within the frequency range [10.33, 308 

10.97] Hz and the peak is measured at 10.40 Hz which coincides to the design. The 309 

electric power at the peak is about two orders of magnitude higher than that within the 310 

frequency ra [9.50, 10.00] Hz outside the non-trivial bandgap. Besides, it is more than 311 

one order of magnitude higher than that of a bare surface, showing a big advantage of 312 

the energy harvesting by topological edge mode. We also present the displacement field 313 

at 10.40 Hz in FIG. 5(b), almost identical to the field without patches (see FIG. 3(b)). 314 

In fact, all the vibrating pillars at the interface are available for the energy conversion 315 

in practice. Given that the topological edge mode is highly robust to the studied three 316 

kinds of perturbations, the corresponding induced energy harvesting also has an 317 

efficient robustness.  318 

    At the macro scale, the basic functionality of the structure is to robustly isolate 319 

surface waves with the non-trivial low-frequency bandgap. Energy harvesting is an 320 
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additional functionality by designing the proper interface path inside the metamaterial. 321 

With maximum vibrating displacements at the interface of the order of 0.5mm, and the 322 

small size of the designed PZT patch in FIG. 5, an electric power of about 10-5 W is 323 

achieved. However, if the surface vibrations increase in practice, the PZT patch would 324 

be able to generate much higher electric power, making the metamaterial as a potential 325 

ground electric generator.  326 

 327 

FIG. 5 (a) Piezoelectric energy harvesting for the edge modes with (b) the displacement fields at 328 

10.40 Hz. The red dashed curve in (a) represents the electric power measured without pillars. The 5 329 
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PZT patches are displayed as yellow squares in the zoom-in of (b). The color map in (a) defines the 330 

localization ratio β defined in Eq. (4). 331 

 332 

5. Conclusion 333 

A topological surface wave metamaterial composed of triangular section concrete 334 

pillars arranged in a honeycomb lattice on the soil is proposed for robust vibration 335 

attenuation and energy harvesting at low frequency ranges, below 20 Hz. By breaking 336 

the inversion symmetry of the unit cell while preserving C3v symmetry, the degeneracy 337 

of the Dirac cone at K point is lifted to open a non-trivial bandgap. By combining two 338 

metamaterials with different topological phases, two types of topological edge modes 339 

(L-L and S-S types) with backscattering suppression and compact properties can be 340 

designed around 10 Hz. We further quantitatively analyzed the robustness of the S-S 341 

type topological edge mode against three kinds of perturbations, namely, (i) stripe 342 

defects in the vicinity of the interface towards the bulk of the crystal, (ii) unit defects at 343 

the interface and (iii) disorders in the height of pillars at the interface. For perturbation 344 

(i), the transmission of the topological edge mode keeps stable at relative high level no 345 

matter how large is the defect in the bulk media, showing a highly compact property of 346 

the topological edge mode. For perturbation (ii), the transmission first decreases very 347 

fast before becoming stable when the unit-defect number reaches 4. For perturbation 348 

(iii), the transmission slowly decreases in quasi-linear shape. For the latter two cases, 349 

the topological edge modes are still preserved at high considered perturbation degree, 350 

exhibiting a good robustness. Finally, piezoelectric patches are designed and attached 351 

on top of the pillars at the interface. The robust and compact topological edge mode 352 

makes it possible for energy harvesting within the frequency range [10.33, 10.97] Hz 353 

of the topological edge mode. The entire size of the pillared metamaterial can be further 354 

minimized according to the potential practical demands. For instance, a thickness such 355 

as 4 or 5 rows of units is sufficient to effectively attenuate surface waves. The unit cells’ 356 

geometric parameters can also be optimized for different working frequency range. The 357 

employed concrete and PZT are commercial materials with low price, making the 358 

metamaterial realizable in practical engineering. The proposed new surface wave 359 
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metamaterial has great potential in robust surface vibration attenuation with the non-360 

trivial low frequency bandgap and robust energy harvesting with the topological edge 361 

mode.  362 
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 376 

Appendix A. The strip’s dispersion calculation 377 

The strip’s dispersion calculation is modeled via the finite element method. In FIG. 378 

A1, a stripe consisting of lattices red and blue with an interface at the center is deposited 379 

on top of the substrate. The valley Chern number of the two bands associated with the 380 

non-trivial bandgap are opposite for the red and blue lattice bulk media. Low reflection 381 

boundary is applied to the bottom surface. Periodic conditions are applied to the two-382 

blue side-faces of the substrate along x direction. Stress free conditions are applied to 383 

the two-grey side-faces of the substrate along y direction. The built model contains 384 

about 350 thousand domain element meshes with about 2.9 million degrees of freedom. 385 
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 386 

FIG. A1 dispersion model of a stripe waveguide. 387 

 388 

Appendix B. Simulating information for the energy harvesting model 389 

In this section, we detail the simulation process of the transmission with 390 

piezoelectric energy harvesting along the zig-zag interface in the COMSOL 391 

Multiphysics®. It is calculated by coupling of solid mechanics, electrostatics and 392 

electrical circuit. The specific process is (I) Geometry model building; (Ⅱ) Material and 393 

mechanical boundary conditions settings; (Ⅲ) Piezoelectric and electrical circuit 394 

settings; (Ⅳ) Meshing; (Ⅴ) Multiphysics simulation at given frequencies.  395 

To enhance the calculation efficiency, the top surface of this model is discretized 396 

by free triangular elements, and the entire geometry is swept with appropriate element 397 

size. The meshed model contains 1330471 domain elements and 7879642 degrees of 398 

freedom, which is sufficient to ensure the convergence of the results. For calculation 399 

stability, we use the CPU of Intel® Xeon® Gold 6154 Processor with the max turbo 400 

frequency of 3.70 GHz and the memory of 512 GB. The simulation costs about one and 401 

a half hours for each frequency.  402 

 403 
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