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Abstract: Electrochemical processes have been developed for a wide range of applications
such as, mineral refining, water purification, energy storage and generation. The development
of models to describe these processes is very important for their analysis, optimization and
operation. The framework of irreversible port-Hamiltonian systems has proven to be an
important tool to analyze and integrate thermal models with models of different domains. This
work discusses the modeling of non-isothermal electrochemical processes as irreversible port-
Hamiltonian systems. An irreversible port-Hamiltonian model based on the internal energy
function is derived for a simple but general example. The irreversible model is obtained from
the molar and charge balance equations combined with the entropy balance equation. The
resulting model can be interpreted as a thermodynamic system and aspects such as entropy
production, thermodynamic driving forces and intensive/extensive variables are encoded in the
representation. An electrochemical process with two simultaneous reactions is considered to
illustrate the approach. The interconnection with a resistive load is also considered to illustrate
the benefit of the port-based formulation of the model.

Keywords: Electrochemical reactions, port-Hamiltonian systems, irreversible thermodynamics,
modeling.

1. INTRODUCTION

Electrochemical processes are ver important in many tech-
nological systems such as energy storage and water purifi-
cation. These systems encompass many phenomena and
their modeling for analysis and control requires the use of
systematic approaches. The port-Hamiltonian framework
(van der Schaft and Jeltsema, 2014; Macchelli, 2003) is
modular approach based on port-based models and power-
preserving interconnections. It emphasizes the geometry of
the state space and the Hamiltonian function (total stored
energy) as basic concepts for modeling multi-physics sys-
tems, (Duindam and Macchelli, 2009).

The modeling of chemical reactions using port-Hamiltoninan
systems have been addressed and the basic ideas can be
traced back to the seminal work of Oster, Perselson and
Katchalsky (Oster et al., 1973). The problem remains
however open specially when considering coupled elec-
trical/mechanical/thermodynamic systems. In (van der
Schaft and Maschke, 2011) the geometric formulation of
the dynamics of chemical reaction networks within the
port-Hamiltonian formalism is discussed. The formulation
of a Dirac structure, based on the stoichiometric matrix,
and the modeling of the interaction with the environment
? D. Sbarbaro acknowledge the support SERC Chile, FONDAP
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through the boundary metabolites and their boundary
fluxes and affinities provide a framework to have a modular
view of chemical reaction network dynamics. The work on
expressing isothermal reaction networks as locally dissipa-
tive systems with respect to virtual energy and entropy
functions has opened the path for addressing analysis and
control design problems. Along this line, in (Maschke and
van der Schaft, 1992) port-Hamiltonian systems (PHS)
are proposed as control system representations for open
reaction networks. In (van der Schaft et al., 2013) the
geometric structure of the network is explored relating it
with graph theory and some virtual energy and entropy
function to study stability and model reduction.

In order to deal with non-isothermal reactions, Hoang
et al. (2011) propose a thermodynamic pseudo Hamilto-
nian model for a Continuous Stirred Tank Reactor con-
sidering both the isothermal and non-isothermal cases.
It is shown that the Gibbs free energy and the opposite
of the entropy can be chosen as Hamiltonian function
respectively. For the non-isothermal case, the stabilization
of the system at a desired state is accomplished by de-
signing a Passivity Based Control. Another work on this
direction is presented in (Ramirez et al., 2013a), where the
chemical reaction network is modeled as irreversible port-
Hamiltonian control systems. These systems express, just
like standard port-Hamiltonian systems, the conservation



of energy as a structural property, but in addition they
also express as a structural property the second law of
Thermodynamics: the irreversible production of entropy.

The modeling of electrochemical processes has been ad-
dressed by several authors. Electrical equivalent repre-
sentations for electrochemical system neglecting their in-
herent nonlinearities have been proposed in (Tofighi and
Kalantar, 2011). Bond Graph models for modeling electro-
chemical energy storage systems has proposed by Karnopp
(Karnopp, 1990). A a dissipative Lagrangian formalism is
proposed in (Shiner et al., 1996) to derive of the state equa-
tions describing electrochemical systems. More recently
in (Sbarbaro, 2018) port-Hamiltonian models of some
isothermal electrochemical processes have been illustrated.

This work adopts an internal energy balance perspective
to address the contribution of the non-isothermal char-
acteristic of the electrochemical process. Similar to the
energy balance approach used in (Bernardi et al., 1985)
(see also (Rao and Newman, 1997; Gu and Wang, 2000)
an energy balance equation is included in the dynamical
model of the electrochemical process. Using the definition
of the thermodynamic properties of the electrochemical
systems (Kondepudi and Prigogine, 1998) and inspired
by the IPHS formulation of chemical reaction networks
(Ramirez et al., 2014) an IPHS model for a general elec-
trochemical process is proposed. This model has a clear
thermodynamic interpretation and since it is constructed
in terms of energy conjugated ports it is straightforward
to interconnect with other systems, such as electrical loads
or sources.

The paper is organized as follows. Section 2 presents the
basics on IPHS. Section 3 presents the class of electrochem-
ical process to be studied. In Section 4 we give the IPHS
formulation of this class of system and finally in Section 5
we present some final remarks and discussion of ongoing
and future work.

2. IRREVERSIBLE PORT-HAMILTONIAN SYSTEMS

Irreversible port-Hamiltonian systems (IPHS) have been
defined in Ramirez et al. (2013a) as an extension of port-
Hamiltonian systems (PHS) for the purpose of represent-
ing not only the energy balance but also the entropy
balance, essential in thermodynamic systems.

Definition 1. (Ramirez et al., 2013a) An input affine IPHS
is defined by the dynamic equation and output relation

ẋ = R
(
x, ∂U∂x

)
J
∂U

∂x
(x) + g

(
x, ∂U∂x

)
v,

y = g>
(
x, ∂U∂x

) ∂U
∂x

(x)

(1)

where x(t) ∈ Rn is the state vector, the smooth func-
tions U(x) : Rn → R and S(x) : Rn → R represent,
respectively, the internal energy (the Hamiltonian) and the
entropy functions, J ∈ Rn×n is a constant skew-symmetric
structure (interconnection) matrix of the Poisson bracket
(Maschke et al., 1992) acting on any two smooth functions
Z and G as:

{Z,G}J =
∂Z

∂x

>
(x)J

∂G

∂x
(x). (2)

The real function R = R
(
x, ∂U∂x

)
is composed by the

product of a positive definite function γ and the Poisson

bracket between the entropy and the energy functions:

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J ,

with γ
(
x, ∂U∂x

)
: Rn → R, γ ≥ 0, a non-linear positive

function. The input map is defined by g
(
x, ∂U∂x

)
∈ Rn×m

with the input v(t) ∈ Rm a time dependent function.

The drift dynamic in (1) is defined by a non-linear relation
between the time derivative ẋ of the state (extensive) vari-
ables and ∂U

∂x , characterized by the modulating function

R
(
x, ∂U∂x

)
, which explicitly depends on the co-energy (in-

tensive) variables ∂U
∂x . The balance equations of the total

energy and entropy functions of IPHS express the first
and second principles of irreversible Thermodynamics: the
conservation of energy and the irreversible creation of
entropy due to irreversible phenomena. By skew-symmetry
of J , the balance equation of the internal energy, which is
a convex function,

dU

dt
= y>v, (3)

expresses that the system (1) is a lossless dissipative
systems with (energy) supply rate y>v (Willems, 1972).
The balance equation of the entropy function is given by

dS

dt
= R

(
x, ∂U∂x ,

∂S
∂x

) ∂S
∂x

>
J(x)

∂U

∂x
+
∂S

∂x

>
g
(
x, ∂U∂x

)
v

= γ
(
x, ∂U∂x

)
{S,U}2J +

(
g>
(
x, ∂U∂x

) ∂S
∂x

)>
v.

= γ
(
x, ∂U∂x

)
{S,U}2J + y>s v.

(4)

where

ys = g>

(
∂S

∂U

> ∂U

∂x

)
=

1

T
g>

∂U

∂x

=
1

T
y,

(5)

is an entropy conjugated output. Here ∂S
∂x = ∂S

∂U

> ∂U
∂x

has been written using the chain rule and ∂S
∂U = 1

T
has been used. By Definition 1 the first term is posi-
tive: γ

(
x, ∂U∂x

)
{S,U}2J = σ

(
x, ∂U∂x

)
≥ 0. For irreversible

thermodynamic systems, this term represents the internal
entropy production and its positivity expresses the second
principle of Thermodynamics. The second term in (4)
corresponds to the definition of an entropy supply rate.
For further details on IPHS and its thermodynamic inter-
pretation we refer the reader to Ramirez et al. (2013a).

3. A CLASS OF NON-ISOTHERMAL
ELECTROCHEMICAL PROCESSES

In this section we first give the basics of some general
electrochemical process and then in the following section
we present the IPHS representation of this class of system.

Electrochemical processes are characterized by chemical
reactions that either produce or are produced by electrical
energy. The electrochemical reactions take place at the
electrodes, and since these are separated the electrons
being transferred are forced to travel and produce an
electrical current. The reaction rates taking place at the



electrodes are assumed to be described by the Butler-
Vollmer kinetics. Let’s consider the following half-reaction
taking place in one of the electrodes placed in a solution

X
r−⇀↽− Y + e−

where e− are the electrons produced on the electrode. The
reaction rate is

r =
dξ

dt
= k+1 nXe

f1Fq/RTC − k−1 nY e(f1−1)Fq/RTC

where nX and nY are the number of moles of X and Y
respectively, k+1 and k−1 are rate constants, ξ is extent of
reaction, F the Faraday’s constant, R is the gas constant,
C is the electrical capacitance of the electrode, T is the
temperature, q is the charge on the electrode relative to
that of the solution, f1 is the symmetry constant. In this
work the notation of Shiner et al. (1996) for the chemical
potential is adopted; i.e. the chemical potential is the
traditional electrochemical potential, and the traditional
chemical potential is the chemical potential evaluated at
the reference electrostatic potential. The relation between
the current I; i.e. amount of charge transferred per second
is

I = nF
dξ

dt
where n is the number of electrons transferred. The elec-
trochemical affinity of the reaction considering the electro-
static energy at the electrodes is

Ã = µX − [µY + µe−o ] + Fq/C (6)

where µX , µY are the chemical potentials of X and Y ,
µe−o is the chemical potential of the electrons at vanishing
electrostatic potential. The bulk solution electrostatic po-
tential is considered as the reference potential. The charge
on the electrode is

q = Fne−

where ne− is the number of electrons. The entropy balance
of the reaction is (Kondepudi and Prigogine, 1998)

dS

dt
=
Ã
T

dξ

dt
. (7)

4. IPHS FORMULATION OF A CLASS OF
NON-ISOTHERMAL ELECTROCHEMICAL

PROCESSES

Consider a simple electrochemical cell (Hjelmfelt et al.,
1991) consisting of two compartments separated by a
semipermeable membrane only permeable to the un-
charged species Y, as depicted in figure 1. The compart-
ments are connected to reservoirs for X− and Z−. The
following reactions take part on the electrodes
electrode 1:

X−
r1−⇀↽− Y + e−1

electrode 2:
Y + e−2

r2−⇀↽− Z−

The chemical potentials of X− and Z− are kept constant
at the values of the external reservoirs; i.e. these reservoirs
act as ideal sources. It is also assumed that the volume is
constant. A normalized volume; i.e. V = 1 is considered. It
is assumed that the cell is well stirred and the concentra-
tion of Y is considered to be uniform. The dynamic of the
flow of Y across the membrane is considered to be much
faster than the chemical reactions. Let C1 and C2 be the

1 2

electrical system

X
- Z

-

Y

I

X
-

Z
-

Fig. 1. Electrochemical cell (Hjelmfelt et al., 1991)

electrical capacitances of the electrodes. In this case, the
reaction rates are defined as:

r1 = k+1 nXe
f1Fq1/RTC1 − k−1 nY e(f1−1)Fq1/RTC1

r2 = k+2 nXe
−f2Fq2/RTC1 − k−2 nZe−(f2−1)Fq2/RTC2

and; therefore, the kinetic equations for the reactions on
the electrodes are

dξ1
dt

= r1

dξ2
dt

= r2

The molar balance equations for each species are:

dnX−

dt
= −dξ1

dt
dnY
dt

=
dξ1
dt
− dξ2

dt
dnZ−

dt
=
dξ2
dt

(8)

where nY , nX− and nZ− are the mole number of especie
Y , X− and Z− respectively. We shall assume that the
temperature of the system is uniform throughout and
changes due to the electrochemical reactions. Hence, we
assume that there are no changes in the heat capacity of
the system, no phase changes and no heat transfer with
the surrondings.

4.1 IPHS formulation of the chemical reaction scheme

In a first instance we shall follow (Ramirez et al., 2013a,
2014) to propose a IPHS formulation of the chemical
scheme, without considering the dynamic of the electrical
part of the process. To this end we have that the IPHS
model of the purely chemical reaction of the electrochem-
ical process is formulated as

˙̄x =
1

T

 0 0 0 −r1
0 0 0 (r1 − r2)
0 0 0 r2
r1 −(r1 − r2) −r2 0

 ∂Ū
∂x̄

(9)

with Ū the energy of the chemical process without
considering the electrical energy of the charge, x̄ =
[nX− , nY , nZ− , S]> the vector of extensive variables and



∂Ū

∂x̄
=

µX−

µY

µZ−

T


the vector of intensive variables. We observe in (9) that
since we have two parallel reactions taking place the drift
dynamic is the composition of two vector fields, each one
related to one independent chemical reaction. Following
(Ramirez et al., 2014) we split (9) in two vector fields,
each one related to a skewsymmetric structure matrix,

˙̄x =
r1
T

0 0 0 −1
0 0 0 1
0 0 0 0
1 −1 0 0

 ∂Ū
∂x̄

+
r2
T

0 0 0 0
0 0 0 −1
0 0 0 1
0 1 −1 0

 ∂Ū
∂x̄

=
(r1
T
J̄1 +

r2
T
J̄2

) ∂Ū
∂x̄

.

(10)

From this model we identify R1 and R2, one for each
chemical reaction,

R1 =
r1
T
,

R2 =
r2
T
.

(11)

The thermodynamic driving forces of the chemical reac-
tions are associated with the Poisson brackets defined by
J̄1 and J̄2. Computing them we obtain

∂S

∂x̄

>
J̄1
∂Ū

∂x̄
= A1,

∂S

∂x̄

>
J̄2
∂Ū

∂x̄
= A2,

(12)

which are indeed the affinities of reaction and which
correspond to the driving force of the chemical reaction.
From (11) and (12) we can identify γ1 and γ2 from
Definition 1,

γ1 =
r1
TA1

,

γ2 =
r2
TA2

,

which are indeed positive and well defined (Ramirez et al.,
2013a).

4.2 IPHS formulation of the electrochemical process

To formulate the IPHS model of the electrochemical pro-
cess we shall now take into account the electrical part of
the process. The evolution of the charge on the electrodes
is given by (Hjelmfelt et al., 1991)

dq1
dt

= F
dξ1
dt
− I

dq2
dt

= F
dξ2
dt

+ I

(13)

where I is the current through the electrical load. Define
x = [nY , nX− , nZ− , q1, q2, S], i.e., the vector containing
the complete state space. The internal energy of the
electrochemical process is given by the internal energy of
the reaction and the electrical energy at the electrodes
(Hjelmfelt et al., 1991; Shiner et al., 1996)

U = Ū +

(
1

2

q21
C1
−
q1µe−o

1

F

)
+

(
1

2

q22
C2
−
q2µe−o

2

F

)
. (14)

The vector of intensive variables is obtained from (14),

∂U

∂x
=



µY ,
µX− ,
µZ− ,

q1
C1
−
µe−o

1

F
,

q2
C2
−
µe−o

2

F


.

It is composed by the chemical potentials and the electrical
potentials of the electrochemical process. The IPHS repre-
sentation is obtained similarly to (10) taken into account
the electrical part. Hence we obtain

ẋ =
(r1
T
J1 +

r2
T
J2

) ∂U
∂x

+ gI (15)

with

J1 =


0 0 0 0 0 −1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 F
0 0 0 0 0 0
1 −1 0 −F 0 0

 ,

J2 =


0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 F
0 1 −1 0 −F 0

 .
We observe that in addition to the chemical reaction
scheme, J1 and J2 maps the coupling between the electrical
and chemical domain given by (13). The coupling is indeed
modulated by the Faraday’s constant F . The input map
is given by

g =


0
0
0
−1
1

 .
From (15) we identify the modulating functions R̄1 and
R̄2, each for one electrochemical reaction.

R̄1 =
r1
T
,

R̄2 =
r2
T
.

(16)

Notice that we have used the notation R̄ to indicate that
the modulating functions now depend on the electical
charges. The thermodynamic driving forces of the process
are now influenced by the electrical charge of the cell,
which affects the reaction rates chemical balances. This
is indeed expressed by the Poisson brackets defined by J1
and J2,

∂S

∂x

>
J1
∂U

∂x
= µX− − µY − F

(
q1
C1
−
µe−o

1

F

)
= Ã1,

∂S

∂x

>
J2
∂U

∂x
= µY − µZ− − F

(
q2
C2
−
µe−o

2

F

)
= Ã2,

(17)

which correspond to the electrochemical affinities (Kon-
depudi and Prigogine, 1998), as expected. Analogous to
the purely chemical reaction case, we can identify the
positive definite functions γ̃1 and γ̃2,

γ̃1 =
r1

T Ã1

,

γ̃2 =
r2

T Ã2

.
(18)



The functions γ̃1 and γ̃1 are indeed positive definite and
well defined. This can be shown in the same manner as
it has been shown in (Ramirez et al., 2013a) for chemical
reactions. The IPHS of the process has as input the current
of the load, and the energy conjugated output of the
system is

y = g>
∂U

∂x

=

(
q2
C2
−
µe−o

2

F

)
−
(
q1
C1
−
µe−o

1

F

)
= V12

which is the voltage drop over the electrodes, which we
have denoted by V12. At both electrodes, the chemical
potential of the electrons at the vanishing potential is the
same; i.e. µe−o

1
= µe−o

2
. The IPHS model (15) can be

extended to more complex reaction schemes in a similar
manner as it has been presented in Ramirez et al. (2014).

4.3 Energy and entropy balance

The energy balance of the process is given by (3),

dU

dt
= y>u

= V12I,
(19)

i.e. the electrical power delivered or obtained by the elec-
trochemical process. The entropy balance on the other-
hand is given by (4), hence using (16), (17) and (18) we
have

dS

dt
=
∑
i=1,2

γ̄i{S,U}2Ji
+ ysv

=
∑
i=1,2

ri

T Ãi

(Ãi)
2 +

V12I

T

=
∑
i=1,2

σi +
V12I

T
.

(20)

Here
∑

i=1,2 σi = σ ≥ 0 is the total internal entropy
production generated by the electrochemical reaction. The
term 1

T V12I represents the entropy flowing in our out of
the process. Notice that (20) can be written as

dS

dt
=
∑
i=1,2

R̄iĀi +
V12I

T

=
∑
i=1,2

Ãi

T

dξ

dt
+
V12I

T

which is the same as (7), but for an electrochemical process
with two reactions and one port.

4.4 Interconnection with an electrical load

The interconnection with an electrical load can be done
through the port variables. For instance if a resistor
with conductance ρr is connected, then the current is
characterized by the following feedback

I = −ρrV12
= −ρry

= −ρrg>
∂U

∂x

(21)

The evolution of the internal energy of the whole system
is then described by

dU

dt
= −∂U

∂x

T (
ρrgg

>) ∂U
∂x

= −ρrV 2
12

which corresponds to a dissipative IPHS. From a control
perspective, this is indeed expected since the resisitive load
can be formulated as a negative feedback and thus induce
dissipation with respect to the open-loop Hamiltonian as
it has been reported in (Ramirez et al., 2016). Furthemore,
from a modelling perspecvtive the interconnection of a
thermodynamic system with an electrical system can be
formulated as the interconnection of a reversible and an
irreversible PHS. This formulation can actually be seen as
a generalization of IPHS to coupled mechanical-electrical-
thermodynamic systems (Ramirez et al., 2013b, 2018). In
this case the entropy balance is given by

dS

dt
=
∑
i=1,2

σi −
ρr
T
V 2
12

= σ − ρr
T
V 2
12.

The interconnection with a simple resistive load shows that
the IPHS model permits on one hand perform in a natural
and simple manner the interconnection with other IPHS
or PHS through the ports of the system, while preserving
the passive properties of the system. On the other hand
it is well suited for control design and stabilization since
it provides two potential functions which can be used for
passivity based control design (Ramirez et al., 2016).

5. FINAL REMARKS

An irreversible port-Hamiltonian system (IPHS) formula-
tion for a class of non-isothermal electrochemical process
has been proposed. An internal energy balance perspective
has been adopted to address the contribution of the non-
isothermal characteristic of the electrochemical process.
An energy balance equation is included in the dynamical
model of the process and by using the definition of the
thermodynamic properties of the electrochemical systems
and inspired by the IPHS formulation of chemical reaction
networks, an IPHS model for a general electrochemical
process is proposed. This model has a clear thermody-
namic interpretation and since it is constructed in terms of
internal energy and entropy conjugated ports it is straight-
forward to interconnect with other systems, such as electri-
cal loads or sources. Futhermore, the passivity properties
of the system make the proposed model well suited for
control purposes. An example of a simple electrochemical
process with two simultaneous reactions is used to derive
and illustrate the model. Then a simple resistive load is
considered to show the benefit of the port-based formu-
lation of the model. The relation with controlled IPHS is
done as well as the relation with reversible-IPHS. Future
work will consider the interconnection of the proposed
model with realistic loads, the study of more complex
electrochemical reactions and the design of model based
controllers.
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