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Abstract: The behavior of fluids in channel with irregular geometries is study through the
partial differential equations that describe mass and momentum balances using numerical
methods. In this paper, from these partial differential equations, we obtain a scalable lumped-
parameter model to describe the behavior of incompressible fluids in channels with sudden
changes in cross sectional areas, including dissipative effects, using the port-Hamiltonian
framework. We relax the incompressibility hypothesis to admit density variations in an
infinitesimal section in the coupling zone between two sections. Simulation results with airflow
shows how the proposed model allows an analysis of the fluid in each section of fluid channel
and reproduce a suitable flow behavior where density variations in coupling zones are less than
0.6%
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1. INTRODUCTION

A fluid is considered incompressible when its density is
constant. In the practice, to simplify the analysis of com-
plex systems, is common consider as incompressible any
fluid whose density variation is very little, i.e., can be
considered as negligible. The incompressibility approxi-
mation depends on the conditions to which the fluid is
subjected (Johnson, 1998). In an adiabatic process the flow
of either a gas or a liquid can be considered incompressible
when its Mach number, ratio between the fluid and sound
velocities, is very small. A particular case highly studied
is the air, that can be considered incompressible for Mach
numbers less than 0.3. This assumption for the airflow is
usual in aerospace engineering (Wu and Cao, 2015), and
bioengineering applications (Comer et al., 2001; Cal et al.,
2017).

Consider a fluid in motion through a channel width ir-
regular geometry, as shown Figure 1, where the cross-
sectional area varies in different sections. Changes in the
cross-sectional area produces variations in the flow speed
and energy losses associated width the channel expan-
sion and contraction. This system can be found in in-
dustrial process as wastewater treatment (Hager, 2010),
and bioengineering applications as the study of arterial
blood flow (Guidoboni et al., 2009) and airflow in the
vocal apparatus (Cisonni et al., 2008). The fluid behav-
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Fig. 1. Fluid through a channel with irregular geometry

ior in irregular geometries is commonly studied through
distributed-parameters models. These models use numer-
ical techniques, as finite-volumes and LS-STAG, among
others, that presents strong computational demands to
obtain a detailed flow description (Bourantas et al., 2016;
Sharatchandra and Rhode, 1994; Darbandi and Naderi,
2006).

To reduce the complexity of fluid systems, a common
engineering simplification is to consider the fluid as an
one-dimensional flow. Thus, the fluid behavior is given by
following partial differential equations (PDEs):

∂tρ+ ∂z (ρv) = 0 (1)

ρ∂tv +
ρ

2
∂zv

2 + ∂zp = 0 (2)

where ρ and v are the fluid density and velocity, p is the
static pressure and ∂z = ∂/∂z. The PDEs in (1) and (2)
represents the mass and momentum conservation laws for
fluids (Bird et al., 2014), receptively.

Additionally, to simplify the computational complexity
lumped-parameter models are used. In these models the
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Fig. 2. Interconnection of masses in mechanical systems

flow behavior is studied only in one section of the channel.
Now, consider that the flow channel is divided in n
sections through n − 1 coupling zones or nodes. Under
the incompressibility hypothesis, obtaining a model that
allows to analyze the flow behavior presents drawbacks
associated with causality problems. To illustrate these
drawbacks consider the mechanical system of three masses
that shown in Figure 2. If we coupling masses directly, the
resulting model is represented by a single mass equivalent
to the sum of individual masses. To obtain a model that
describe the behavior of each mass is necessary the use of
an additional element, a spring, to coupling, obtaining a
model where the behavior of each mass can be individually
analyze. In a fluid, the model that describe the flow in each
section is equivalent to a mass in a mechanical system,
then in each node we need a element that permit a proper
coupling between sections.

On the other hand, the port-Hamiltonian (PH) framework
is a useful mathematical tool to model systems (Van der
Schaft and Jeltsema, 2014). This framework is focused on
describing the energy flux in the system and provide a
set of advantageous features. In a PH model the inputs
u ∈ Rm and outputs y ∈ Rm are conjugated in the
power sense, i.e., the inner product between u and y
represents the supply power. Additionally, the PH models
describe the state variables as a function of a non-negative
function H that represents the total storage energy in
the system and whose rate of change is bounded by the
power supplied, Ḣ ≤ yTu. This feature provide properties
of the control theory as passivity and Lyapunov stability
(Van der Schaft, 2017).

In general, using the PH framework a lumped-parameter
system of n state variables can be describe as

ẋ = (J −R)∂xH + gu (3)

y = gT∂xH (4)

where J ∈ Rn×n is an interconnection matrix, R ∈ Rn×n is
the dissipation matrix and g ∈ Rn×m is the input matrix.

The behavior of fluids using a infinite-dimensional port-
Hamiltonian formulation has been studied in works as
van der Schaft and Maschke (2002); Morrison (1998);
Morrison et al. (2009); Altmann and Schulze (2017). How-
ever to simulate these model is necessary apply spatial
discretization methods. In this sense, in works as Kotyczka
(2013); Kotyczka and Maschke (2017); Trenchant et al.
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Fig. 3. Coupling incompressible fluid sections using a
compressible behavior in nodes

(2018a,b) has been proposed spatial discretization tech-
niques to preserve the port-Hamiltonian structure.

From a PH view point, a mass and a spring are element
that storage kinetic and potential energies, respectively
(Van der Schaft and Jeltsema, 2014). In a incompress-
ible flow, under adiabatic conditions and neglecting the
gravitational effects, the fluid storage only kinetic energy,
i.e., the incompressibility hypothesis restricts the storage
of potential energy in the fluid.

In this paper we propose a scalable port-Hamiltonian
model to describe the behavior of incompressible fluids
in irregular geometries. For this we consider relax the
incompressible hypothesis to obtain a proper coupling
between fluid sections.

2. A SIMPLE MODEL FOR THE INCOMPRESSIBLE
FLUID

To obtain a fluid element equivalent to a springs, is nec-
essary to consider how the potential energy storages in a
fluid. Neglecting the gravitational effects and considering
a isothermal fluid, the potential energy can be associated
with the fluid work. However, under the incompressibility
assumption the fluid work is zero. Thus, to relax the
incompressible hypothesis we consider the following as-
sumptions

Assumption 1. Let a fluid whose density varies so little,
∆ρ ≪ ρ. Thus, we can consider the flow in one section
behaves as an incompressible fluid and the compressibil-
ity effects occur in an infinitesimal volume, called node,
located between 2 sections, as shown in Figure 3.

Assumption 2. As a node represent an infinitesimal vol-
ume in the coupling zone between two fluid sections, when
the node expands or contracts, the mass variations are
much less than the volume variations. Then, we consider
an uniform density distribution and a constant mass in
each node, i.e., the following relationship is satisfied

ρjVj = κ (5)

where ρj and Vj are the density and volume in node j.

2.1 Modeling a fluid section

The balance equation in (2) represents the momentum
conservation law without losses. However, when the fluid
channel presents variations in its geometry, as contrac-
tion, expansion and direction changes, is know that occur
energy losses in the flow (Brodkey and Hershey, 2003;
Villegas-León et al., 2016). These losses are given by local



turbulences that contribute significantly to the pressure
drop. Thus, to including this effects and considering the
incompressibility assumption, we rewrite the momentum
balance as

ρ0∂tv = −∂zP − fd(z) (6)

where ρ0 is the reference fluid density, P = 1
2ρ0v

2 + p is
the total pressure field and fd(z) is a force associated with
mechanical energy losses.

Integrating (6) in the corresponding volume of section
i, using the Leibnitz integral rule, the Gauss divergence
theorem and considering an uniform cross-sectional area in
the section, we can obtain a finite-dimensional description
of the fluid as follow∫

ρ0∂tvdVi = −
∫
∂zPdVi −

∫
fd(z)dVi (7a)

ρ0
d

dt

∫
vdVi =

∫
PdS1i −

∫
PdS2i −Ai

∫
fd(z)dz

(7b)

ρ0Viv̇i = AiP1i −AiP2i −Ai
∫
fd(z)dz (7c)

where v̇i is the time derivative of the average velocity in
section i, Ai is the cross-sectional area, and P1i and P2i

are the average pressures of the inlet and outlet boundary
surfaces S1i and S2i respectively.

According to Mulley (2004) the loss of mechanical energy
in channel contractions and expansions has been empiri-
cally associated with the dynamical pressure of the fluid.
Thus, in a volume Vi we use the following approximation:∫

fd(z)dz ≈ λi
1

2
ρ0v

2
i (8)

where the term (ρ0/2)λiv
2
i is the average pressure drop

associated with the mechanical energy losses and λi is a
dimensionless loss factor in section i. Substituting (8) in
(7c), we can describe the dynamic behavior of the fluid in
a section as

ρ0Viv̇i = −Ai
ρ0
2
λiv

2
i +AiP1i −AiP2i (9)

Defining πi = ρ0Vivi as the air momentum in section i and
Ki = 1

2Cxiπ
2
i as the corresponding kinetic energy, where

Cxi = 1/(ρ0Vi) , the port-Hamiltonian formulation of (9)
is given by

π̇i = −Ai
ρ0λiπi

2Vi
∂πi

Ki + [Ai −Ai]
[
P1i

P2i

]
(10a)

[
Q1j

−Q2j

]
=

[
Ai
−Ai

]
∂πi

Ki (10b)

where Q1i and Q2i are the inlet and outlet volumetric
flows in section i. The definition of loss factor λi depends
of geometry changes in the channel and will be discussed
below.

2.2 Modeling the nodes

The model proposed in (10) represents the fluid behavior
on arbitrary section i. However, note that the input and
output ports are not compatible to interconnect width
adjacent sections. This drawback is a consequence of the
causality problem above discussed.

To solve this obstacle, we use the Assumption 1 to obtain
a model in the coupling zone between two fluid sections.
Thus, conservation mass law in (1) can be rewritten as

∂tρj = −ρj∂zvj (11)

Integrating (11) in the volume of node j and using the
Gauss divergence theorem, the model that describe the
fluid behavior in a node can be deduced as follow∫

Vj

∂tρjdVj = −ρj
∫

Vj

∂zvjdVj (12a)

Vj ρ̇j = ρj

(∫
vjdS1j −

∫
vjdS2j

)
(12b)

ρ̇j =
ρj
Vj

(Q1j −Q2j) (12c)

where the Q1j and Q2j are the average flows in the inlet
and outlet cross-sectional surfaces, S1j and S2j , of the
corresponding node, respectively.

Note that the inputs ports in (12c) are compatible with
the outputs ports of adjacent fluid sections described
by (10). To complete the coupling is necessary obtain a
expression to relate the node pressure changes with the
corresponding density variations. Then, given the constant
mas hypothesis described in Assumption 2, we can use the
bulk modulus definition [cite], βS = −Vj(dpj/dVj), and
(5) to write the differential of pressure in a node as

dpj =
βS
ρj
dρj (13)

Considering that pj = 0 when ρj = ρ0 and solving (13),
the pressure behavior in the j-th node is given by

pj(ρj) = βS ln

(
ρj
ρ0

)
(14)

Given the infinitesimal volume assumption, the kinetic
energy in the node can be neglected. Thus, the energy
in an arbitrary node j, is is given by the potential energy
associated with the corresponding density variations. From
the first law of thermodynamics [cite] and considering an
adiabatic process, the potential energy in node j, Ej , is
given by the fluid work, dEj = −pjdVj . Using (5), the
differential of potential energy can be written as

dEj = pj
κ

ρ2j
dρj (15)

where pj is the node pressure. From (15), the pressure in
node j can be described as pj = (ρ2j/κ)∂ρjEj . Then, the
behavior potential energy is given by the following non-
negative function

Ej(ρj) = κβS

(
ρj − ρ0 (1 + ln(ρj/ρ0))

ρjρ0

)
(16)

Finally, using (16) we can rewrite (12c) as the following
port-Hamiltonian formulation

ρ̇j = 0∂ρjEj +
[
ρ2j/κ −ρ2j/κ

] [Q1j

Q2j

]
(17a)

[
p1j
−p2j

]
=

[
ρ2j/κ
−ρ2j/κ

]
∂ρjEj (17b)

Note that the input and outputs ports in (17) are compat-
ible to coupling the adjacent fluid sections, i.e., this model
can be used to obtain a scalable fluid model.



2.3 Overall Model

Now consider a fluid channel dived in two sections, i.e.,
i ∈ {1, 2} and j = 1. Thus, from model in (10), the
behavior of each fluid section are given by

π̇1 = −A1
ρ0λ1π1

2V1
∂π1

K1 + [A1 −A1]

[
P11

P21

]
(18a)

[
Q11

−Q21

]
=

[
A1

−A1

]
∂πi

K1 (18b)

π̇2 = −A2
ρ0λ2π2

2V2
∂π2

K2 + [A2 −A2]

[
P12

P22

]
(19a)

[
Q12

−Q22

]
=

[
A2

−A2

]
∂π2K2 (19b)

where K1 = 1
2Cx1π

2
1 and K2 = 1

2Cx2π
2
2 are the kinetic

energies in corresponding sections.

On the other hand, from the model in (17), the node
behavior is given by

ρ̇1 = 0∂ρ1E1 +
[
ρ21/κ −ρ21/κ

] [Q11

Q21

]
(20a)

[
p11
−p21

]
=

[
ρ21/κ
−ρ21/κ

]
∂ρ1E1 (20b)

where E1 = κβS

(
ρ1−ρ0(1+ln(ρ1/ρ0))

ρ1ρ0

)
.

Note that the input flows in (20) are compatible width the
outputs Q21 in (18) and Q12 in (19). Similarly, the outputs
in (20) are compatible width the inputs P21 in (18) and P12

in (19). Thus, we can coupling the two fluid sections using
the node model and obtain the following port-Hamiltonian
model to describe the fluid

[
π̇1
π̇2
ρ̇1

]
=




−A1
ρ0λ1π1

2V1
0 −A1

ρ21
κ

0 −A2
ρ0λ2π2

2V2
A2

ρ21
κ

A1
ρ21
κ

−A2
ρ21
κ

0




[
∂π1H
∂π2H
∂ρ1H

]

+

[
A1 0
0 −A2

0 0

] [
P11

P22

]
(21a)

[
Q11

−Q22

]
=

[
A1 0 0
0 −A2 0

][∂π1
H

∂π2
H

∂ρ1H

]
(21b)

where Q11 and Q22 are the inlet and outlet volumetric
flows of fluid channel, P11 and P22 the corresponding inlet
and outlet pressures, and the total energy is given by

H = κβS

(
ρ1 − ρ0 (1 + ln(ρ1/ρ0))

ρ1ρ0

)
+

2∑

i=1

1

2
Cxiπ

2
i (22)

3. SCALABLE MODEL

The model propose in (21) describes the behavior of
two fluid sections. However, the use of node model in
(17) can be extended to interconnect n fluid sections. In
this section, we expand the models in (10) and (17) to
describe n fluid sections and n − 1 nodes, and define the
interconnections to obtain the fluid channel model.

First, for n fluid sections we define π = [π1, π2, · · · , πn]
T

as
the momenta vector and K =

∑n
i=1Ki as the total kinetic

energy, from (10) we can describe the fluid behavior in n
channel sections as

π̇ = −R∂πK + [gπ1 −gπ2]

[
uπ1
uπ2

]
+ g

[
P1

P2

]
(23a)

[
yπ1
yπ2

]
=

[
gTπ1
−gTπ2

]
∂πK (23b)

[
Q1

−Q2

]
= gT∂πK (23c)

where P1 and P2 are the external pressures in the inlet
and outlet boundary sections, respectively, Q1 and Q2 the

corresponding volumetric flows, uπ1 = [P12, · · · , P1n]
T

is

the inlet pressure vector, uπ2 =
[
P21, · · · , P2(n−1)

]T
is the

outlet pressure vector, yπ1 = [Q12, · · · , Q1n]
T

and yπ2 =[
Q21, · · · , Q2(n−1)

]T
are the internal inlet and outlet vol-

umetric flow vectors, R ∈ Rn×n is the dissipation matrix
associated with energy losses by the geometry changes, and
matrices g ∈ Rn×2 and {gπ1, gπ2} ∈ Rn×(n−1) are given by

gπ1 =




0 0 · · · 0
A2 0 · · · 0
0 A3 · · · 0
...

...
. . .

...
0 0 · · · An




gπ2 =




A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An−1

0 0 · · · 0




g =

[
A1 0
0 0
0 −An

]

where 0 is a zero matrix of suitable dimensions. Matrix R
will be define in Section 4.

Now, to obtain a description of the n − 1 nodes we

define ρ = [ρ1, ρ2, · · · , ρn−1]
T

as the density vector and

E =
∑n−1
j=1 Ej as the fluid potential energy. Thus, from

(17) the behavior of nodes in the fluid channel is given by

ρ̇ = 0∂ρE + [gρ −gρ ]

[
uρ1
uρ2

]
(24a)

[
yρ1
yρ2

]
=

[
gTρ
−gTρ

]
∂ρE (24b)

where uρ1 is the inlet flow vector of nodes and uρ2 is the
outlet flow vector, yρ1 and yρ2 are the inlet and outlet node

pressures, respectively, and gρ ∈ R(n−1)×(n−1) is given by

gρ =




ρ21/k 0 · · · 0
0 ρ22/k · · · 0
...

...
. . .

...
0 0 · · · ρ2n−1/k




Note that the input and output ports of nodes model
in (24) are compatible with the corresponding ports of
sections model in (23). Thus, we can define the following
interconnection rule


uπ1
uπ2
uρ1
uρ2


 =




0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0






yπ1
yπ2
yρ1
yρ2


 (25)

Finally, using (23), (24) and (25), we obtain that fluid
behavior in a channel with irregular geometries is given
by



[
π̇
ρ̇

]
=

[ −R J
−JT 0

] [
∂πH
∂ρH

]
+

[
g
0

] [
P1

P2

]
(26a)

[
Q1

−Q2

]
=
[
gT 0

] [∂πH
∂ρH

]
(26b)

where P1 and P2 are the boundary pressures of fluid
channel, Q1 and Q2 are the corresponding intlet and outlet
volumetric flows, J = (gπ1 − gπ2) gTρ and the total energy
is given by

H =

n∑

i=1

1

2

π2
i

ρ0Vi
+

n−1∑

j=1

κβS

(
ρj − ρ0 (1 + ln(ρj/ρ0))

ρjρ0

)

(27)

4. DEFINITION OF LOSS FACTORS

The definition of the loss factor λi depends of geometry
variation of the channel. In literature, we can found studies
where is analyzed the loss factor for direction changes
in the channel (Haidar, 1995; Villegas-León et al., 2016),
channel contractions and expansions (Mulley, 2004; Crane,
2013), and T and Y junctions (Bassett et al., 2001; Nikita
et al., 2015; Oka and Itō, 2005; Pérez-Garćıa et al., 2010).
In this work we consider only the loss factors associated
with sudden expansions and contractions.

In a sudden expansion, when the fluid enters in a section
with enlarged cross-sectional area a jet is formed as the
fluid separates from the wall of the small channel. This jet
expands until it fills the entire area and some fluid break
away and circulates in the corner of the expanded section
(Brodkey and Hershey, 2003; Mulley, 2004). In this case
the loss factor is given by

λei =

(
1− Ai

Ai+1

)2

(28)

In a sudden contraction, the flow behavior is different that
in an expansion. Given the are reduction of the channel,
the fluid accelerates as it enters the small section and
occurs a well-known phenomena called vena contracta.
According to Mulley (2004) the loss factor in sudden
contraction is given by

λci =
1

2

(
1− Ai

Ai−1

)
(29)

According to Brodkey and Hershey (2003), the loss factor
in the entrance flow depends of the entrance channel
geometry and is less than 0.78, and loss factor associated
width the exit flow is equal to 1.

Then, from above considerations for energy losses associ-
ated with the internal irregular geometries, the dissipation
matrix in (26) is given by

R =




A1
ρ0λ1π1

2V1
0 · · · 0

0 A2
ρ0λ2π2

2V2
· · · 0

...
...

. . .
...

0 0 · · · An
ρ0πn
2Vn




where each λi, i ∈ [1, n−1] are define by λei or λci depending
of the internal geometry and the loss factor in the last
section is given by λn = 1.

In cases where in the internal losses are neglected the
dissipation matrix is given loss factor of the the last
section, i.e.,

R =

[
0 0

0 An
ρ0πn
2Vn

]
(30)

5. NUMERICAL EXAMPLES

In this section we presents numerical simulations for ap-
plication examples of the model proposed in (26) using
ODE15s solver of MATLAB software. In these examples
we consider as fluid an airflow whose density is given by
ρ0 = 1.1376kg/m3 at 35◦C and bulk modulus βS = 142×
103Pa.

Nest, we presents 2 examples. In Example 1 we study
a pipe with uniform cross sectional area using 4 fluid
section, where as the geometry no change the internal
dissipations are neglected. In Example 2, we analyze a pipe
width 2 area changes, one contraction and one expansion,
using 6 fluid sections and including the dissipative effects
associated with geometry changes.

On the other hand, as has been mentioned in Section
1, in the practice a fluid is considered incompressible if
the density variations are negligible. Other assumption in
incompressible fluids is that the potential energy of the
flow is negligible in comparison with the corresponding
kinetic energy. To evaluate that the model proposed in
(26) satisfy these considerations, we analyze the density
changes ∆ρi in each node using

∆ρi = 100
ρj − ρ0
ρ0

(31)

and the normalized kinetic and potential energies in the
system, K̄ and Ē, respectively, where

K̄ =

∑n
i=1

1
2
π2
i

ρ0Vi

H
(32)

Ē =

∑n−1
j=1 κβS

(
ρj−ρ0(1+ln(ρj/ρ0))

ρjρ0

)

H
(33)

Example 1. A pipe of 4 sections with equal cross-sectional
area Consider a pipe with a transversal area A0 and
length L, we divide this pipe in 4 sections with volume
V0 = A0L/4. Thus, the matrices associated with the port-
Hamiltonian model in (26) are given by

R =




0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 s4
λπ4
V0


 G =



A0 0
0 0
0 0
0 −A0




J =
A0

k




−ρ21 0 0
ρ21 −ρ22 0
0 ρ22 −ρ23
0 0 ρ23




Setting A0 = 1 × 10−4m2, L = 1 × 10−3m, κ = 1 ×
10−10kg, and P1 = 800Pa and P2 = 0Pa, we obtain
the simulation results that shown in Figure 4. Note that
the momenta presents a fast convergence to an uniform
behavior in all sections (Figure 4.a). The density variation
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Fig. 4. Simulation results for example 1. (a) Momentum behavior in each fluid section, (b) Density variation in each
node, (c) Behavior of kinetic (red line) and potential (blue line) energies in Joules, (d) Normalized kinetic (red
line) and potential (blue line) energies
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Fig. 5. Fluid channel with irregular geometry

is less than 0.6% (Figure 4.b), i.e., the density varies in
concordance with Assumption 1, that traditionally can be
neglected. Finally, the energy behavior is shown, where the
potential energy is significant only in the first moments of
simulation (Figure 4.d), later kinetic energy is dominant,
being greater than potential energy in a scale of 106 times
(Figure 4.c). All these results are in concordance with the
conditions used traditionally to assume the incompressible
hypothesis.

Example 2. A pipe with different cross sectional areas
Consider a pipe that present contraction and expansion
section, as shown in Figure 5. The matrices of port-
Hamiltonian formulation in (26) are given by

R =




0 0 0 0 0 0

0 s2
λ2π2
V0

0 0 0 0

0 0 0 0 0 0

0 0 0 s4
λ4π4
V1

0 0

0 0 0 0 0 0

0 0 0 0 0 s6
λ6π6
V2




J =
1

k




−A0ρ
2
1 0 0 0 0

A0ρ
2
1 −A0ρ

2
2 0 0 0

0 A1ρ
2
2 −A1ρ

2
3 0 0

0 0 A1ρ
2
3 −A1ρ

2
4 0

0 0 0 A2ρ
2
4 −A2ρ

2
5

0 0 0 0 A2ρ
2
5




G =

[
A0 0 0 0 0 0
0 0 0 0 0 −A2

]T

where λ2 = (1/2)(1 − A1/A0) and λ2 = (1−A1/A2)
2

are
the loss factors associated with a sudden pipe contraction
and expansion Hager (2010), respectively, and λ6 = 1 is
the loss factor when the airflow leaves of the pipe.

Setting A0 = 1 × 10−4m2, A1 = 0.5 × 10−4m2, A2 = 2 ×
10−4m2, V0 = 1 × 10−7m3, V1 = 0.5 × 10−7m3, V2 = 2 ×
10−7m3,, κ = 1×10−10kg, and P1 = 800Pa and P2 = 0Pa,
we obtain the simulation results that shown in Figure
5. The top row shows the air momentum and velocity
behavior in each section. Note that the momenta presents



a fast convergence to the same signal for all sections, and
the velocities depends of the section area. The middle row
shows the density behavior. Note that the density variation
is less than 1 percent, i.e., the density varies in concordance
with Assumption 1. Finally, in bottom row the energy
behavior is shown, where the potential energy is significant
only in the first moments of simulation, later the kinetic
energy is dominant.

REFERENCES

Altmann, R. and Schulze, P. (2017). A port-Hamiltonian
formulation of the Navier–Stokes equations for reactive
flows. Systems & Control Letters, 100, 51–55. doi:
10.1016/j.sysconle.2016.12.005.

Bassett, M.D., Winterbone, D.E., and Pearson, R.J.
(2001). Calculation of steady flow pressure loss coeffi-
cients for pipe junctions. Proceedings of the I MECH
E Part C Journal of Mechanical Engineering Scienc,
215(8), 861–881. doi:10.1243/0954406011524199.

Bird, R.B., Stewart, W.E., Lightfoot, E.N., and Klingen-
berg, D.J. (2014). Introductory Transport Phenomena.
Jhon Wiley & Sons, United States of America.

Bourantas, G.C., Cheeseman, B.L., Ramaswamy, R.,
and Sbalzarini, I.F. (2016). Using DC PSE op-
erator discretization in eulerian meshless collocation
methods improves their robustness in complex ge-
ometries. Computers & Fluids, 136, 285–300. doi:
10.1016/j.compfluid.2016.06.010.

Brodkey, R. and Hershey, H. (2003). Transport Phenom-
ena: A Unified Approach. Chemical engineering series.
Brodkey Publishing.

Cal, I.R., Cercos-Pita, J.L., and Duque, D. (2017). The
incompressibility assumption in computational simula-
tions of nasal airflow. Computer Methods in Biomechan-
ics and Biomedical Engineering, 20(8), 853–868. doi:
10.1080/10255842.2017.1307343.

Cisonni, J., Van Hirtum, A., Pelorson, X., and Willems,
J. (2008). Theoretical simulation and experimental
validation of inverse quasi-one-dimensional steady and
unsteady glottal flow models. The Journal of the
Acoustical Society of America, 124(1), 535–545. doi:
10.1121/1.2931959.

Comer, J.K., Kleinstreuer, C., and Zhang, Z. (2001).
Flow structures and particle deposition patterns in
double-bifurcation airway models. Part 1. Air flow
fields. Journal of Fluid Mechanics, 435. doi:
10.1017/S0022112001003809.

Crane (2013). Flow of Fluids Through Valves, Fittings
and Pipe. Technical Paper No 410.

Darbandi, M. and Naderi, A. (2006). Multiblock hy-
brid grid finite volume method to solve flow in ir-
regular geometries. Computer Methods in Applied
Mechanics and Engineering, 196(1-3), 321–336. doi:
10.1016/j.cma.2006.04.005.

Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.,
and Lapin, S. (2009). A kinematically coupled time-
splitting scheme for fluid–structure interaction in blood
flow. Applied Mathematics Letters, 22(5), 684–688. doi:
10.1016/j.aml.2008.05.006.

Hager, W.H. (2010). Losses in Flow. In Wastewater Hy-
draulics, 17–54. Springer Berlin Heidelberg, Berlin, Hei-
delberg, second edition. doi:10.1007/978-3-642-11383-
3 2.

Haidar, N. (1995). Prediction of compressible flow pressure
losses in 30–150 deg sharp-cornered bends. Journal of
Fluids Engineering, 117(4), 589. doi:10.1115/1.2817306.

Johnson, R. (1998). The Handbook of Fluid Dynamics.
Mechanical engineering. Springer Berlin Heidelberg.

Kotyczka, P. (2013). Discretized models for networks of
distributed parameter port-Hamiltonian systems. In
Proceedings of the 8th International Workshop on Mul-
tidimensional Systems (nDS13), 63–67. VDE, Erlangen,
Germany.

Kotyczka, P. and Maschke, B. (2017). Discrete port-
Hamiltonian formulation and numerical approximation
for systems of two conservation laws. at - Automa-
tisierungstechnik, 65(5), 308–322. doi:10.1515/auto-
2016-0098.

Morrison, P.J. (1998). Hamiltonian description of the ideal
fluid. Reviews of Modern Physics, 70(2), 467–521. doi:
10.1103/RevModPhys.70.467.

Morrison, P., Lebovitz, N.R., and Biello, J.A. (2009).
The Hamiltonian description of incompressible fluid
ellipsoids. Annals of Physics, 324(8), 1747–1762. doi:
10.1016/j.aop.2009.04.003.

Mulley, R. (2004). Flow of Industrial Fluids: Theory and
Equations. CRC Press.

Nikita, C., Hardalupas, Y., and Taylor, A. (2015). Study
of Pressure Losses of Unsteady Compressible Flows in
Three- Way Junctions. In SAE Technical Paper 2015-
24-2399. doi:10.4271/2015-24-2399.
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Fig. 6. Simulation results for example 2. (a) Momentum behavior in each fluid section, (b) Density variation in each
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