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INTRODUCTION
When a strain gradient is applied to some possibly centrosymmetric dielectric, a strain gradient appears due to a phenomenon called flexoelectricity[1]. Being able to accurately compute flexoelectricity
coefficients is a foundation for finding a combination of materials with a relatively large global flexoelectricity coefficient for future use. Recently, B. Javvaji et al published a paper|[2] on the calculation of
piezoelectricity and flexoelectricity coefficients for a patterned graphene, using molecular dynamics (MD) simulations coupled with a charge dipole model[3][4]. Reading this paper, however, it seemed to
us that some terms were missing in the computation of the forces with respect to what we usually use, i.e. terms coming from gradient of effective charges and dipoles that change when the positions of
atoms change. We thus decided to carry out the same simulations as Javvaji et al. to assess the importance of the missing terms and possibly provide improved numerical estimations. Hence, a
comparison between our results and those reported by Javvaji et al. are presented in the poster, along with some preliminary results on 2D MoS,.

Calculation of piezoelectricity and flexoelectricity coefficient for trapezium graphene

Flexoelectricity

When a material is submitted to an external force, the resulting deformation gradient can break
its spatial inversion symmetry and consequently induce a change of the polarization.
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where ﬁi is the deformation gradient of atom i and I stands for identity matrix. The ﬁi tensors
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Figure 1. The origin of flexoelectric effects in solids. Gow=0.0574 (CId)

(a)(c) non-deformed 2D structure of elementary charges. When the geometric centers of positive

and negative charges coincide, the net dipole moment of the unit cell is zero. (b)(d) The material is
deformed by an external force, the strain-gradient induces an uncompensated dipole moment via :
the flexocoupling mechanism. 0.05 [
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where, e; ;i is a piezoelectricity tensor, ;; is the dielectric susceptibility, u;; the symmetric strain | ’ g 0,004 | )
tensor and u; ; the strain gradient. p;; is the flexoelectricity tensor. The last term is the direct DG L._E_; ’
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flexoelectric effect written using a symmetrized strain tensor. 0.00 L
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Gaussian regularized Charge dipole model

In the charge dipole model, each atom is supposed T779, T97P and TPP are interaction Fig. 4_ (@) Atomic strain distribution f(?r Oexe (13
to carry an effective charge q and dipole moment p.  tensors, between point charges and trap_ezmm-shaped _ graphene. (b) Atomic ”
The total electrostatic interaction energy E is dipoles, that diverge when 2 atoms are strain along x axis for every atoms. X _ o , ,
expressed as too close. In order to overcome this, denotes the atomic position along x axis. Fig. 5 Polarization as a function of strain
: a) and strain gradient (b), respectively.
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Table 1 : Comparison of piezoelectric and
flexoelectricity coefficient between results
reported by B. Javvaji and present
calculated result.

flexoelectric

coefficient
(nC/m) -0.789886 -0.0198
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Perspectives: Calculation of a flexoelectricity coefficient for MoS,

The Gaussian regularized charge dipole model is adopted to calculate the polarization
distribution for an MoS, nanoribbon with 732 atoms under an electric field[6].
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Fig. 2 Schematic representation of
atom in charge-dipole scheme
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MD simulation-AIREBO many-body potential
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As Javvaji et al. we use the AIREBO many-body potential to describe the covalent and van der o
Waals bonds between carbon atoms. This potential has been used by many other authors to e
predict some physical and chemical properties of various carbon materials. The AIREBO
potential consists of three terms:
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EY is a Lennard-Jones 12-6 potential term, Et°" is a

1 j 1
E= EZZ E;™° + Ej + Z Z Byt single-bond torsion term and EREBO js composed of Fig. 7 Induced-field deflection in MoS G(1.3.3) (A"
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interatomic repulsion R and attraction terms @*. The nanoribbon, subjected to a 2.83 V/nm Fig. 8 the variation of polarization along x
REBO P A bond order function b;; includes the many-body effects, external electric field, with the nanoribbon axis as a function of second order gradient
EREBO = oR(7;;) — b2 (7i7) _ J . . -
J J J J where b7™™ depends on the atomic distance and bond fixed at its left edge. of transformation ¢(1,3,3) = u;33
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and b;;" is a dihedral-angle term for double bonds.
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We expect to extend our current method to combinations of monolayers of various 2D
materials for the computation of their flexoelectricity tensor components.

angle represents the influence of bond conjugation

bi; = %(b{fj‘” + b7 ™ + bRC 4 pPH
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