
1

LoRCA: Lightweight Round Block and Stream
Cipher Algorithms for IoV Systems

Hassan N. Noura1, Ola Salman2, Raphaël Couturier1 and Ali Chehab2

1Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, CNRS, Belfort, France
2 Electrical and Computer Engineering, American University of Beirut (AUB), Beirut, Lebanon

Abstract—The Internet of Vehicles (IoV) is a disruptive
technology that has a great impact on people’s lifestyle
and activities. Fully autonomous vehicles are the next
generation of connected cars. However, IoV systems suffer
from several security threats that could offset the intended
advantages. To address the security and privacy issues,
several cryptographic and non-cryptographic security so-
lutions should be adopted. However, traditional security
solutions might burden the IoV network with further com-
plexity and computational overhead. This would translate
into additional performance issues in a network already
suffering from big data and large-scale challenges. In this
context, lightweight security solutions are needed to reduce
the required resources in terms of computations, power
and memory, and to optimize the network performance in
terms of latency and bandwidth. In this paper, we propose
a new lightweight cipher scheme, LoRCA, with dynamic
key-dependent structure to provide data confidentiality
with minimum resources’ requirements. To validate our
solution’s robustness and efficiency within the IoV context,
several performance and security tests were performed.
The results show that the proposed solution strikes a
good balance between the security level and performance.
The proposed LoRCA ciphers achieve a high throughput
with an enhancement of at least 100% improvement as
compared to the Advanced Encryption Standard (AES),
358% compared to Simon, 388 % improvement for Speck
and 24% improvement compared to our previous one
round cipher scheme.

Index Terms—Lightweight encryption; dynamic encryp-
tion; key-dependent primitives; security analysis; perfor-
mance analysis.

I. INTRODUCTION

The Internet of Vehicles (IoV) is emerging as an exten-
sion of the Internet of Things (IoT) paradigm to intercon-
nect all types of vehicles and to allow online access. This
results into a large-scale network with a heterogeneous
set of inter-connected devices, while enabling innovative
applications to benefit from the huge amount of collected
data. However, this will burden the network with new
QoS challenges and security issues. In addition to the
threats associated with traditional networks, IoV systems

gave rise to new types of threats that could have a drastic
impact on the privacy and security of data and systems.
The security threats affect the different types of security
services such as confidentiality, integrity, authentication,
and availability (see Figure 1-a). To defend against these
security threats, there are some existing solutions that
can be divided into two types: cryptographic and non-
cryptographic, as shown in Figure 1-b.

Devices with good computational resources and rea-
sonable memory capacity rely on traditional crypto-
graphic algorithms to ensure the required security ser-
vices. Specifically, data confidentiality and user privacy
are essential requirements of any communication system
such as IoV. Typically, data confidentiality is ensured
by applying encryption, while user privacy can be
achieved by using data minimization and pseudonymity
features [1]–[5]. In general, data confidentiality is based
on Symmetric Key Cryptography (SKC) since it is more
efficient than Asymmetric Key Cryptography (AKC) (see
Figure 2). The SKC Algorithms [6], [7] are based on a
secret key shared between two entities.

Moreover, encryption algorithms can be performed at
the block level or in stream mode. In stream cipher mode,
the data is mixed (xor-ed) with a pseudo-random stream
called ”key-stream”, usually at the byte level; for every
byte of data, a random byte is generated and then, both
bytes are xor-ed, and the output byte is transmitted as
the cipher-byte. However, in the case of block cipher,
the data is divided into blocks of fixed size, usually 128
bits. Then, a block cipher employs a reversible round
function that is iterated r times on each block [8]. The
round function should ensure two essential cryptographic
properties according to the famous information theorist
“Claude Shannon” [9]. These properties are:
• Confusion: It obscures the relationship between the

secret key and cipher-text. Typically, the confusion
property is satisfied by employing a substitution
table, also called S-box or through the use of a
nonlinear transformation.



(a)

(b)

Figure 1: Classification of IoV security services (a) and how can be achieved (b)

• Diffusion: It ensures that the influence of one plain-
text symbol impacts many cipher-text symbols, with
the goal of hiding the statistical properties of the
plain-text. The diffusion property can be ensured by
using a Permutation table (P-box) such as the case
of the Data Encryption Standard (DES) or by using
an invertible diffusion matrix such as the “ Matrix
Distance Separate (MDS)” [10], that is adopted in
AES in the “Mix-Column” operation.

The diffusion operation is a linear transforma-
tion, while the substitution operation provides a local
avalanche effect at the byte (or word) level. Furthermore,
the diffusion operation combined with substitution en-
sure the global avalanche effect after several iterations.

Additionally, a block cipher can be used as a stream
cipher when the block cipher is employed to produce a
key-stream sequence, which is the case of Output Feed-
Back (OFB) and Counter (CTR) operation modes [11].
The security of a stream cipher is based on different
metrics that depend on the quality of the produced
key-stream sequences, which should exhibit high non-
linearity, long periodicity, high level of randomness, and
high uniformity degree.

Furthermore, a message authentication algorithm is
necessary to guard against threats related to data in-
tegrity and source authentication. Message authentication
algorithms can be based on a keyed hash function such
as HMAC [12] or a block cipher with authentication

2



Figure 2: Classification of existing cryptographic algorithms

operation mode, such as CMAC and GMAC [7]. Note
that in some cases, data secrecy reinforces privacy since
encrypted surveillance videos, for example, may prevent
attackers from identifying people.

Due to the fact that traditional SKC algorithms follow
a static structure, the substitution and diffusion primitives
should be chosen according to their maximum crypto-
graphic performance. For example, the static AES S-box
was designed to provide minimum differential probabil-
ity (to defend against differential attacks) and minimum
linear probability (to defend against linear attacks). Also,
SKC algorithms use static diffusion operation with a high
linear branch number, and a low number of fixed points.

A. Problem Formulation

Many IoV systems and applications are based on
sensitive information that must be protected through the
adoption of best practices in terms of data confidentiality.
However, most of the existing encryption algorithms, as
indicated previously, are computationally expensive (r
rounds and multi-operations per round) and hence, they
are not appropriate for IoV real-time applications and for
in-vehicle constrained devices (e.g., micro-controllers).

Even though the existing symmetric ciphers, which
are based on a static structure, have shown resistance
against linear and differential cryptanalysis attacks, such
fixed structures lend themselves to future potential at-
tacks [13], [14]. These attacks would target their fixed
structure to recover the secret key. In this case, these
existing solutions would have to increase the number
of rounds leading to even higher latency and resources

overhead. This would reduce further their performance
and makes them not suitable for some future systems
and applications such as IoV ones.

Accordingly, it is important to design secure and effi-
cient cryptographic algorithms that optimize the trade-off
between the security level and the performance overhead.
One possible way to achieve this target is to modify
the existing SKC structure by using the dynamic key-
dependent approach to achieve higher efficiency and
robustness against powerful future attacks.

B. Motivation

As shown in Figure 3, an IoV network consists of IoV
devices that are connected to a data center (or application
servers) through a gateway. The communication between
IoV devices and the gateway is wireless. The IoV
devices can be interconnected through several gateways.
Therefore, a secure end-to-end encryption should be put
in place between the IoV devices and the data center or
applications servers.

In this context, this paper proposes a new cipher
scheme that is suitable for constrained IoV devices,
exhibiting the minimum possible amount of computa-
tions and latency, while maintaining the required security
level. The proposed cipher ensures the data confiden-
tiality security service. Furthermore, the structure of the
proposed LoRCA block and stream ciphers consist of
iterating two functions (round and update functions) for
one round to generate a key-stream block. These func-
tions consist of simple, yet efficient operations allowing
them to achieve the needed cryptographic properties.
The dynamic key approach is adopted in a way that a

3



Figure 3: Example of an IoV system with n IoV devices, k aggregation nodes and m servers

different dynamic key is generated and used for each
input message (audio, video or image).

C. Contributions

In previous works, we proposed cipher schemes based
on the dynamic key approach and with a low number
of rounds [15]–[18]. In this paper, the novelty of the
proposed cipher schemes lies in the ability to achieve an
excellent balance between performance and security for
IoV devices, with the main advantages as listed below:

1) Minimum error propagation rate: compared to [18],
LoRCA is applied at the block level, which reduces
the error propagation rate.

2) Minimum overhead: LoRCA requires a small num-
ber of operations. Moreover, no block permutation
operation is required, which minimizes delay and
memory consumption. Also, compared to [15]–[17],
LoRCA reduces the computational complexity by
avoiding diffusion/chaining operations.

3) Easier implementation: the solution presented
in [18] cannot be deployed on small devices such as
Arduino boards or resource-restricted devices since
it requires double the memory overhead.

4) Dynamic cipher primitives: LoRCA updates two
cryptographic primitives (X and RM that are de-
fined in Section III) after each encrypted/decrypted
block. This operation is designed to consume a low
overhead in terms of computational resources and
latency, yet it offers a high security level.

On the other hand, the contributions of the proposed
cipher solution in terms of robustness and efficiency are
summarized as follows:

Performance Contributions:
• Efficiency: LoRCA avoids diffusion and requires a

low number of operations to reduce both resources
usage and computational complexity.

• Flexibility: LoRCA handles dynamic block lengths
(N bytes), where N can be configured depending
on the application and device constraints.

• Simple hardware/software implementations:
HardWare (HW) and SoftWare (SW)
implementations of LoRCA are simple and
efficient with the use of ”Exclusive-OR” logical
operation and look-up substitution and permutation
operations.

• Error Tolerance: Compared to [15], [18], [19],
LoRCA provides better resistance to channel errors.
Each byte error in any encrypted block affects only
the byte itself and does not propagate to other
bytes in the corresponding block. In general, the
proposed cipher variant is well suited for noisy
communication channels since it exhibits low error
propagation rate when compared to existing stan-
dard block ciphers such as the Advanced Encryption
Standard (AES).

Security Contributions:
• Dynamic Key-Dependent Approach: Being a dy-

namic key-dependent cipher scheme, LoRCA re-

4



lies on cryptographic primitives that change in a
pseudo-random manner for every input message.
This hardens the statistical/implementation attacks,
especially with the use of dynamic encryption
keys [15], [19]–[21].

• Dynamic Cipher Primitives: Traditional block ci-
phers use static cipher primitives, which are the
same for all input blocks, whereas LoRCA uses
dynamic pseudo-random blocks (X and RM ). This
ensures that the relation among the encrypted blocks
is more complex and random, which guarantees its
immunity against different analytic attacks since for
each input message block, the encryption/decryp-
tion is dynamic and variable.

D. Organization

This paper is organized as follows. In Section II,
we review the exiting lightweight stream and block
cipher schemes along with their limitations. Section III
describes the generation of the dynamic key and the
associated cryptographic primitives. The variants of
LoRCA (stream cipher and block cipher) are detailed
in Section IV. Extensive security analysis is presented
in Section V to prove that the proposed cipher variants
exhibit the desired cryptographic properties. Section VI
assesses the robustness of the proposed cipher variants
against various types of attacks, while the effectiveness
of LoRCA is presented in section VII. Finally, this work
is concluded in section VIII with directions for future
work.

II. RELATED WORK

As indicated previously, most of the traditional block
cipher methods exhibit a high overhead in terms of
computations, memory, and power consumption. For ex-
ample, AES [22] with counter mode requires a relatively
large number of rounds with diffusion operations within
the round function [18]. Considering other traditional
block ciphers, such as the Hummingbird2 cipher [18],
the minimum number of required rounds is 4. Therefore,
within the IoV context, the traditional cryptographic
algorithms lead to poor performance [18]. On the other
hand, the scientific interest towards lower overhead cryp-
tography is not only confined to the IoV domain as
indicated in [23].

In the ongoing effort to address the computational
complexity issue, several lightweight ciphers have been
proposed such as LED (PHOTON family) [24], [25],
ITUbee [26], RECTANGLE (Substitution–Permutation
Network (SPN) based) [27], AKF (Feistel based) [28],
Simon and Speck [29]. The Speck algorithm exhibits

a lower overhead than the Simon’s algorithm, making
it more suitable for tiny devices. However, a multi-
round structure is still being used by Speck, but with
a simple round function. SIMECK, a combination of
Speck and Simon, was proposed in [30]. In [31],
SIMECK was proven to be vulnerable to bit-flip and
random-byte attacks. More recently, other lightweight
block ciphers were proposed including LiCi (SPN
based) [32], BORON [33], PRESENT [34], GIFT [35],
and CHAM [36].

Researchers also used elliptic curve to design
lightweight cipher schemes [37]. A primary work,
TWINE, was presented in [38], [39]. By combining
SPN and the Feistel Network (FN), recent works were
proposed including QTL [40], Substitution–permutation
Fiestel Network (SFN) [41], to benefit from the advan-
tages of both approaches (SPN and FN). However, using
the traditional round function structures (SPN, FN and
SFN) with static cryptographic primitives still requires a
high number of rounds and operations. Therefore, these
ciphers, by design, are not really suitable for limited IoV
devices or real-time IoV applications.

Alternatively, chaotic cryptographic algorithms have
been proposed to address this issue. However, these algo-
rithms are prone to various security and performance is-
sues such as the need for conversion operations, floating-
point computations, and a finite periodicity, in addition
to a complex hardware implementation. Moreover, these
solutions also use a multi-round structure [42], [43].

On the other hand, stream cipher algorithms, con-
sidering only one block of data at a time, are by
nature more lightweight than block ciphers, and they
require less computational and memory overhead. In
this context, different lightweight stream cipher solutions
with software and hardware acceleration were proposed
such as Grain [44], Trivium [45], Grain-128 [46], Salsa-
20 [47], Sosemanuk [48], MICKEY [49], Chacha [50],
Encoro-80 [51], Encoro-128 [52], SNOW3G [53],
A2U2 [54], and Quavium [55]. In the second genera-
tion of lightweight stream cipher cryptography, widely
adopted stream ciphers include WG-8 [56], Sprout ci-
pher [57], Fruit [58], Plantlet [59], Espresso [60], and
Lizard [61]. However, as indicated previously, these
solutions are based on a static round function that iterates
for r rounds. Thus, reducing the number of rounds will
make them prone to several statistical and analytical
attacks.

In summary, the existing encryption algorithms are not
designed to be applied for real-time IoV applications,
and with tiny devices that are constrained in terms of
computational power, resources, and battery lifespan.
IoV applications and devices with stringent QoS re-

5



Table I: List of Notations

Symbol Definition
SK Shared secret session key
nonce Nonce that changes per input message
DK Dynamic key updated per input message
kS1 and kS2 Substitution sub-keys
S1 and S2 Substitution tables
kp Permutation sub-key
kRK PRNG Seed
RM and IV Pseudo-random blocks, where IV is required for chaining operation modes (CBC and CTR).
kPRM Permutation sub-Key used to produce the permutation table πRM

X PRNG seed, which is updated after each PRNG iteration (each input block)
len Length of input message
dxe Rounds x to the nearest integer above its current value
nb Blocks number per input message and is equals to d len

h
e

h Bytes number per block message
M Original message
mi ith original plain block
C Encrypted message
ci ith encrypted block
KSA Key Setup Algorithm of RC4
MKSA Modified KSA of RC4 presented in [18].
S(m, S1, S2) Substitute the bytes of m with odd and even indices by using first substitution table S1 and S2, respectively.
[Y,X] = XorShift64(X) Iterates the XorShift PRNG with an input value (block) X to produce a pseudo-random block y (round key).
x << n Left shift operator.
x >> n Right shift operator.

quirements need new security measures that cater to
their limitations. Such algorithms and protocols must
be ”lightweight”: they should exhibit a low overhead
in terms of resources, computational power, latency and
overhead [62], [63].

To this end, researchers tend to design new lightweight
round functions that consist of simple operations, or
to reduce the number of rounds. Recently, various
lightweight cryptographic algorithms have been pro-
posed in [15], [16], [18], [64]. These solutions rely
on the dynamic key approach to reduce the required
number of rounds and to maintain a high-security level.
For example, the cipher schemes described in [15]–[17]
require two rounds, while the scheme described in [18]
requires only one round and processes two blocks at a
time, making it more efficient compared to the previous
solutions [15]–[17].

In this work, we aim at enhancing the work done
in [18] by designing new block and stream cipher vari-
ants that exhibit lower latency and memory consumption
in addition to using variable cryptographic primitives
(dynamic key-streams: X and RM ). The proposed
cipher variants achieve a better throughput compared
to [18], in addition to reinforcing the security level.

In the following, we describe the proposed key deriva-
tion function and the employed techniques to construct
the required cryptographic primitives. Then, the pro-
posed block and stream cipher are presented.

III. PROPOSED KEY DERIVATION FUNCTION

The used notations in this section are listed in Ta-
ble I, and the steps of the dynamic key derivation are
illustrated in Figure 4. The input to this function is a
shared secret session Key (SK) and a nonce (a unique
block that is used for only one session). SK can be
renewed per session (or sub-session) according to the
IoV application requirements and constraints. Note that
the key management between the different IoV entities
is outside the scope of this paper. For more information
about possible key management solutions, please refer
to [7], [65].

For every new input message (or a set of messages,
depending on the configuration), a new dynamic key is
generated by first xor-ing SK and a nonce and then,
hashing the result, as indicated in Eq. 1:

DK = hashSHA−512(SK ⊕ nonce) (1)

where the nonce can be generated by the communicating
parties. The size of the nonce is 512 bits, with a
corresponding space of potential nonces of 2512, and
hence a very low probability of nonce collision. Also,
we use the secure hash function SHA-512 [66], which is
highly resistant against collisions to produce the required
dynamic key with a length of 512 bits (64 bytes).
Figure 5 shows a numerical example of this process
where all values are represented as bytes with decimal
values.

6



Figure 4: Proposed technique to generate the dynamic key and cryptographic primitives

Figure 5: A numerical example of the dynamic key generation process

7



(a) (b)

Figure 6: A numerical example of the generation of substitution tables (Sbox S1 and Sbox S2)

Figure 7: A numerical example of the corresponding reset cryptographic primitives (bytes representation) of RM ,
IV , X and πRM

On the other hand, NIST recommends 4 secure De-
terministic Random Bit Generator (DRBG) algorithms
that can be used for the generation of nonces or session
keys. These algorithms are detailed in the NIST SP800-
90A report [67], where two of them are based on hash
functions, one being key-based and the other is unkeyed.
The unkeyed DRBG hash-based technique can be used
for nonce generation with LoRCA since it requires low
overhead compared to the keyed one. This unkeyed
technique ensures that the generated nonces have a high
periodicity and low collision probability. Moreover, in
practical scenarios, a new session key is produced for
each new session. Hence, even if the same nonce is

regenerated in a different session, a different dynamic
key will be produced since it also depends on the session
secret key. Note that, in the same session, the produced
dynamic key DK is constantly changing since the nonce
can be changed per input message or for a set of mes-
sages (depending on the configuration). Consequently,
the attacker should know which nonce and session key
are used for each message (or a set of messages), which
complicates the attacker task tremendously.

The produced dynamic key is divided into three sub-
keys DK = {kS1, kS2, kR}. kS1 and kS2 have a size of
128 bits, while kR is 256 bits, as illustrated in Figure 4
and described next.

8



• Substitution sub-key kS1: is used to construct the
first substitution table S1, and it consists of the first
most significant 16 bytes of DK. The substitution
table is generated by using KSA , which is described
in the next subsection (see Algorithm 1). In fact, the
substitution is applied at the byte level, with the
values of elements in the tables S1 or S2 ranging
between 0 and 255.

• Substitution sub-key kS2: this sub-key consists of
the next most significant 16 bytes of DK. it is used
to construct the second substitution table, S2, also
by applying KSA but with a slight modification; S1

is used as the initial substitution table, as described
in the next subsection. As such, S2 depends on the
first 32 most significant bytes of DK. Figure 6
provides a numerical example for the generation of
tables S1 and S2.

• Pseudo-random sub-key kR: it consists of the
least significant 32 bytes of DK, and it is used
to generate a key-stream R of (3×h) bytes length.
R will be divided later into three equal parts, where
each one has a length of h bytes:
1) Pseudo-random vector;
2) An initial vector IV ;
3) An initial Condition X;
In this step, to generate R, we use RC4 [68], with
kR as a seed and S2 as initial substitution table.
The first, second and third h bytes of R are used
to form the RM , IV and X vectors, respectively.
Thus, RM , IV and X depend on all bits of DK.

We reduce, modulo h, each byte of X to produce the
permutation key kPRM , which will be used as a seed
with the modified KSA algorithm [18] to generate the
permutation table πRM . The only required modification
compared to the original KSA of RC4 is changing
the length of the state table LS from 256 to h. The
permutation table elements have values ranging from 0
to h−1. As such, πRM depends on all the dynamic key
bits. Note that kPRM has also h elements with values
varying between 0 and h− 1.

Figure 7 illustrates a numerical example for the con-
struction of πRM , along with RM , IV and X .

All cipher primitives are highly sensitive to any bit
change in the secret key, nonce and also the dynamic
key. Hence, a different nonce, session key or dynamic
key will lead to totally different cipher primitives. As
such, the proposed block and stream cipher algorithms
exhibit a high sensitivity (key avalanche effect) in terms
of session, nonce, and dynamic key . This also increases
the randomness of the ciphertext and makes the crypt-

analysis attacks even more difficult.
After detailing the key and sub-keys derivation, in

the next sub-sections, we present the construction of the
cryptographic primitives.

A. Cryptographic Primitives Construction

In this work, we use simple techniques to construct the
required cryptographic primitives that are based on the
RC4 stream cipher algorithm or one of its corresponding
steps, namely (KSA).
(KSA) and the Pseudo-Random Generator Algorithm

(PRGA) are steps of RC4, that have to be implemented
sequentially as shown in Figure 8.
KSA is used to produce the dynamic substitution

tables, S1 and S2. The modified KSA is used to produce
the required dynamic permutation table, πRM . Also, RC4
is used to produce the key-stream, R, which is divided to
form the remaining cryptographic primitives (RM , IV
and X).

1) Substitution and Permutation Tables Construction:
According to RC4, KSA (see Algorithm 1) has a variable
key length, which ranges between 64 and 256 bits. KSA
produces a state table S , {S[0], · · · , S[LS − 1]}
with LS = 256 elements, varying from S[0] to S[255].
In Algorithm 1, the parameter LK is the length of the
initial key in bytes, and i and j are iteration variables.
For a secure use of the key setup of RC4, the input sub-
key size should be set at least to 128 bits (LK = 16).

The original implementation of KSA initializes the
state table elements to their corresponding indices, such
as S[i] = i for i = 0, 1, . . . , 255. However, in
this paper, we propose a new state table initialization
method, which sets the current state table to the previous
one. This helps to reach the dynamic key avalanche
effect. However, for the first iteration of (KSA) (case
of the construction of the first substitution table S1), the
initialization of the original (KSA) is used, which means
that S[i] = i and i = 0, 1, . . . , 255.

As indicated previously, we use the modified (KSA)
to construct the permutation table πRM , that requires
to modify LS from 256 to h compared to the original
(KSA) [18].

B. X , RM and IV Construction

The pseudo-code of the PRGA steps of RC4 is in-
cluded in Algorithm 2. To generate the required key-
stream, first, we iterate (KSA) with S2 as initial state
and KR as a seed to produce the update state, which
is used in PRGA to produce the key-stream R that is
divided into three parts, as described previously.

9



Figure 8: RC4 stream cipher algorithm

Algorithm 1 KSA algorithm of RC4

Input: LK key length; K , {k1, k2, . . . , kLK
};

LS length of state array S, an initial substitution
table S , {S[0], S[1], · · · , S[LS − 1]}
Output: The updated substitution table S ,
{S[0], S[1], · · · , S[LS − 1]}

1: procedure S = RC4-KSA(S, K, LK , LS)
2: j ← 0
3: for i← 0 to LS − 1 do
4: j ← j + S[i] + k[i (mod LK)] (mod LS)
5: SWAP(S[i], S[j]) . swap values of S[i] and

S[j]
6: end for
7: return S
8: end procedure

Algorithm 2 PRG for RC4
Input: LR represents the required number of key-
stream bytes,
LS represents the length of the state array S;
S , {s[0], · · · , s[LS − 1]}
Output: Key-stream R , {R[0], R[1], . . . , R[LR −
1]} with LR bytes length
procedure R = PRNGA(S,LS)

i← 0
j ← 0
for w ← 0 to LR − 1 do

i← i+ 1 (mod LS)
j ← j + S[i] (mod LS)
SWAP(S[i], S[j]) . swap values of S[i] and

S[j]
R[w]← S[S[i] + S[j] (mod LS)]

end for
return R

end procedure

In the next section, the proposed LoRCA stream
and block ciphers will be described in detail. LoRCA
stream and block ciphers use the produced dynamic
cryptographic primitives (S1, S2, RM , IV , and X) for

each input message or a set of messages (depending on
the configuration).

IV. LORCA BLOCK AND CIPHER SCHEMES

For each input message, LoRCA uses a new dynamic
key along with an updated set of cipher primitives (S1,
S2, RM , IV , πRM ). The common part between the
block and stream algorithms is that an input message
M is divided into nb blocks M = m1, m2, . . . , mnb,
where each block has a length of h bytes, with h being
configured based on the IoV application security and
performance requirements. A small h value is typically
used for real-time applications.

Note that the block cipher scheme uses the dynamic
Electronic Code Book (ECB) mode of operation without
degrading the security level since the same input mes-
sage (plaintext) produces a different ciphertext due to
the different cryptographic primitives used with the two
messages.

In the block cipher case, the ith ciphertext block ci is
obtained by applying the proposed encryption algorithm
EK (see Figure 9), which is detailed in Algorithm 3, and
described in Eq. 2:

ci = EK(mi) ; i = 1, 2, . . . , nb (2)

The proposed cipher consists of two sub-functions,
Round Function (RF) and UpdateRM Function (URM).
RF is iterated once to produce a ciphertext ci, while
RM should be updated for each input block iteration.
This is done by calling the UpdateRM Function (URM).
Similarly, X is also updated for each input block itera-
tion by using the same update process.

A. LoRCA Block Cipher Round Function (RF )

The LoRCA block cipher Round Function (RF )
produces the ith ciphertext via the following six steps
(Algorithm 1):

1) Iterating the Pseudo-Random Generator (PRG) for
one round. Note that the PRNG is iterated recur-
sively, meaning that the output X ′ becomes the next
input X .

10



2) Mixing the input block mi with the PRNG output
using the logical ”XOR” operation.

3) Using two substitution tables, S1 and S2, to sub-
stitute the output to produce the ith substituted
block T . In the proposed solution, S1 is used to
substitute the bytes with odd indices, while S2 is
used for substituting those with even indices. For
example, S1 is used to substitute the bytes with
indices 1, 3, 5, . . . and S2 is used to substitute the
bytes with indices 2, 4, 6, . . ..

4) Updating the pseudo-random vector RM .
5) Mixing the updated RM with the substituted output

block T , using also the logical ”XOR”.
6) Substituting the output using two substitution tables

(S2 and S1) to produce the ith ciphertext, ci. In this
step, S1 is used to substitute the bytes with even
indices, and S2 is used to substitute the bytes with
odd indices.

The encryption steps to produce the ith ciphertext
block, ci, are illustrated in Figure 9 and described in
detail in Algorithm 3.

Algorithm 3 LoRCA block cipher variant
Input: Plaintext block mi, substitution tables (S1 and
S2), RM , πRM , X
Output: ith ciphertext block ci

1: procedure ENCR(mi, S1, S2, RM, πRM , X)
2: RM ← UpdateRM(RM,πRM )
3: X ′ ← XorShift64(X)
4: T ← S(mi ⊕X ′, S1, S2)
5: TR← RM ⊕ T
6: ci ← S(mi ⊕ TR, S2, S1)
7: X ← X ′

8: end procedure

As such, all the plaintext blocks are encrypted to
produce C, which is the encrypted message that will
be either stored locally, or securely communicated with
the desired destination.

To recover the original message, the decryption pro-
cess follows the same steps as the encryption but in the
reverse order, and using the inverse substitution tables.
Hence, the original block m′i is recovered by decrypting
the ith ciphertext block ci, using the corresponding
decryption algorithm D, that is described in detail in
Algorithm 4 and presented in Eq. 3 :

m′i = D(Ci) ; i = 1, 2, . . . , nb (3)

Figure 9: Structure of the proposed LoRCA block cipher

Algorithm 4 The corresponding decryption algorithm D
of the proposed block cipher variant
Input: Ciphertext block ci, inverse substitution tables
(S−11 and S−12 ), RM , πRM , X
Output: The ith plaintext block mi

1: procedure DECR(ci, S1−1, S2−1, RM, πRM , X)
2: RM ← UpdateRM(RM,πRM )
3: X ′ ← XorShift64(X)
4: TR← S(ci, S

−1
2 , S−11 )

5: T ← RM ⊕ TR
6: O ← S(T, S−11 , S−12 )
7: mi ← O ⊕X ′
8: X ← X ′

9: end procedure

B. LoRCA Stream Cipher Round Function (RF )

To produce the ith key-stream block, the LoRCA
stream cipher Round Function (RF ) consists of the
following six steps:

1) Iterating the selected PRNG once with a seed vector
X . Similarly to block cipher, the selected PRNG
should be iterated recursively, with the output X ′

becoming the next input X .

11



Figure 10: Structure of the proposed LoRCA stream
cipher

2) XOR-ing the IV with the PRNG output X ′.
3) Substituting the output using S2 and S1 to produce

the ith substituted block T . This step is similar to
the substitution steps described in the block cipher
scheme (steps 4 and 6).

4) Updating the pseudo-random vector RM .
5) XOR-ing the updated RM with the substituted

output block T to produce the ith key-stream block
R. The output of this step Ri is used to update the
Initial vector IV .

6) Mixing the ith produced key-stream block Ri with
the ith plain block mi, as described by Eq. 4.

ci = mi ⊕Ri ; i = 1, 2, . . . , nb (4)

The proposed LoRCA stream cipher is illustrated in
Figure 10 and described in Algorithm 5.

Algorithm 5 The proposed LoRCA stream cipher round
function
Input: Plaintext block mi, Initial Vector (IV), two
substitution tables (S1 and S2), RM , πRM , X
Output: ith ciphertext block ci

1: procedure UP AB PRIM(IV, S1, S2, RM, πRM , X)
2: RM ← UpdateRM(RM,πRM )
3: X ← PRNG(X)
4: T ← S(IV ⊕X, S2, S1)
5: R← RM ⊕ T
6: ci ← mi ⊕R
7: end procedure

In a similar manner, all the plaintext blocks are
encrypted to produce C, the encrypted message that is
either stored locally, or securely communicated with the
desired destination.

On the other hand, to recover the original message, the
decryption algorithm follows the same steps to generate
the same key-stream sequence that will be mixed with
the ciphertext. Thus, to recover the ith original block m′i,
the ith ciphertext block ci should be mixed (exclusive
or) with the same produced Ri, as presented in Eq. 5:

m′i = ci ⊕Ri ; i = 1, 2, . . . , nb (5)

Next, we describe the URM function to explain the
update process of RM .

C. Update Pseudo-Random Vector Function

RM is updated by using a deterministic PRNG, that
uses RM as a seed. For example, we use XorShift64 as
PRNG since it requires low computational and resource
requirements. This variant is similar to the update X
approach.

To update X , we use the XorShift64 PRNG, which
has an output of 64 bits. Therefore, XorShift64 should be
iterated for dh8 e times to get the desired number of bytes
h (length of X). For example, XorShift64 should be
iterated twice or 4 times to get h =16 or 32, respectively.
XorShift64 belongs to the Linear-Feedback Shift Regis-
ters (LFSR) PRNG functions and is described in Algo-
rithm 6. In modern processor architectures, XorShift64 is
extremely fast due to its efficient implementation without
the excessive use of sparse polynomials [69]. Due to the
fact that XorShift64 generators do not include non-linear
steps, they are prone to fail certain statistical tests [69].
However, they still have numerous advantages such as
simple implementation and low execution time.

Algorithm 6 C code of XorShift64 PRNG

Input: 64-bit word of state t
Output: A produced random number word x with 64-
bits length

1: procedure XORSHIFT64(t)
2: x← t;
3: x← x⊕ (x >> 12);
4: x← x⊕ (x << 25);
5: x← x⊕ (x >> 27);
6: return x;
7: end procedure

12



(a) (b)

(c) (d)

Figure 11: Tests Results of the generated key-stream showing (a) Amplitude variation, (b) recurrence, (c) probability
density function, and (d) entropy; for 1,000 random dynamic keys and h = 16.

V. SECURITY ANALYSIS

To be secure, the proposed stream and block cipher
schemes should resist all types of analytical attacks,
including statistical, chosen/known plaintext/ciphertext,
brute-force and algebraic attacks [6], [7]. In this section,

the immunity of the proposed schemes against these
attacks is evaluated and analysed. We consider input
messages with ”all-zero” bytes.

13



(a) Dif (b) ρ

Figure 12: Tests Results of (a) the variation of the correlation coefficient, and (b) the difference between original
and encrypted messages; for 1,000 random dynamic keys.

A. Resistance Against Statistical Analysis

Statistical attacks are typically prevented when the
encrypted message exhibits high uniformity and random-
ness levels, as well as a high periodicity [6], for the
stream cipher case.

Several statistical tests including PractRand and
TestU01 were carried out on the ciphertext. It is im-
portant to state that these tests are among the most
difficult randomness tests. The purpose is to validate
that the ciphertext achieves the desired randomness and
uniformity properties. According to the obtained results,
the ciphertext of both schemes successfully passes the
TestU01 [70] and ”PractRand” [71] tests with all the
tested seeds. This confirms that the proposed ciphers can
resist statistical attacks.

Moreover, visual results of the ciphertext Probability
Density Function (PDF) for a random dynamic key (see
Figure 11c), in addition to the entropy of the produced
key-stream for 1,000 dynamic keys are presented in Fig-
ure 11d. These results show that the produced key-stream
follows the required uniform distribution. Furthermore,
for the same random dynamic key, the recurrence results
of the produced key-stream (see Figure 11a) is presented
in Figure 11b), show that the produced key-stream has
a uniform random recurrence. Accordingly, the block
cipher exhibits similar statistical results in terms of uni-

formity, recurrence, and sensitivity. To avoid redundancy,
only the stream cipher results are included in this paper.
Note that more details about the conducted tests can be
found in [18], [72].

Figure 12 shows the variation of the correlation co-
efficient (ρ) and the difference percentage between the
original and encrypted messages (Dif ) for 1,000 random
dynamic keys. Let us indicate that the red line in these
figures represents the ideal value, which is 0 for the
correlation coefficient test and 50% for the difference
percentage test. The results confirm that there is no
detectable relation between the plaintext and ciphertext.

B. Plaintext Sensitivity Test

This test is needed only for the block cipher algorithm
to check the difference between the obtained ciphertexts,
when two plaintext messages with a slight difference are
encrypted with the same key. However, our proposed
block cipher relies on the dynamic key approach. Thus,
different keys are used for different messages. Hence,
different cipher primitives are employed compared to
the previous or next messages, and the different dynamic
keys will lead to different ciphertexts for the same plain-
text. Considering the same plaintext with 1,000 different
keys, the difference between the obtained ciphertexts is

14



(a) (b)

(c)

Figure 13: Sensitivity results of the proposed stream cipher with 1,000 random keys of: (a) secret Key, (b) nonce,
and (c) dynamic key DKS.

close to 50%, as seen in Figure 13. As such, the proposed
LoRCA cipher variants achieve the required plaintext
sensitivity (avalanche effect).

C. Key Sensitivity Test

The nonce and key sensitivity tests aim at validating
the key avalanche effect. In these tests, we quantify the
percentage difference between the produced ciphertexts,
for any bit-difference in the nonce or the secret key.

15



(a) (b)

Figure 14: A numerical example of the message sensitivity, when the LSB of the 8th byte is modified, and for the
same DK

According to the structure of the proposed solution, a
one-bit difference in the secret key or nonce would lead
to the generation of a new dynamic key. Also, different
cipher primitives will be generated and hence, different
ciphertexts will be obtained. Figure 13 shows the secret
key, nonce and dynamic key sensitivity results of the
proposed stream cipher for 1,000 random instances. The
results are very close to the ideal value of 50% difference
at the bit level. Similar sensitivity results are obtained for
the proposed block cipher scheme.

D. High Periodicity

Based on the dynamic key approach, the proposed
stream cipher can be considered as a perturbation tech-
nique. The generated periodicity of the key-stream is
directly related to the PRNG generator and the RM
update process. Therefore, using a secure cryptographic
PRNG along with the proposed RM update process
leads to a high periodicity level, while minimizing the
probability of repeated dynamic keys.

VI. CRYPTANALYSIS

The proposed block and stream ciphers satisfy the
confusion and diffusion properties with the lowest pos-
sible number of rounds and operations. These ciphers
require a single round that consists of simple addition,
substitution and permutation operations. The proposed
ciphers avoid the use of the diffusion operation to avoid
an increase in the latency.

In order to validate the security and robustness of
the proposed LoRCA block and stream cipher variants,
we discuss and analyze these schemes in the context of
different attacks, namely, statistical attacks, differential
attacks, brute force attacks and related key attacks.

We assume that the adversary has full knowledge
of the protocols used for transmission, the proposed
cipher algorithm, and the ciphertexts that are exchanged
between the IoT/IoV and application server(s). The only
secret information is the session key.

A. Statistical Attacks

To ensure high resilience against this type of attacks,
the cipher scheme should produce highly random and
uniform ciphertexts. Based on the security tests pre-
sented in the previous section, both of the proposed
schemes proved to have a high level of randomness
and uniformity via the statistical tests, ”Testu01” and
”PractRand.

The security tests results confirmed that the encrypted
messages are uniformly distributed and have highly
dispersed recurrence plots. The schemes also satisfy the
independence property since the bit-difference between
the input plaintext and the corresponding ciphertext is
always close to the desired value of 50%, in addition to
a low correlation coefficient as shown in Figure 12.

On the other hand, the statistical results, presented
in Table II, and the visual results of the produced ci-
phertexts validate these conclusions (see Figure 11), and
confirm the strong resistance against statistical attacks.

B. Linear and Differential Attacks

In linear and differential attacks, an adversary tries to
exploit the relationship between two encrypted messages
and their corresponding ciphertexts, to extract the cipher
primitives, encryption keys or any useful information. To
overcome this issue, we proposed the dynamic update
process, which changes the cipher primitives for every
input message (or a set of messages). The update process
can be based on the re-generation of a dynamic key
or in a lightweight manner by simply permuting the
cryptographic primitives.

Hence, the produced ciphertexts are uncorrelated,
random and independent compared to plaintexts (see
Figure 12). This has also been validated using the key
sensitivity test for the secret key, nonce and dynamic
secret key, as shown in Figure 13. More specifically, the
results showed that when the same message is encrypted
using two different keys, the resulting ciphertexts have
at least 50% bit difference. As a result, no valuable
information can be revealed from the encrypted data.

16



Table II: Statistical results of the proposed stream cipher for 1,000 random keys.

Min Mean Max Std
Secret Key Sensitivity (KS) 49.4977 50.0011 50.5125 0.1413
Nonce Sensitivity (NS) 49.5797 50.0045 50.4664 0.1356
DK sensitivity 49.48 50.001 50.43 0.138
Dif 49.59 50.004 50.43 0.14
ρ -0.0245 0.00006 0.026 0.0081
Entropy (H) of ciphertext 7.984 7.988 7.99 0.001

Moreover, the update of cryptographic primitives per in-
put message further complicates the algebraic, linear and
differential attacks. Thus makes linear and differential
attacks are ineffective in this case.

The proposed schemes are also secure against chosen/-
known plaintext/ciphertext attacks, which are a sub-set
of linear and differential attacks.

C. Brute Force Attacks

In both cipher schemes, the pre-shared secret key can
have a length of 128, 196, or 256 bits. Based on the
size of the secret key, the size of the nonce is adjusted
(padding) since both should have the same size in order
to perform the XOR operation. On the other hand, the
size of the generated dynamic key is 512 bits since
the SHA-512 hash function is utilized. Such key-size
is acceptable for preventing brute force attacks.

D. Related Key Attacks and Weak Keys

From the key sensitivity test results, it is evident that
the desired key sensitivity percentage (50%) is achieved
(see Figure 13), hence, proposed stream and block cipher
schemes are able to resist any related-key attack. In these
schemes, a dynamic key is generated from a a nonce and
a secret key. This key is, then, divided into a number of
smaller sub-keys, each used to derive a specific cipher
primitive. To increase the security of the proposed key
generation function, a secret key is combined with the
nonce to decrease the probability of successfully deriving
the dynamic key and the cipher primitives. The secret
key is only known to the legitimate user. Moreover, each
cryptographic primitive is generated in a way that any
bit change in the dynamic key will lead to a different set
of cryptographic primitives.

Acquiring the dynamic key or sub-keys is rather a
hard task for illegitimate users, since they should be
able to, correctly, estimate the nonce and secret session
key. Unlike existing symmetric cipher schemes which
consist of static cipher primitives, the proposed solution
updates the cipher-primitives, frequently and pseudo-
randomly. Therefore, the obtained encrypted messages

are independent and uncorrelated. The proposed ap-
proach complicates the process of recovering transmitted
data. Any vulnerability in any of the dynamic keys
will not affect the previously processed or the following
messages. Moreover, as seen in Figure 13, the sensitivity
of the dynamic key, secret session key and nonce are
satisfied, which complicates the key-related attacks and
make them unfeasible. On the other hand, the proposed
solution is also resilient to weak keys.

The existing analytic attacks are unable to break the
cipher scheme with the dynamic key-dependent approach
since they are designed to break ciphers with static
primitives, which is not the case of the proposed cipher
scheme. This makes the proposed cipher extremely hard
to break by any analytic or implementation attacks such
as side channel attacks since dynamic cryptographic
primitives lead to different physical properties. As a
conclusion, the proposed block and stream ciphers are
immune against the different well-known attacks and
possibly future ones.

VII. PERFORMANCE ANALYSIS

In this section, LoRCA’s performance is analyzed to
quantify its effectiveness. In the following, we present
two essential metrics, the error propagation rate and the
encryption/decryption computational delay.

A. Error Propagation Rate

In the stream cipher case, any bit error that occurs
in the encrypted block, ci, will affect only the block’s
corresponding bit in the decrypted message. However, in
the block cipher case, the block’s corresponding byte will
be affected in the decrypted message. As such, the stream
cipher variant exhibits a lower error rate compared to the
block cipher. Furthermore, the LoRCA block cipher vari-
ant has lower error propagation compared to traditional
block cipher algorithms such as AES, Simon and speck,
since in these algorithms, the plain block avalanche
effect is achieved by using the traditional multi-round
function structure with diffusion operations. Note that
the message avalanche effect is achieved differently in

17



this work by benefiting from the dynamic key approach.
Consequently, LoRCA cipher variants are efficient and
can resist better channel errors compared to state-of-the-
art ciphers.

B. Encryption/Decryption Computational Delay

The main objective of this work is to achieve a high
level of security with minimum computational complex-
ity to reduce the encryption time and the resources
overhead, especially in terms of energy consumption.
To assess the total computational overhead, the delays
associated with the required operations are quantified as
follows:

1) TS stands for the execution time of substituting an
N -byte block.

2) Txor is the execution time for the XOR operation
between two N -byte blocks.

3) TPRNG is the time to iterate the selected PRNG.
4) TP is the time needed to permute a block of N

bytes.
As a result, the total Computational Delay (CD) to

encrypt a single block with the proposed block cipher
is:

CD = 2× TS + 2× Txor + TPRNG + TP (6)

While, the required (CD) to encrypt a single block
with the proposed stream cipher is:

CD = TS + 3× Txor + TPRNG + TP (7)

On the other hand, the total computational delay to
encrypt a single block using the standard AES in [22]
is:

CDAES = rTS +(r+1)Txor +(r−1)TD + rTSR (8)

Where TD represents the AES Mix-column operation
time, presenting the highest delay among the other AES
operations. Moreover, TSR represents the AES ”Shift-
rows” operation delay, and r represents the number of
rounds. For a 128-bit secret key, the minimum value of
r is 10. As a result, the minimum AES computational
delay is given by:

CDAES(r=10) = 10TS + 11Txor + 9TD + 10TSR (9)

This clearly shows that the AES computational time is
much higher compared to the proposed block and stream
ciphers where we intentionally avoided any diffusion
operation. Moreover, for AES with 192 and 256-bit
length secret key, r is equal to 12 and 14, respectively.
This requires even higher execution times compared
to the 128-bit secret key case. Note that the proposed

stream cipher requires a lower computational complexity
compared to the proposed block cipher.

On the other hand, the delay associated with the
derivation function of the key and cryptographic primi-
tives (CDKDF ) is quantified below and can be described
as follows:

1) TH stands for the needed hash time for an N -byte
block.

2) TKSA stands for the needed RC4-KSA execution
time.

3) TMKSA(x) stands for the needed execution time
of the modified KSA of RC4 for a table with x
elements.

4) TPRNG stands for the needed execution time of the
RC4’s PRNG.

CDKDF = Txor+TH+2TKSA+TMKSA(h)+TPRNG

(10)
It can be noticed that the key derivation function

introduces computational overhead and thus, a different
key derivation strategy should be adopted for low data
rate applications communicating small-sized messages.
For low data rate applications, the dynamic key and
cipher primitives should be updated after δ small-sized
messages, or after τ data bytes. Thus, until reaching this
threshold, all cipher primitives remain constant, except
for the two substitution tables, S1 and S2, which will be
updated for each message, as follows:

Temp = S1

S1 =S1(S2)

S2 =S2(Temp)

(11)

As a result, decreasing τ can increase the security
level along with the required resources and delays and
vice-versa. In fact, δ’s configuration depends on the
application requirements and the needed security level.

C. Proposed Ciphers Throughput

In this section, the average throughput of the proposed
block and stream ciphers is quantified by conducting
several experiments (1,000 times) on a real hardware
platform (”Rapsberry Pi”), which can be used in IoV
applications. Also, several Raspberry device classes are
considered in these experiments, namely, RPI0, RPI3,
and RPI4. In the following, only the encryption through-
put is analysed since the decryption throughput is very
close to the encryption one; this is due to the fact that
the decryption algorithm for both ciphers requires the
same number of operations as the encryption algorithm.

Figure 15 illustrates the variation of the throughput
(MB/s) as a function of h for the proposed block and
stream ciphers. We can see that the value of h has a

18



visible and different impact on the encryption perfor-
mance on different Raspberry PIs (RPI) devices; the best
performance, for the RPI0 and RPI3 for both LoRCA
ciphers is achieved for h=32 and 8, respectively. While
in the case of RPI4, the best performance for the stream
cipher variant is achieved for h =64, and 8 for the block
cipher variant. As such, h can be fixed to the optimal
value that is obtained from the performance analyzing of
LoRCA for the device to be used, as shown in Figure 15.

The throughput of the proposed LoRCA cipher
schemes is compared to that of AES (OpenSSL im-
plementation). Note that the proposed LoRCA ciphers
are implemented using the C programming language,
whereas the AES OpenSSL implementation code is well
optimized in assembly language. Figure 16 compares the
throughput of the proposed ciphers and that of AES
OpenSSL with CTR and CBC operation modes. The
results indicate that LoRCA always outperforms AES on
RPIs. Numerical results are given in Tables III and IV
for the throughput ratio between the proposed ciphers
as compared to AES OpenSSL. The best performance
of LoRCA over AES is obtained with RPI0. However,
the performance is slightly reduced with RPI3 and
RPI4 since the OpenSSL implementation is optimized
in assembly. In summary, considering RPI0, the en-
cryption/decryption throughput of the proposed LoRCA
cipher variants is higher compared to AES with or
without optimization as indicated in Table III and IV. A
significant gain can be achieved by optimizing LoRCA
cipher variants using assembly as in AES. This will
further improve the throughput for RPI3 and RPI4.

Moreover, the proposed LoRCA variants are compared
to state-of-the-art IoV cipher algorithms such as Simon
and Speck. Table V presents the throughput results of
the proposed cipher variants against (AES, Simon, and
Speck) for different Raspberry Pi classes, and Table VI
and Table VII show the ratio of the throughput results.
Based on these results, Speck seems to require more
execution time compared to Simon. According to Ta-
ble VI, Simon and Speck require at least, 4.87 and 1.67
times, respectively, the overhead of the proposed LoRCA
block cipher. Also, according to Table VII, Simon and
Speck require at least 2.71 and 1.18 times, respectively,
the overhead of the proposed stream cipher. Moreover,
the proposed block cipher throughput outperforms, by a
factor of 24.113%, 60.05% and 65.38%, the previous one
of [18] with RPI0, RPI3, and RPI4, respectively. Accord-
ing to Table VI and VII, both variants present a higher
throughput compared to AES, SPECK, SIMON [29]
and [18].

This test was also applied on tiny devices that use
an ARM CPU such as teensy3.6 (ARM Cortex M4),

teensy 4.0 (ARM Cortex-M7) in addition to ESP 32.
These devices were selected since they have a crypto-
graphic acceleration unit (AES-NI). The obtained results
in Figure 17 demonstrate the efficiency and suitability
of the proposed stream cipher solution with this type of
architecture when compared to AES.

According to Figure 18, AES with NI instructions
require at least 28.5% and 38.5% additional overhead
time, respectively, compared to the proposed LoRCA
ciphers. Similarly, LoRCA exhibits lower execution time
between 55% and 64% as compared to Tennsy 3.6, while
the time overhead reduction varies between 32.3% and
41.9% against ESP 32.

D. Memory Consumption

To encrypt one block in both proposed ciphers, we
need the input block and two substitution tables (S1 and
S2), each with 256 bytes, in addition to two blocks (X
and RM ) of h bytes. Therefore, the required memory
consumption of both ciphers is (512 + 3 × h) bytes.
For limited memory devices, we can use only one
substitution table instead of two to reduce the required
memory consumption to 256+3×h. Compared to AES,
one substitution table (256 bytes) is required in addition
to the input key and round key (32). Note that h can be
increased, if the devices possess more memory capacity.

VIII. CONCLUSION & FUTURE WORK

In this paper, we proposed LoRCA, an efficient
lightweight block and stream cipher schemes for tiny IoV
devices. LoRCA relies on the dynamic key-dependent
approach to strike the right balance between the se-
curity level and the devices’ performance. Two dif-
ferent lightweight round functions were proposed, one
for block cipher and a simpler one for stream cipher.
Each round function needs to be applied for a single
iteration, which drastically reduces the computational
and resources overhead when compared to standard
ciphers such as AES, which requires a higher number
of rounds, r. Finally, security and performance analysis
were performed to prove LoRCA’s effectiveness and
robustness. We believe that such work opens a new
way for the definition and design of modern lightweight
cipher schemes.

COMPLIANCE WITH ETHICAL STANDARDS

• Funding: This research was partially supported by
funds from the Maroun Semaan Faculty of Engi-
neering and Architecture at the American Univer-
sity of Beirut and by the EIPHI Graduate School
(contract ”ANR-17-EURE-0002”).

19



4 8 16 32 64 128
Size of h

40

45

50

55

60

65

Th
ro
ug

hp
ut
 (M

B/
s)

LoRCA Block Cipher Enc
LoRCA Stream Cipher Enc

(a) RPI0

4 8 16 32 64 128
Size of h

120

130

140

150

160

170

180

Th
ro
ug

hp
ut
 (M

B/
s)

LoRCA Block Cipher Enc
LoRCA Stream Cipher Enc

(b) RPI3

4 8 16 32 64 128
Size of h

240

250

260

270

280

290

300

310

320

Th
ro
ug

hp
ut
 (M
B/
s)

LoRCA Block Cipher Enc
LoRCA Stream Cipher Enc

(c) RPI4

Figure 15: Throughput variation (MB/s), with a colored Lena image of size (512× 512× 3), as a function of h on:
(a) RPI0, (b) RPI3, and (c) RPI4.

Table III: Speedup results of LoRCA block cipher over AES

Hardware Protocol comparison Message Length
16B 64B 512B 1KB 4KB 16KB 64KB 256KB

RPI0 LoRCA BC vs AES CBC 23.12 8.20 4.34 3.64 3.40 3.57 3.72 3.70
LoRCA BC vs AES CTR 16.51 7.77 4.44 3.91 3.69 3.70 3.67 3.68

RPI3 LoRCA BC vs AES CBC 20.72 9.96 3.46 3.10 2.89 2.61 3.0 2.84
LoRCA BC vs AES CTR 15.40 8.35 3.14 2.54 2.31 1.99 2.24 2.29

RPI4 LoRCA BC vs AES CBC 19.62 7.05 3.94 3.99 3.75 3.67 3.67 3.69
LoRCA BC vs AES CTR 14.70 5.68 3.34 3.21 3.00 2.89 2.89 2.88

• Conflict of interest: The authors declare that they have no conflict of interest.

20



16B 64B 512B 1KB 4KB 16KB 64KB 256KB
Buffer size

0

10

20

30

40

50

60

70

80

Th
ro
ug

hp
ut
 (M
B/
s)

LoRCA Block Cipher Enc
LoRCA Stream Cipher Enc
AES CBC enc
AES CTR enc

(a) RPI0

16B 64B 512B 1KB 4KB 16KB 64KB 256KB
Buffer size

0

25

50

75

100

125

150

175

200

Th
ro
ug

hp
ut
 (M

B/
s)

LoRCA Block Cipher Enc
LoRCA Stream Cipher Enc
AES CBC enc
AES CTR enc

(b) RPI3

16B 64B 512B 1KB 4KB 16KB 64KB 256KB
Buffer size

0

50

100

150

200

250

300

Th
ro
ug

hp
ut
 (M

B/
s)

LoRCA Block Cipher Enc
LoRCA Stream Cipher Enc
AES CBC enc
AES CTR enc

(c) RPI4

Figure 16: Comparison of the encryption throughput of the proposed block and stream ciphers (LoRCA) and AES
OpenSSL (in CTR and CBC mode) on (a) RPI0, (b) RPI3, and (c) RPI4, as a function of the buffer size (in bytes)
for h=16.

Table IV: Speedup results of LoRCA stream cipher over AES

Hardware Protocol comparison Message Length
16B 64B 512B 1KB 4KB 16KB 64KB 256KB

RPI0 LoRCA SC vs AES CBC 16.27 5.08 2.72 2.24 2.76 3.15 3.30 3.28
LoRCA SC vs AES CTR 11.62 4.81 2.78 2.41 2.99 3.25 3.25 3.25

RPI3 LoRCA SC vs AES CBC 15.81 5.31 2.14 2.01 2.71 3.15 3.29 3.05
LoRCA SC vs AES CTR 11.74 4.45 1.94 1.64 2.17 2.40 2.41 2.46

RPI4 LoRCA SC vs AES CBC 13.14 5.93 2.67 1.96 2.55 2.79 2.85 2.87
LoRCA SC vs AES CTR 9.84 4.78 2.26 1.57 2.03 2.20 2.24 2.24

21



16B 64B 256B 512B 1KB 2KB 4KB 8KB 16KB
Message length

0

2000

4000

6000

8000

Ex
ec

ut
io
n 
tim

e 
(µ
s)

LoRCA Stream Cipher Enc
AES CTR enc

(a) ESP 32

16B 64B 256B 512B 1KB 2KB 4KB 8KB 16KB
Message length

0

500

1000

1500

2000

2500

Ex
ec

ut
io
n 
tim

e 
(µ
s)

LoRCA Stream Cipher Enc
AES CTR enc

(b) Tensy3.6

16B 64B 256B 512B 1KB 2KB 4KB 8KB 16KB
Buffer size

0

200

400

600

800

Ex
ec
ut
io
n 
tim

e 
(µ
s)

LoRCA Stream Cipher Enc
AES CTR enc

(c) Teensy 4.0

Figure 17: Variation of the encryption throughput of the proposed block and stream ciphers (LoRCA) and AES
OpenSSL (in CTR and CBC mode) on ESP32 (a), teensy3.6 (b), and teensy4 (c) in function of the buffer size (in
bytes or kilobytes) for h=16.

Table V: Encryption throughput in MB/s of SPECK and SIMON ciphers [29], one round of [18] and the proposed
ciphers on different Raspberry Pi devices with a colored Lena image of size (512× 512× 3)

Cipher(Key size, block size) Raspberry Pi0 Raspberry Pi3
Speck(256, 128) 14.60 28.12
Speck(64,32) 5.32 9.25
Simon(256, 128) 4.99 9.98
Simon(64, 32) 4.09 7.40
One round [18] (block cipher) 19.62 43.16
Proposed One (Stream Cipher) 28.98 85.14

22



0 10 20 30
0.2

0.3

0.4

0.5

0.6

0.7

Teensy 36

 Teensy 40

ESP32

Figure 18: Variation of the encryption reduction ratio, as a function of h, of LoRCA and AES OpenSSL in CTR
mode on ESP32, teensy3.6, and teensy4.

Table VI: Throughput ratio of the proposed block cipher and those of Speck and Simon.

Cipher Size(Key, Block) Raspberry Pi0 Raspberry Pi3 Raspberry Pi4
Speck(256, 128) 1.26 2.69 5.78
Speck(64,32) 3.76 8.01 17.198
Simon(256, 128) 3.13 6.67 14.33
Simon(64, 32) 5.17 11.02 23.64

Table VII: Throughput ratio of the proposed stream cipher and those of Speck and Simon.

Cipher(Key size, block size) Raspberry Pi0 Raspberry Pi3 Raspberry Pi4
Speck(256, 128) 1.18 2.88 4.5
Speck(64,32) 3.25 8.58 13.39
Simon(256, 128) 2.71 7.15 11.16
Simon(64, 32) 4.47 11.81 18.41

• Ethical approval: This article does not contain
any studies with human participants or animals
performed by any of the authors.

REFERENCES

[1] G. S. Poh, P. Gope, and J. Ning, “Privhome: Privacy-preserving
authenticated communication in smart home environment,” IEEE
Transactions on Dependable and Secure Computing, 2019.

[2] S. Belguith, N. Kaaniche, M. Hammoudeh, and T. Dargahi,
“Proud: verifiable privacy-preserving outsourced attribute based
signcryption supporting access policy update for cloud assisted
iot applications,” Future Generation Computer Systems, 2019.

[3] S. Challa, A. K. Das, P. Gope, N. Kumar, F. Wu, and A. V.
Vasilakos, “Design and analysis of authenticated key agreement
scheme in cloud-assisted cyber–physical systems,” Future Gen-
eration Computer Systems, 2018.

[4] P. Gope and B. Sikdar, “Lightweight and privacy-preserving two-
factor authentication scheme for iot devices,” IEEE Internet of
Things Journal, vol. 6, no. 1, pp. 580–589, 2018.

[5] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia,
“Phoabe: Securely outsourcing multi-authority attribute based
encryption with policy hidden for cloud assisted iot,” Computer
Networks, vol. 133, pp. 141–156, 2018.

[6] C. Paar and J. Pelzl, Understanding cryptography: a textbook for
students and practitioners. Springer Science & Business Media,
2009.

[7] W. Stallings, Cryptography and network security: principles and
practice. Pearson Upper Saddle River, NJ, 2017.

[8] T. Kwon, H. Lee, S. Choi, J. Kim, D.-H. Cho, S. Cho, S. Yun, W.-
H. Park, and K. Kim, “Design and implementation of a simulator
based on a cross-layer protocol between mac and phy layers in a
wibro compatible. ieee 802.16 e ofdma system,” Communications
Magazine, IEEE, vol. 43, no. 12, pp. 136–146, 2005.

[9] C. E. Shannon, “Communication Theory of Secrecy Systems,”
Bell Systems Technical Journal, vol. 28, pp. 656–715, 1949.

[10] F. P. Miller, A. F. Vandome, and J. McBrewster, Advanced
Encryption Standard. Alpha Press, 2009.

[11] M. Dworkin, “Recommendation for block cipher modes of op-
eration. methods and techniques,” DTIC Document, Tech. Rep.,
2001.

[12] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing
for message authentication,” United States, 1997.

[13] L. Chen and R. Zhang, “A key-dependent cipher dsdp,” in Elec-
tronic Commerce and Security, 2008 International Symposium
on. IEEE, 2008, pp. 310–313.

[14] R. Zhang and L. Chen, “A block cipher using key-dependent
s-box and p-boxes,” in Industrial Electronics, 2008. ISIE 2008.
IEEE International Symposium on. IEEE, 2008, pp. 1463–1468.

[15] H. Noura, L. Sleem, M. Noura, M. M. Mansour, A. Chehab,

23



and R. Couturier, “A new efficient lightweight and secure image
cipher scheme,” Multimedia Tools and Applications, Sep 2017.

[16] H. Noura and D. Courousse, “Method of encryption with
dynamic diffusion and confusion layers,” Jun. 9 2016,
wO Patent App. PCT/EP2015/078,372. [Online]. Available:
https://www.google.com/patents/WO2016087520A1?cl=en

[17] H. N. Noura, M. Noura, A. Chehab, M. M. Mansour,
and R. Couturier, “Efficient and secure cipher scheme
for multimedia contents,” Multim. Tools Appl., vol. 78,
no. 11, pp. 14 837–14 866, 2019. [Online]. Available: https:
//doi.org/10.1007/s11042-018-6845-0

[18] H. Noura, A. Chehab, L. Sleem, M. Noura, R. Couturier, and
M. M. Mansour, “One round cipher algorithm for multimedia iot
devices,” Multimedia tools and applications, vol. 77, no. 14, pp.
18 383–18 413, 2018.

[19] Z. Fawaz, H. Noura, and A. Mostefaoui, “An efficient and secure
cipher scheme for images confidentiality preservation,” Signal
Processing: Image Communication, vol. 42, pp. 90–108, 2016.

[20] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “P-coding: secure
network coding against eavesdropping attacks,” in INFOCOM,
2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

[21] L. Pradeep and A. Bhattacharjya, “Random key and key de-
pendent s-box generation for aes cipher to overcome known
attacks,” in International Symposium on Security in Computing
and Communication. Springer, 2013, pp. 63–69.

[22] J. Daemen and V. Rijmen, The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business
Media, 2013.

[23] J.-P. Aumasson, “Too much crypto,” Cryptology ePrint Archive,
Report 2019/1492, 2019, https://eprint.iacr.org/2019/1492.

[24] J. Guo, T. Peyrin, and A. Poschmann, “The photon family of
lightweight hash functions,” in Annual Cryptology Conference.
Springer, 2011, pp. 222–239.

[25] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The
led block cipher,” in Cryptographic Hardware and Embedded
Systems–CHES 2011. Springer, 2011, pp. 326–341.

[26] F. Karakoç, H. Demirci, and A. E. Harmancı, “Itubee: a software
oriented lightweight block cipher,” in International Workshop on
Lightweight Cryptography for Security and Privacy. Springer,
2013, pp. 16–27.

[27] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Ver-
bauwhede, “Rectangle: a bit-slice lightweight block cipher suit-
able for multiple platforms,” Science China Information Sciences,
vol. 58, no. 12, pp. 1–15, 2015.

[28] F. Karakoç, H. Demirci, and A. Harmancı, “Akf: A key alternat-
ing feistel scheme for lightweight cipher designs,” Information
Processing Letters, vol. 115, no. 2, pp. 359–367, 2015.

[29] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “Simon and speck: Block ciphers for the internet
of things.” IACR Cryptology ePrint Archive, vol. 2015, p. 585,
2015.

[30] G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, “The
simeck family of lightweight block ciphers,” in International
Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2015, pp. 307–329.

[31] V. Nalla, R. A. Sahu, and V. Saraswat, “Differential fault attack
on simeck,” in Proceedings of the Third Workshop on Cryptog-
raphy and Security in Computing Systems, 2016, pp. 45–48.

[32] J. Patil, G. Bansod, and K. S. Kant, “Lici: A new ultra-lightweight
block cipher,” in 2017 International Conference on Emerging
Trends & Innovation in ICT (ICEI). IEEE, 2017, pp. 40–45.

[33] G. Bansod, N. Pisharoty, and A. Patil, “Boron: an ultra-
lightweight and low power encryption design for pervasive
computing,” Frontiers of Information Technology & Electronic
Engineering, vol. 18, no. 3, pp. 317–331, 2017.

[34] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe, PRESENT: An ultra-
lightweight block cipher. Springer, 2007.

[35] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and
Y. Todo, “Gift: a small present,” in International Conference
on Cryptographic Hardware and Embedded Systems. Springer,
2017, pp. 321–345.

[36] B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, and D. Kwon,
“Cham: a family of lightweight block ciphers for resource-
constrained devices,” in International Conference on Information
Security and Cryptology. Springer, 2017, pp. 3–25.

[37] S. Kim and I. Lee, “Iot device security based on proxy re-
encryption,” Journal of Ambient Intelligence and Humanized
Computing, vol. 9, no. 4, pp. 1267–1273, 2018.

[38] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, “Twine:
A lightweight, versatile block cipher,” in ECRYPT Workshop on
Lightweight Cryptography, vol. 2011, 2011.

[39] Y. Wei, P. Xu, and Y. Rong, “Related-key impossible differential
cryptanalysis on lightweight cipher twine,” Journal of Ambient
Intelligence and Humanized Computing, vol. 10, no. 2, pp. 509–
517, 2019.

[40] L. Li, B. Liu, and H. Wang, “Qtl: a new ultra-lightweight block
cipher,” Microprocessors and Microsystems, vol. 45, pp. 45–55,
2016.

[41] L. Li, B. Liu, Y. Zhou, and Y. Zou, “Sfn: A new lightweight
block cipher,” Microprocessors and Microsystems, vol. 60, pp.
138–150, 2018.

[42] H. Noura, C. Guyeux, A. Chehab, M. Mansour, and R. Cou-
turier, “Efficient Chaotic Encryption Scheme with OFB Mode,”
International Journal of Bifurcation and Chaos, vol. 29, no. 05,
2019.

[43] H. Noura, “Conception et simulation des générateurs, crypto-
systèmes et fonctions de hachage basés chaos performants,” Ph.D.
dissertation, UNIVERSITE DE NANTES, 2012.

[44] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher
for constrained environments,” IJWMC, vol. 2, no. 1, pp. 86–93,
2007.

[45] C. De Cannière, “Trivium: A stream cipher construction inspired
by block cipher design principles,” in International Conference
on Information Security. Springer, 2006, pp. 171–186.

[46] M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream
cipher proposal: Grain-128,” in 2006 IEEE International Sympo-
sium on Information Theory. IEEE, 2006, pp. 1614–1618.

[47] D. J. Bernstein, “The salsa20 family of stream ciphers,” in New
stream cipher designs. Springer, 2008, pp. 84–97.

[48] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert,
L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier
et al., “Sosemanuk, a fast software-oriented stream cipher,” in
New stream cipher designs. Springer, 2008, pp. 98–118.

[49] S. Babbage and M. Dodd, “The mickey stream ciphers,” in New
Stream Cipher Designs. Springer, 2008, pp. 191–209.

[50] D. J. Bernstein, “Chacha, a variant of salsa20,” in Workshop
Record of SASC, vol. 8, 2008, pp. 3–5.

[51] D. Watanabe, K. Ideguchi, J. Kitahara, K. Muto, H. Furuichi, and
T. Kaneko, “Enocoro-80: A hardware oriented stream cipher,” in
2008 Third International Conference on Availability, Reliability
and Security. IEEE, 2008, pp. 1294–1300.

[52] D. Watanabe, T. Owada, K. Okamoto, Y. Igarashi, and T. Kaneko,
“Update on enocoro stream cipher,” in 2010 International Sym-
posium On Information Theory & Its Applications. IEEE, 2010,
pp. 778–783.

[53] G. Orhanou, S. El Hajji, and Y. Bentaleb, “Snow 3g stream cipher
operation and complexity study,” Contemporary Engineering
Sciences-Hikari Ltd, vol. 3, no. 3, pp. 97–111, 2010.

[54] M. David, D. C. Ranasinghe, and T. Larsen, “A2u2: a stream ci-
pher for printed electronics rfid tags,” in 2011 IEEE International
Conference on RFID. IEEE, 2011, pp. 176–183.

[55] Y. Tian, G. Chen, and J. Li, “Quavium-a new stream cipher
inspired by trivium.” JCP, vol. 7, no. 5, pp. 1278–1283, 2012.

[56] X. Fan, K. Mandal, and G. Gong, “Wg-8: A lightweight stream
cipher for resource-constrained smart devices,” in International

24



Conference on Heterogeneous Networking for Quality, Reliabil-
ity, Security and Robustness. Springer, 2013, pp. 617–632.

[57] F. Armknecht and V. Mikhalev, “On lightweight stream ciphers
with shorter internal states,” in International Workshop on Fast
Software Encryption. Springer, 2015, pp. 451–470.

[58] V. Ghafari, H. Hu, and Y. Chen, “Fruit-v2: ultra-lightweight
stream cipher with shorter internal state. cryptol. eprint archive.”

[59] V. Mikhalev, F. Armknecht, and C. Müller, “On ciphers that
continuously access the non-volatile key,” IACR Transactions on
Symmetric Cryptology, pp. 52–79, 2016.

[60] E. Dubrova and M. Hell, “Espresso: A stream cipher for 5g
wireless communication systems,” Cryptography and Communi-
cations, vol. 9, no. 2, pp. 273–289, 2017.

[61] M. Hamann, M. Krause, and W. Meier, “Lizard–a lightweight
stream cipher for power-constrained devices,” IACR Transactions
on Symmetric Cryptology, pp. 45–79, 2017.

[62] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report
on lightweight cryptography,” NIST DRAFT NISTIR, vol. 8114,
2016.

[63] A. Y. Poschmann, “Lightweight cryptography: cryptographic
engineering for a pervasive world,” in PH. D. THESIS. Citeseer,
2009.

[64] R. Melki, H. N. Noura, M. M. Mansour, and A. Chehab, “An
efficient ofdm-based encryption scheme using a dynamic key
approach,” IEEE Internet of Things Journal, 2018.

[65] R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key manage-
ment systems for sensor networks in the context of the internet
of things,” Computers & Electrical Engineering, vol. 37, no. 2,
pp. 147–159, 2011.

[66] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr,
T. Lehman, and B. Schott, “Comparative analysis of the hardware
implementations of hash functions sha-1 and sha-512,” in Infor-
mation Security. Springer, 2002, pp. 75–89.

[67] E. Barker and J. Kelsey, “Nist special publication 800-90a rec-
ommendation for random number generation using deterministic
random bit generators,” 2012.

[68] G. Paul and S. Maitra, RC4 stream cipher and its variants. CRC
press, 2011.

[69] F. Panneton and P. L’ecuyer, “On the xorshift random number
generators,” ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS), vol. 15, no. 4, pp. 346–361, 2005.

[70] P. L’Ecuyer and R. J. Simard, “Testu01: A c library for
empirical testing of random number generators,” ACM Trans.
Math. Softw, vol. 33, no. 4, pp. 22:1–22:40, 2007. [Online].
Available: http://doi.acm.org/10.1145/1268776.1268777

[71] C. Doty-Humphrey, “Practrand,” 2014. [Online]. Available:
http://pracrand.sourceforge.net/

[72] H. Noura, S. Martin, K. Al Agha, and K. Chahine, “Erss-rlnc:
Efficient and robust secure scheme for random linear network
coding,” Computer networks, vol. 75, pp. 99–112, 2014.

25


