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Belfort, France
pierre.romet@utbm.fr

2nd Romain Tabusse
FEMTO-ST Institute

Univ. Bourgogne Franche-Comté, CNRS
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Abstract—Freight transportation is evolving with the devel-
opment of electric vehicle to carry out goods delivery rounds.
In addition to the technological developments that make electric
vehicles more and more suitable for long-distance traffic, the
legislative framework also imposes these developments, such
as the announced end of thermal vehicles in France in 2040.
However, it is not possible to use an electric vehicle in the same
way as an internal combustion vehicle. This technology impose
to take into account the aging of the battery in order to define
its use.

Index Terms—EVRP, ACO, autonomous vehicle, lithium-ion
battery, SOE, SOH, DOD.

I. INTRODUCTION

For several years, a significant effort has been made to
optimize the transport of goods in urban and peri-urban area.
This improvement is mainly aimed at the reduction of the
secondary effects such as road system congestion, air pollution
and sound pollution. Thus, recent improvements to rationalize
freight transport are mainly legislative such as the limitation
of the size and weight of vehicles, the arrangement of vehicle
schedules, urban distribution centers and last mile delivery.
Furthermore, soft distribution circuits have emerged and new
technologies as the electric car and autonomous vehicles are
currently studied to resolve last mile delivery. In this context,
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Bourgogne Franche-Comté. Special thanks to the Régie des Transports du
Territoire de Belfort for sharing their bus fleet data.

vehicle routing problems (VRP) must be adapted to meet the
specific requirements of these new technologies.

For this purpose, [12] presents a comprehensive overview
about Electric Vehicle Routing Problem (EVRP). It begins
with an introduction of EVRP issues linked to different tech-
nologies of battery. Then, the paper presents a non-exhaustive
research work about EVRP possible variants, such as En-
ergy Shortest Path Problem [9], Electric Traveling Salesman
Problem, Heterogeneous or Mixed Vehicle Fleet [1], Hybrid
Vehicles [12], Partial Recharging, Charging technologies and
strategies [1], Battery Swapping, Two-Echelon Routing Prob-
lem, Charging Schedule and Dynamic Traffic Conditions.

However, the electric vehicle, due to the chemical nature
of its battery, cannot be considered and used in the same
way as a thermal one. Indeed, its recharge time is longer.
Moreover, its performance will decrease over time in much
larger proportions, especially its autonomy and power. To the
authors’ knowledge, this last point has never been considered
in the EVRP.

In this paper, the development of a new freight transport
system in urban area is proposed. It is based on autonomous
electric vehicles that can move on city public transport system
(dedicated bus lane). It will allow to transport goods from
urban distribution center to all delivery points (bus stations)
located in urban area [7]. To address the issue of battery
aging, the influence of battery depth-of-discharge (DOD) is
investigated. For this study, real data from a bus company and
a battery aging database are used.



The paper is structured as follow. Section II introduces
all concepts and methods used. The section III describes
experimental procedure. Then, Section IV presents the experi-
mental results and a discussion about them. Finally, Section V
summarizes the findings and states the main conclusions.

II. MATERIALS AND METHODS

This study investigates the last mile delivery of parcels
within the city of Belfort using autonomous electric vehicles.
For this, the city bus network is used as a support. The vehicle
considered is a Tesla Model S in autonomous mode.

The objective of the study is to optimize the delivery of
parcels by defining an adapted delivery strategy and an ade-
quate sizing of the vehicle fleet. For this, the energy parameter
will be particularly optimized. Indeed, for an autonomous
electric vehicle, the main cost is related to the purchase of
the vehicle and its energy consumption. It is also linked to
the aging of the battery which will define the life span and
therefore the replacement (or repurchase) of the battery.

Therefore, this work will complement the previous work on
the EVRP, by taking into account the aging of the battery. For
this purpose, an aging model based on the DOD, defining the
vehicle’s charge/charge strategies, will be used. It will allow to
dimension the battery and then to calculate the financial cost
of taking into account the aging. In addition, after the sizing
of one vehicle, it will be possible to carry out the sizing of an
entire fleet.

In the following, the main concepts for better understanding,
algorithms and models used are presented. Then, the con-
ducted experiments are described in details.

A. EVRP

This paper aims to optimize a last mile delivery logistics
plan in city center, using autonomous electric vehicles. In order
to determine a set of least energy cost delivery routes from an
urban distribution centre (UDC) to delivery points, a Vehicle
Routing Problem (VRP) algorithm adapted to electric vehicles
(EVRP) is implemented. Our EVRP algorithm is based on a
graph, where each edge contains the distance, the time and the
energy information needed to travel through it.

The problem is solved under the following constraints:
• Each customer is visited only once by a single vehicle;
• Each vehicle must start and end its route at the urban

depot;
• Total volume of packages, transport of the vehicle cannot

exceed its volume capacity;
• Total energy consumed cannot exceed the energy capacity

of the vehicle.

B. ACO

As the EVRP II-A is based on a graph, it was decided to
implement an ant colony algorithm to exploit it and determine
a tour that would minimize total energy consumption. For this,
the ACO model implemented is the same as in [10], to which
a termination criterion has been added. Thus, thanks to the
maximum number of iterations calculated by the termination

criterion, the optimal solution is found. The number of itera-
tions to be performed is given by the equation 1.

θ =

n∑
v=1

ωi

k
(1)

With v the number of vertices in the graph, ωi the number
of edges starting to the current vertex and connecting it to
another vertex and k the number of edges in the graph.

C. Graph Building

The graph is a replica of the public transportation system of
the city of Belfort (France). Each node is a bus stop and edges
are bus lanes on the road system of the city. Moreover, each
edge is composed of calculating parameters: distance, time,
packages volume to be dropped off and energy consumed to
move between two bus stops.

These parameters were calculated thanks to data of the
Régie des Transports du Territoire de Belfort (RTTB), concern-
ing the traffic of buses on the city’s public transport system.
Over ten past years data, only one day was used in this work
in a first approach. Their data are files storing at thirty-second
intervals, successive GPS points forming the route taken by
the bus during the day (KMZ file).

To calculate the parameters of each edge, all GPS points
forming the path between two bus stops were extracted. Then
time, distance and energy were calculated.

The distance of each edge is calculated using the WGS84
ellipsoid formula, based on the set of GPS points between two
bus stops. In addition, the energy required to travel the edge
is calculated with the energy model, described in section II-D.

Fig. 1. Public transportation system of Belfort city

D. Energy Model

The energy of each edge of the graph is determined using
the fundamental principle of dynamics applied to the vehicle



illustrated in figure 2. Knowing the characteristics of the vehi-
cle and its speed profile on the edge covered, the mechanical
power at the wheels Pwheels necessary for its movement at
any time can be determined by equation 2.

(2)Pwheels = vveh(Mv
dvveh
dt

+
1

2
ρairv

2
vehSCx

+Mvgsin(α) +MvgCrcos(α))

where:
vveh is the vehicle’s speed in m.s−1,
α is the road grade in rad,
g is the acceleration of gravity in m.s−2,
ρair is the air density at sea level at 15°C,
Mv is the vehicle’s mass in kg,
Cx is the drag coefficient of the vehicle,
S is the frontal area of the vehicle in m2,
Cr is the rolling resistance coefficient.

Fig. 2. Balance of forces applied to the vehicle. The inertia of the rotating
masses is not taken into account.

The vehicle’s speed vveh is determined using the RTTB’s
GPS database by deriving the position of the bus as a function
of time. Given the low sampling rate of the GPS data used (one
sample every 30 sec), only the average speed of the vehicle
is considered over an edge (zero acceleration and zero energy
recovery).

Similarly, the slope calculation is done over an edge from
the difference in elevation between the first point of the edge
and the last one by equation 3.

αedge = arctan(
∆Elevation

Distance
) (3)

Thus the equation 2 simplifies and gives the average power
required over an edge. After multiplying by the travel time ∆t,
we find the energy required to move the vehicle on the edge.
Finally, considering a constant powertrain (PWT) efficiency
ηPWT , the energy supplied by the vehicle’s battery to cover
the edge is given by equation 4.

(4)Eedge = ηPWT ∗ Pwheels ∗ ∆t

To calculate the corresponding energy for each edge, equa-
tion 4 is used with the Tesla Model S 90D (2017) vehicle’s
parameters shown in table I [6].

TABLE I
ENERGY MODEL PARAMETERS

Parameters Numeric value
ρair 1.225 kg.m−3

g 9.81 m.s−2

Mv 2199 kg
SCx 0.56
Cr 0.012

ηPWT 0.90

E. Battery State of Health & Aging Model

The aging of a battery is commonly defined as an irre-
versible loss of its performance. The most commonly used
indicator is the battery capacity expressed in Ah. The state
of health (SOH) of a battery is defined as the ratio of its
remaining capacity to its initial capacity measured when new
(equation 5). It is most often expressed as a percentage. A
new battery corresponds to an SOH of 100%, while a battery
at end-of-life usually corresponds to an SOH of about 80% in
electric cars [4].

SOH =
currentCapacity

initialCapacity
(5)

The SOH of a battery can be determined by direct measure-
ment or by modeling. Concerning the last, a large number of
approaches exist [13]. Here an empirical data based approach
is considered.

For this purpose, battery aging data from an open access
database have been used [8]. The cells studied here are the
Panasonic B in 18650 format. They are used in the Tesla
Model S vehicle presented previously. Considering a linear
battery aging from 100% SOH to 80%, a linear model has
been established from the aging database. Thus, the life cycle
of the cell considered is given for three different DOD in
table II: 20%, 60% and 100%. The cycle life is given in
number of cycles performed at a given DOD until reaching a
SOH of 80%. Therefore, the SOH of the battery for each DOD
considered is proportional to the energy that passed through
it.

TABLE II
BATTERY CYCLE LIFE AS A FUNCTION OF DOD. END-OF-LIFE IS REACH

BY 80% SOH.

DOD(%) 100 60 20
Cycle life 363 1220 6595

F. Delivery List Generator

In order to be consistent with a real last mile delivery
application, it is necessary to determine the number of parcels
dropped off per delivery point, their size and volume.

First of all, [11], [5], [2] make it possible to identify that a
set of 1 to 6 parcels is deposited on each delivery point of the
tour, according to their weight and their volumes. In addition,
the company Amazon provides a comprehensive list of all the
packages it processes by weight and volume III.



TABLE III
PACKAGE TYPE

Package Type Volume (m3)
Standard Envelope

small format 0.0003
standard format 0.0018

large format 0.0037
Standard Parcel

0.0397
Oversized Parcel

small parcel 0.1290
standard parcel 0.4320

large parcel 2

Based on the number of packages per delivery point [11],
[5], [2] and Amazon’s package format III. The generated list of
packages to be delivered is defined as being arbitrarily made
up of 50% standard letter, 35% standard package and 15%
oversized package.

III. RESULTS GENERATION

A. From EVRP to EAHVRP

As introduced in the section II-A, an EVRP coupled with
the use of an autonomous vehicle II is used on our graph II-C
to optimise the tour to deliver all the packages.

The optimization phase is performed by the ant colony
algorithm II-B, which at each iteration will weight the param-
eters distance, time, volume, energy of each edge constituting
the tour generated by an ant. Each parameter is weighted
differently. The total energy needed to move on an edge is
weighted by a factor of 0.5. The total volume of parcels to be
delivered to the next delivery point is weighted by a factor of
0.3. The time and distance to travel an edge is weighted by a
factor of 0.1.

Working on last mile delivery, three lists of goods were
generated according to the model defined in II-F, in order to
study three typical problem sizes, as illustrated by [11].

The three graphs are composed of 30, 60 and 80 delivery
points randomly and homogeneously distributed on the graph.

In addition, to meet the criteria of a last mile application,
the Urban Distribution Centre (UDC) was placed in the centre
of the city. More precisely at the railway station, this allows
the UDC to be supplied by rail so as not to impact the city’s
road system.

Thus, after exploiting the three graphs with our AEVRP
algorithm, a tour minimizing the energy needed to visit each
of the delivery points was generated. Moreover, as introduced
in II-E, optimising the energy needed for a tour minimizes the
impact on battery aging. Finally, the phenomenon of aging of
the vehicle battery is studied through the influence of different
DOD strategies III-C.

Together these elements allow us to define our new vari-
ant of the EVRP, the Electric Autonomous Heatlth Vehicle
Routing Problem (EAHVRP).

B. DOD strategy

Nowadays, different technologies for charging batteries are
available. A slow charge made with ¡7kW chargers allows to
recharge the battery between 6 and 8 hours. A fast charge,
carried out in 1-2 hours, uses chargers with a power ranging
from 11 to 43 kW. Finally, a super charger with a power of
50 to 250 kW can recharge Tesla’s battery in a maximum of
45 minutes [1].

However, it must be taken into account that each type of
recharge (slow, fast, accelerated) has a different impact on the
aging of the battery [3]. The capacity of a battery degrades at
80% of its initial value more quickly with a fast or accelerated
recharge, so these contribute greatly to the acceleration of the
aging processus.

Moreover, the section III-C explains the approach to sizing a
battery to maximize its life. A vehicle is therefore designed to
make the best use of a given capacity range, depending on the
DOD strategy, to complete its tour, which varies between 5am
and 18pm. Once the tour is over, the vehicle has the whole
night to recharge, i.e. between 18 p.m. and 5 p.m., allowing
the use of a slow charge. In this context, an electric vehicle
will perform one charge/discharge cycle per day.

Furthermore, according to [8], three different DOD strategy
has been defined to study the impact of the battery aging on the
battery. The state of health of the battery defining the number
of cycle and the time of use of the vehicle, the aging process
impact as well as the number of packages deliver and the
financial impact of the vehicle over its lifetime. The following
DOD strategies are consider: 100%DOD (from 100% to 0%
SOC), 60%DOD (from 80% to 20% SOC), 20%DOD (from
60% to 40% SOC).

Having defined the DOD strategies to be used in our study,
it remains to size the battery capacity according to them.

C. Battery Energy Capacity Sizing

Being able to determine the energy required to complete
a tour, it remains to calculate the battery energy capacity
Ebattery according to the DOD strategy used. For this, the
equation 6 is use.

(6)Ebattery = Eneeded/DOD(%)/20%

where the 20% coefficient corresponds to the loss of capac-
ity of the battery at the end of its life.

IV. RESULTS

A. EAHVRP Results and Solution Set

The presentation of the research results is organised as
follows. First, the solutions generated by the EAHVRP algo-
rithm will be introduced (III-A), and then an analysis of these
solutions combined with the different DOD strategies studied
will be provided.

For each size of graph presented in the part II-C, the
EAHVRP algorithm generated a set of possible solutions to
achieve the delivery of goods IV.

Before continuing, it is necessary to consider a counter-
intuitive fact concerning the number of rounds. Thanks to the



first line of the table IV of the set of solutions of the 80
points graph, we observe that a low number of rounds is not
necessarily linked to a low energy consumption. Thus, the
solution having consumed the least energy will have made
one more cycle than the others to carry out its tour. The same
procedure is followed for the other two data sets in order to
select the best solution. These solutions can be found in the
table V.

TABLE IV
RESULTS FOR DIFFERENT GRAPH SIZE

Distance (km) Energy (kWh) Time (h) Volume (m3) Turn
Graph 30 points

86.6 13575 4.55 1.95 2
89.03 13798 4.70 1.97 2
89.16 13871 4.73 1.96 2
89.03 13936 4.71 1.19 2

Graph 60 points
157.07 24401 9.38 2.32 5
160.71 24460 9.30 2.39 5
162.86 24567 9.79 2.23 5
164.18 24920 9.41 2.20 5

Graph 80 points
218.29 34948 13.32 2.32 7
223.19 35525 13.53 2.39 6
224.54 36423 12.97 2.23 6
219.86 36452 13.02 2.20 6

TABLE V
DATASET OF SOLUTION MINIMIZING TOTAL ENERGY CONSUMED

Graph
size

Turn Energy
(kWh)

Volume
(m3)

Distance
(km)

Time
(h)

30 2 13575 1.95 86.6 4.55
60 5 24401 2.32 157.07 9.38
80 7 34948 2.32 218.29 13.32

B. Battery Sizing Results
From the set of solutions selected in Table V, it is possible

to calculate the minimum energy capacities required for an
electric vehicle to complete its tour, depending on the DOD
strategy used (II-E). Results are shown in Table VI.

TABLE VI
BATTERY ENERGY CAPACITY ACCORDING TO DOD STRATEGIES

Delivery points 100% DOD 60% DOD 20% DOD
30 16.96 kWh 28.28 kWh 84.84 kWh
60 30.50 kWh 50.84 kWh 152.50 kWh
80 49.93 kWh 83.23 kWh 249.67 kWh

Thus, it is possible to define 9 vehicles operating in 9
different scenarios on three graph sizes. They provide a set
that best characterizes the battery size of a vehicle. However,
four vehicles are set aside for our study. Those with an energy
capacity below 30 kWh and those with an energy capacity
above 100 kWh.

Indeed, the energy model II-D is designed to calculate the
energy necessary to move a 2199 kg vehicle with a battery

of 90 kWh. Knowing that decreasing the energy capacity of
the battery is equivalent to decreasing its mass, our model is
no longer valid for solutions with a consumption of less than
30 kWh and conversely for consumptions greater than 100
kWh. Considering an energy density of 250 Wh/kg, reducing
a battery by 1kW means reducing its mass by 4kg. As mass
is a significant part of the energy model equation, it is not
possible to exploit these results without distorting our study.

From this, it must be understood that the extremes are
amplified. Thus, for batteries with an energy capacity of less
than 30 kWh, their real energy capacities will be revised
downwards and for batteries with an energy capacity of more
than 100 kWh, their real energy capacities will be revised
upwards.

Finally, concerning the analysis of the impact of aging on
the battery, and thanks to the exploitation of open access
data [8], it was possible to calculate the number of cycles
achievable given the degradation factor, due to the DOD
strategy used VII.

TABLE VII
NUMBER OF CYCLE CHARGE/DISCHARGE DUE TO DOD STRATEGIES

BEFORE END-OF-LIFE

Delivery points 100% DOD 60% DOD 20% DOD
30 363 1220 6595
60 363 1220 6595
80 363 1220 6595

Thanks to the table VII, we can observe that, depending on
the DOD strategy chosen, it has a major impact on the life of
the battery. We can see that, for an equivalent energy capacity,
between a DOD strategy of 100% and a strategy of 20%, the
life span in terms of number of cycles (III-B) is multiplied
by 18. Thus, due to the DOD strategy implemented III-B, the
battery’s lifetime in number of years varies between 1 year
and over 18 years.

C. Financial Cost

Having been able to determine the impact of aging on the
life of a battery, we now seek to determine its impact on the
cost of purchase. Considering the price of 1 kWh battery of
100$, it is possible to put a price on each of the previously
calculated energy capacities VI.

TABLE VIII
FINANCIAL COST FOR BATTERY ENERGY CAPACITY WITH DIFFERENT

DOD STRATEGIES

Delivery points 100% DOD 60% DOD 20% DOD
30 1697 $ 2828 $ 8484 $
60 3050 $ 5084 $ 15251 $
80 4994 $ 8323 $ 24968 $

In the table VIII, it can be seen that the price of a battery
using a DOD strategy of 100% is 4994 $. For a battery using
a 20% DOD strategy, its price is 8484$. Furthermore, based
on the table VII, we can see that using a DOD strategy of
20% makes it possible to minimize the aging phenomenon of



a battery and thus multiply its life by 18. Thus, it appears
that implementing a DOD strategy of 20% certainly implies
multiplying the price of a battery by 1.7, but the lifetime of
the latter is multiplied by 18.

We are now interested in the impact of aging on the financial
cost per delivery point.

TABLE IX
FINANCIAL COST FOR A DELIVER POINT

Delivery points 100% DOD 60% DOD 20% DOD
30 0.156 $ 0.077 $ 0.043 $
60 0.140 $ 0.069 $ 0.039 $
80 0.172 $ 0.085 $ 0.047 $

According to the table IX, we can see that for a 100% DOD
strategy, a delivery point has a financial impact of 0.174$,
compared to 0.043$ for a 20% DOD strategy.

It can be concluded that, although the ”oversizing” linked
to the DOD strategy of 20% multiplies the price of the battery
by 1.7, the financial impact of a delivery point is divided by
4 (0.174/0.043=4).

D. Fleet sizing

Being able to size a vehicle, it is possible to continue this
work to size a fleet of electric vehicles. The table X provides
information on the energy cost of a graph according to the
number of delivery points.

TABLE X
AVERAGE ENERGY COST FOR A DELIVERY POINT

Delivery points Energy cost (kWh)
30 0.45
60 0.40
80 0.49

As can be seen in the table X, the graph size that requires
the least amount of energy to explore is 60 delivery points.

This result may seem counter-intuitive, but under-utilisation
of the transport system (30 delivery points) implies long
distances between each point, increasing consumption. Fur-
thermore, over-utilisation (80 delivery points) leads to more
detours between each point, thus increasing consumption.

This observation highlights the need for a detailed study
on the sizing of a fleet of autonomous electric vehicles with
heterogeneous energy capacity.

V. CONCLUSION

This article has studied the consideration of the problem of
the aging of the battery of an electric vehicle through its use
and its dimensioning.

Exploiting here a VRP problem with autonomous electric
vehicles, we propose an Autonomous Electric Health VRP
algorithm to address this problem. Having generated a set of
solutions for three sizes of graphs II-C, traversed by vehicles
exploiting different DOD strategies VI. We sought to define
the impact of aging on the battery.

Through the results IV, we can conclude that the aging
of lithium batteries is a key point for a good use of this
technology in the transport field. Indeed, we have been able
to show the importance of aging through its impact on the life
of the vehicle IV-B, as well as on the financial aspect IV-C.

Thus, it can be concluded that the choice of the DOD
strategy is the major element in the aging of a battery VII. In
addition, although the use of a low percentage DOD strategy
implies a larger battery size. Its lifetime is, however, multiplied
by 18. It can therefore be concluded that ”over-consumption”
of raw material is in this case preferable for sustainable
management of natural resources. It should also be noted that
since the battery degrades slowly, by minimizing the aging
factor, this favours the second life of the battery.

Finally, taking account of aging is not a financial problem,
as the factor for increasing battery life is more than 10 times
higher than the factor for increasing battery price.

Finally, by analysing the energy cost per delivery point
X, we notice that the energy required depends on the size
of the studied graph. This element opens the way to the
continuation of our work, concerning the dimensioning of a
fleet of autonomous electric vehicles of heterogeneous energy
capacity.

REFERENCES

[1] J. Faulin J. Armas S. Grasman A. A. Juan, C. A. Mendez. Electric
vehicles in logistics and transportation: A survey on emerging environ-
mental, strategic,and operational challenges. Energies, 9, 2016.

[2] D. Erhel A. D. Moreau. La messagerie, une approche systémique pour
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