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Abstract— We consider the port-Hamiltonian formulation of
systems of two conservation laws with canonical interdomain
coupling in one spatial dimension. Based on the structure-
preserving discretization in space and time, we propose two di-
rections for the estimation of the discrete states from boundary
measurement. First, we design full state Luenberger observers
for the linear case. To guarantee unconditional asymptotic
stability of the discrete-time error system, special attention is
paid to the implementation of the correction term in the sense of
implicit damping injection. Second, we exploit the flatness of the
considered class of possibly nonlinear hyperbolic systems, which
is preserved under the applied geometric discretization schemes,
to obtain a state estimation based on boundary measurement.
Numerical experiments serve as a basis for the comparison and
discussion of the two proposed discrete-time estimation schemes
for hyperbolic conservation laws.

I. INTRODUCTION

In order to implement state feedback control, observer de-
sign is necessary for the lack of complete state measurement
in real physical applications. Deterministic observer design
for linear finite dimensional systems has been established
in the 60s and 70s by Luenberger [1]. However, in the
nonlinear and infinite dimensional cases, observer design
is still an open research problem. In last two decades,
a powerful modeling and control approach, called port-
Hamiltonian (PH) approach has been proposed to cope with
nonlinear and distributed parameter systems. Based on the
energy and a structured representation of the power flows and
dissipation in the system, the PH framework is particularly
suited to describe the complex behavior of multi-physical
systems [2]. The PH approach has been generalized to
infinite-dimensional systems described by partial differential
equations (PDEs) in [3], [4]. Observer design for finite-
dimensional PH systems has been investigated in the last ten
years. It has been shown that the passivity of PH systems
is very useful for the observer design [5]. The idea of
Interconnection and Damping Assignment has been extended
to the observer design for PH systems in [6], [7].

In the infinite-dimensional case, particular attention has to
be paid to numerical issues associated with the design and
implementation of finite dimensional observers. Recently,
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progress has been made on the structure preserving spatial
discretization of PH systems, applicable to arbitrary spatial
dimension and complex geometries [8], [9]. A definition of
discrete-time PH systems based on time discretization with
collocation methods, which extends the notion of symplectic
integration schemes to open systems, has been proposed in
[10]. The simplest approach, which leads to such a discrete-
time PH system is the symplectic Euler scheme, applied to
partitioned systems. In [11], it is shown that beyond the
preservation of the PH structure, also the flatness property of
the corresponding outputs is preserved, which allows for the
explicit computation of discrete-time feedforward controls.

In this paper, we present two state estimation schemes
based on the full structure preserving discretization of hy-
perbolic systems of conservation laws. First, we present Lu-
enberger type observers based on implicit damping injection
with collocated and non-collocated measurements. Second,
we exploit the flatness of the discrete-time finite-dimensional
approximate models to construct an explicit scheme for state
estimation.

The paper is structured as follows. Section II gives an
overview of 1D PH systems of conservation laws and their
structure preserving discretization in space and time. The
main results of the paper, the implicit damping injection
based observer and the flatness-based state estimation, are
introduced in Section III. In Section IV, we show the
effectiveness of the proposed observers on the benchmark
example of the 1D wave equation, for which the solution
is exactly known. At last, we conclude this paper with final
remarks and some future perspectives.

II. PRELIMINARIES

A. Port-Hamiltonian systems of conservation laws

We consider 1D systems of two conservation laws in
PH form, written in terms of exterior differential calculus1.
According to [3], the PDE representation can be split into
structure, dynamics and constitutive equations,[

fp

fq

]
=

[
0 d
d 0

] [
ep

eq

]
, (Structure) (1a)[

ṗ
q̇

]
=

[
−fp
−fq

]
, (Dynamics) (1b)[

ep

eq

]
=

[
δpH
δqH

]
. (Constit. Eq.) (1c)

Considering an open domain Ω = (0, L), the state differ-
ential forms p, q ∈ L2Λ1(Ω) ⊂ R represent the conserved

1See [12] for an introduction to differential forms.



quantities. Flows fp, fq ∈ L2Λ1(Ω) and efforts (or co-states)
ep, eq ∈ H1Λ0(Ω) represent dual, power-conjugated port
variables. The exterior derivative d : Λ0(Ω) → Λ1(Ω) as
a unifying differential operator in exterior calculus plays
the role of the spatial derivative in 1D. δpH and δqH are
the variational derivatives2 of the energy or Hamiltonian
functional H =

∫ L
0
H with the Hamiltonian density H :

Λ1(Ω) × Λ1(Ω) × Ω → Λ1(Ω). With the definition of
boundary inputs, i. e. imposed boundary conditions (BCs)[

u1

u2

]
=

[
eq(0)
ep(L)

]
(Input BCs) (2)

and the collocated power-conjugate outputs[
y1

y2

]
=

[
ep(0)
−eq(L)

]
, (Coll. outputs) (3)

the application of the generalized Stokes’ theorem yields the
structural balance equation∫ L

0

ep ∧ fp +

∫ L

0

eq ∧ fq + y1u1 + y2u2 = 0. (4)

In 1D, the exterior product ∧ : Λ0(Ω) × Λ1(Ω) → Λ1(Ω)
of a 0-form (function) with a 1-form simply coincides with
the scalar product. After substitution of (1b) and (1c), one
obtains the energy balance

Ḣ = y1u1 + y2u2, (5)

which shows that the considered class of systems (assuming
H to be bounded from below) is passive, even lossless.

In this paper, we consider linear constitutive equation of
the form ep = ∗p, eq = ∗q, which represents a linear wave
equation with speed of propagation c = 1. The result for
flatness-based state estimation can be extended, with the
appropriate discretization of the constitutive equations3 in
a straightforward manner to nonlinear hyperbolic systems
like the Saint Venant equations or the Euler equations of
isentropic gas flow [13].

In some applications, the measured output is different from
the power-conjugated output4. We shall see how to use such
kind of information in the observer design.

B. Structure-preserving spatial discretization

The structure-preserving discretization of the system (1),
(2), (3) with mixed Whitney finite elements according to
[8] (with a flow mapping parameter α = 0) yields the state
representation5[

−fp
−fq

]
=

[
0 D
−DT 0

] [
ep

eq

]
+

[
g1 0
0 g2

] [
u1

u2

]
,[

y1

y2

]
=

[
ep1
−eqN

]
(6)

2For the definition, see [2], p. 232.
3In the spirit of [11].
4Consider as an example the laser measurement of the displacement at

the end of a flexible structure.
5The same equations are obtained with finite volumes on regularly

staggered grids [14].

with the discretized flow and effort vectors fp =[
fp1 , . . . , f

p
N

]
, fq =

[
fq1 , . . . , f

q
N

]
, ep =

[
ep1, . . . , e

p
N

]
and

eq =
[
eq1, . . . , e

q
N

]
and the matrices

D =


−1
1 −1

. . . . . .
1 −1

 , g1 =


1
0
...
0

 , g2 =


0
...
0
−1

 . (7)

The discrete flows fpi = −ṗi, fqi = −q̇i are the negative time
derivatives of the lumped states p̃i = pi and q̃i = qi, i =
1, . . . , N , which have the interpretation of integral conserved
quantities over the discretization edges. epi , eqi denote the
approximations of the nodal efforts (co-states), with eq0 = u1

and epN+1 = u2 the boundary inputs. It is straightforward to
verify from the (skew-)symmetry of this state representation
that the discretized structural balance equation

N∑
i=1

epi f
p
i +

N∑
i=1

eqi f
q
i + y1u1 + y2u2 = 0 (8)

holds, which approximates (4).
In the case of a linear wave equation on the interval Ω =

(0, 1) with Hamiltonian density = 1
2p∧ ∗p+ 1

2q ∧ ∗q, which
is treated as en example in the paper, the consistent effort
approximation is given by

epi =
pi
∆z

, eqi =
qi

∆z
, ∆z =

1

N
. (9)

C. Structure-preserving discretization in time

With the symplectic Euler scheme, the simplest possible
structure-preserving time integration method6 is applied to
the finite-dimensional approximation (6). The result is

1

∆t

[
pk+1−pk
qk+1−qk

]
=

1

∆z

[
0 D

−DT 0

] [
pk+1

qk

]
+

[
g1 0
0 g2

] [
uk1
uk+1

2

]
[
yk+1

1

yk2

]
=

1

∆z

[
gT1 0T

0T gT2

] [
pk+1

qk

]
. (10)

The inputs are sampled according to their physical charac-
ter, consistent with the symplectic Euler scheme, i. e. uk1 =
eq,k0 and uk+1

2 = −ep,k+q
N+1 . With the definition of the outputs,

we obtain an approximation of the energy balance of the form

1

∆t

[
ep,k+1 eq,k

] [pk+1 − pk
qk+1 − qk

]
= (yk+1

1 )Tuk1 +(yk2 )Tuk+1
2 .

(11)
For a more general definition of discrete-time Dirac struc-
tures/PH systems, and the discussion of the discrete-time
(structural) energy balance, we refer to the recent paper [10].
Flatness of the considered class of discretized models and
discrete-time trajectory generation is treated in [11].

III. FINITE-DIMENSIONAL STATE OBSERVERS

We use the fully discretized model of the wave equation
(10) for the design of two different observers in the sequel.
The output vector is written in terms of the two sampling
instants k and k + 1, according to the occurrence in the
discrete balance equation (10).

6See [15] for geometric numerical integration of Hamiltonian systems.



A. Luenberger observer

For the observer design we consider two different applica-
tion cases. First, the observer is designed from the measured
collocated output according to (10). Second, the case of non-
collocated measurement is investigated. If the considered
wave equation represents the dynamics of deflection w(z, t)
of a string, the boundary measurement

ym =

∫ 1

0

q (z, t) dz = w (1, t)− w (0, t) (12)

with q = ∂w
∂z corresponds to the total deflection, which can be

easily measured by a laser sensor in an experimental setup.
An interesting issue, which requires some care in the

design of the full state observer is the fact that the model
(10) is not in the form xk+1 = Axk + Buk, yk = Cxk of
an (explicit) discrete-time linear system. Instead, due to the
use of the symplectic Euler scheme, the difference equations
are partially implicit.

1) Observer based on collocated measurement: We con-
centrate on the observer design using the collocated output
as shown in (10). We set up the following copy of the
system, including the correction term. The sampling instants,
at which the output error is evaluated, are written α and β.

1

∆t

[
p̂k+1−p̂k
q̂k+1−q̂k

]
=

1

∆z

[
0 D

−DT 0

] [
p̂k+1

q̂k

]
+

[
g1 0
0 g2

] [
uk1
uk+1

2

]
+

[
l1 0
0 l2

]([
yα1
yβ2

]
−
[
ŷα1
ŷβ2

])
(13)[

ŷk+1
1

ŷk2

]
=

1

∆z

[
gT1 0T

0T gT2

] [
p̂k+1

q̂k

]
.

The choice of α and β, is crucial for the unconditional
asymptotic stability7 of the observer error dynamics (p̃k =
p̂k − pk, q̃k = q̂k − qk)[
I 0

cDT I

][
p̃k+1

q̃k+1

]
=

[
I cD
0 I

][
p̃k

q̃k

]
−
[
cl1g

T
1 0

0 cl2g
T
2

][
p̃α

q̃β

]
,

(14)
where c = ∆t

∆z > 0 denotes the ratio of time and spatial
discretization step.

Proposition 1: The error system (14) with l1 = r1g1, l2 =
r2g2, r1, r2 > 0, is unconditionally asymptotically stable for
c ≤ 1 and the choice α = β = k + 1.

Proof: For the given choices, Eq. (14) becomes[
I + cR1 0
cDT I + cR2

] [
p̃k+1

q̃k+1

]
=

[
I cD
0 I

] [
p̃k

q̃k

]
(15)

with R1, R2 ≥ 0 matrices of rank 1, which justifies the
designation “damping injection observer”. For R1 = R2 = 0,
the eigenvalues of the generalized eigenvalue problem (E,A)
associated with (15) lie on the unit circle for 0 < c ≤ 1. The
proof for c = 1 is shown in the appendix, for c = 0 all eigen-
values are 1, for 0 < c < 1, the eigenvalues are distributed
between these extrema on the unit circle. Depending on
whether α and β are k or k+1, the damping matrices appear

7The equilibrium of the discrete-time model is unconditionally asymptot-
ically stable if it is asymptotically stable for arbitrary ration c = ∆t

∆z
.

Fig. 1. Eigenvalues of (E,A), implicit observer damping injection.

Fig. 2. Eigenvalues of (E,A), explicit observer damping injection.

either on the right or the left hand side of (15). The former
case corresponds to damping injection with the explicit,
the latter with the implicit Euler scheme, which is known
to be unconditionally numerically stable. From asymptotic
stability of the corresponding continuous time observer error
dynamics8, and the unconditional numerical stability of the
discrete time implementation, the unconditional asymptotic
stability of (15) follows.

Figures 1 and 2 illustrate the effects of implicit and explicit
damping injection to the locations of the eigenvalues of
(E,A). For explicit damping injection, the eigenvalues leave
the unit circle above a certain threshold of r1 = r2 = r,
depending on c. In the implicit case, the eigenvalues remain
confined to the unit circle.

Remark 1: Figure 3 justifies the possibility of implicit
damping injection in a digital control system. If the cycle
times for the tasks “read measurement data” (1), “update
observer (and controller)” (2) and “set reference values” (3)
are small compared to the main cycle time, the knowledge
of yk+1

1 and yk+1
2 can be assumed for the computation of

p̂k+1 and q̂k+1.
2) Observer based on non-collocated measurement: We

now consider observer design with a measurement (12). The

8The introduced damping is pervasive and the corresponding system
eigenvalues lie in C−.

Fig. 3. Task cycles in a simplistic digital control system without commu-
nication delays



spatial and time discretization of this output is given by

yk+1
m =

1

∆z

[
gT3 0

] [pk+1

qk

]
(16)

with gT3 =
[
1, . . . , 1

]
∈ RN . We propose an observer based

on this non-collocated output (16) under the following form:

1

∆t

[
p̂k+1−p̂k
q̂k+1−q̂k

]
=

1

∆z

[
0 D

−DT 0

] [
p̂k+1

q̂k

]
+

[
g1 0
0 g2

] [
uk1
uk+1

2

]
+

[
l3
0

]
(yαm − ŷαm) (17)

ŷk+1
m =

1

∆z
[gT3 0T ]

[
p̂k+1

q̂k

]
.

The observer error dynamics with c = ∆t
∆z > 0 is[

I 0
cDT I

][
p̃k+1

q̃k+1

]
=

[
I cD
0 I

][
p̃k

q̃k

]
−
[
cl3g

T
3 0

0 0

][
p̃α

q̃β

]
.

(18)
Proposition 2: The error system (18) with l3 = r3g3,

is unconditionally asymptotically stable for c ≤ 1 and the
choice α = k + 1.

Proof: With α = k+1, Eq. (18) becomes Eq. (15) with
R3 = r3g3g

T
3 ≥ 0 a matrix of rank 1 and R2 = 0. Then the

proof follows the same way as the one of Proposition 1.

B. Flatness-based state estimation

We exploit the flatness of the fully discretized system
model (10) for the design of an observer. Flatness of (10) and
its implication for the explicit computation of feedforward
control trajectories has been studied in [11]. Flatness of
discrete-time systems [16] and of hyperbolic systems [17] are
characterized in an analogous way, by the ability to express
states and inputs in terms of forward and backward shifts of
the outputs. Therefore, the fully discretized model (10) – in
contrast to only semi-discretization in space – is adequate
for feedforward control, but also for the state estimation of
the hyperbolic systems.

To obtain estimates p̂l and q̂l for the discrete states of
the wave equation at time k = l, based on current and
past boundary inputs and measurements, we consider the
single equations of the fully discretized model (10) for
i = 1, . . . , N

pk+1
i = pki +

∆t

∆z
(qki−1 − qki ), (A1)

qk+1
i = qki +

∆t

∆z
(pk+1
i − pk+1

i+1 ), (B1)

where

qk0 = ∆zuk1 ,

pkN+1 = ∆zuk2 ,
and

pk1 = ∆zyk1 ,

qkN = −∆zyk2 .
(20)

Depending on which data on the spatio-temporal grid
is known, Eqs. (A1) and (B1) can be solved for different

Fig. 4. Computation of states on the spatio-temporal grid based on the
update equations for p (first row) and q (second row). Blue circles denote
given data, red squares the computed quantity. Filled objects stand for p,
empty objects for q. The arrows indicate the information flow.

variables, e. g.

qki = qki−1 −
∆z

∆t
(pk+1
i − pki ), (A2)

qki−1 = qki +
∆z

∆t
(pk+1
i − pki ), (A3)

pk+1
i+1 = pk+1

i − ∆z

∆t
(qk+1
i − qki ), (B2)

pk+1
i = pk+1

i+1 +
∆z

∆t
(qk+1
i − qki ). (B3)

The six (out of 8) indicated possibilities are depicted in Fig.
4, where red squares stand for the unknowns and blue circles
stand for given data. The p and q variables are represented
as solid or empty objects, respectively.

Assuming the knowledge of boundary inputs and mea-
sured outputs, the unknown states can be estimated by a
two phase explicit scheme. We assume an even number of
discretization intervals and define M = N

2 :

Given:
– Inputs ul−1

1 , . . . , ul−N+1
1 , ul2, . . . , u

l−N+2
2 .

– Outputs yl1, . . . , y
l−N+1
1 , yl2, . . . , y

l−N+1
2 .

Phase 1:
– Evaluate (A2) with i = 1 and (B3) with i = N .
– For j = 1 to M − 1 do:
◦ Eval. (B2) with i = j and (A3) with i = N − j + 1.
◦ Eval. (A2) with i = j + 1 and (B3) with i = N − j.

Phase 2:
– Evaluate (B1) with k = l −M .
– For k = l −M + 1 to l − 1 do:
◦ Evaluate (A1).
◦ Evaluate (B1).

Result:
– Estimates p̂l2, . . . , p̂

l
N and q̂l1, . . . , q̂

l
N−1.

Remark 2: Calling the algorithm to obtain the state esti-
mates at k = l “flatness-based” is justified as follows. Define
the boundary inputs as additional outputs. Then the algorithm
sketched above leads to a representation of the system states
and inputs in terms of the outputs and their time shifts.

Remark 3: Although we presented the algorithm for the
case of the linear wave equation, it can be applied for an
explicit state estimation also in the nonlinear case. The key



Fig. 5. Schematic of the state estimation at instant k: Starting with the
boundary in- and outputs (red), in a first phase (yellow) the update equations
are solved according to A2/B2 from the left and B3/A3 from the right to
obtain a representation of past states in terms of the boundary port variables.
In a second phase (blue), the current state estimation is obtained by solving
the update equations according to B1/A1.

Fig. 6. Surface plots of the estimation error q̃ for c = 1, N = 160 and
two different values of r.

for the applicability to the nonlinear case is an appropriate
consistent approximation of the constitutive equations, which
allows for the transport of information through the spatio-
temporal grid as sketched in Figures 4 and 5 for the linear
case. See for this issue also [11], where the approximation
of the constitutive equations is instrumental in deriving the
flatness-based feedforward control.

IV. NUMERICAL EXAMPLE AND DISCUSSION

To assess the estimation of the distributed states of the
wave equation using the presented techniques, we consider
the linear wave equation on Ω = (0, 1) with homogeneous
boundary conditions u1 = u2 = 0. The exact solution can
be obtained according to d’Alambert and is composed of
left and right travelling waves, which are reflected at the
boundaries with and without a change in sign. We study
initial conditions

p(z, 0) = e−
(z−0.5)2

0.0252 and q(z, 0) = 0. (22)

Fig. 7. Surface plots of the estimation error q̃ for c = 1
2

, N = 160 and
two different values of r.

Fig. 8. Surface plots of estimation errors with non-collocated measurement,
N = 160, c = 1 and c = 1

2
.

A. Damping injection observer

Figures 6 to 8 display the errors q̃(z, t) = q̂(z, t)− q(z, t)
between the exact solution and the estimated states9 for the
Luenberger observers with different values r ∈ {1, 5} and
c ∈ {1, 1

2} of the observer parameter and the ratio of tempo-
ral and spatial step. In the case of collocated measurement,
r = 1 has the effect of a absorbing boundary condition for
the error system, which brings the estimation error (up to a
bounded residual due to discretization) to zero in finite time.
This effect does not appear for a different value of r in and
also in the case of distributed measurement, see Fig. 8. In
these cases, the observer corrections cannot be interpreted
in terms of perfectly absorbing boundary condition, which
leads to an asymptotic decay of the estimation error.

B. Flatness-based estimation

The flatness-based estimation of the state with the pre-
sented algorithm leads to the expected convergence in finite
time (again up to the bounded discretization error) of the
estimation error, see Fig. (9). An advantage of this approach
is that, with the appropriate approximation of the constitutive
equations, it is applicable to nonlinear conservation laws. A
remarkable effect is the occurrence of an oscillating error

9The plots for p̃(z, t) show qualitatively the same results and are omitted.



Fig. 9. Surface plots of estimation errors, N = 160, c = 1.

of rather high magnitude around t = 1
2 , which is distributed

over the whole spatial domain. It strongly motivates the study
of a improved implementation of the numerical scheme for
state estimation.

V. CONCLUSIONS AND FUTURE WORK

We presented the application of two different to tackle
the state estimation problem in infinite-dimensional port-
Hamiltonian systems of conservation laws. We departed from
the structure-preserving discretization of the equations in
space and time, and followed first the classical Luenberger
observer approach and second the notion of flatness in
hyperbolic/discrete-time systems.

Future work will be concerned with the embedding of the
finite-dimensional observers in the closed loop, the numerical
error analysis, guarantees for closed-loop error bounds and
the application of the flatness-based state estimation to
nonlinear systems ov conservation laws.
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APPENDIX

We investigate the stability of Exk+1 = Axk with

E =

[
I 0

cDT I

]
, A =

[
I cD
0 I

]
, (23)

where c > 0 is a constant and D = −DT as given in (7).
Lemma 1: For c = 1, the eigenvalues of the generalized

eigenvalue problem (E,A) are e±jθi with θi = (i− 1
2 ) 2π

2N+1 .
Proof: The eigenvalues of the generalized eigenvalue

problem given by the discrete-time dynamics Exk+1 = Axk

are the roots of

det(A− Eλ) =

∣∣∣∣(1− λ)I cD
−λcDT (1− λ)I.

∣∣∣∣ (24)

By commutativity of the matrices in the second row, we can
use the formula given in [18], which yields

det(A− Eλ) = det((1− λ)2I + cλDDT ). (25)

The determinant of the tridiagonal matrix∣∣∣∣∣∣∣∣∣∣

(1− λ)2 + 2cλ −cλ

−cλ
. . .

. . .
. . . (1− λ)2 + 2cλ −cλ

−cλ (1− λ)2 + cλ

∣∣∣∣∣∣∣∣∣∣
(26)

is obtained by recursion. For c = 1, the characteristic
polynomial is

2N∑
i=0

(−1)iλi = 1 +

N∑
i=1

λ2i −
N∑
i=1

λ2i−1

= 1 + (λ2 − λ)

N−1∑
i=0

λ2i =
1 + λ2N+1

1 + λ
, (27)

where we exploited
∑n−1
i=0 r

i = 1−rn
1−r . The roots, which due

to λ 6= −1 must be conjugate complex numbers λi = e±jθi ,
have to satisfy

e±jθi(2N+1) = ejπ(2i−1) = −1, i = 1, . . . N, (28)

from which θi = (i− 1
2 ) 2π

2N+1 follows.
Note that with ∆t = 1

N , the continuous-time counterparts
± 1

∆tθij = ± (2i−1)

2+ 1
N

πj of the discrete-time eigenvalues
converge for N → ∞ to the exact locations ± 2i−1

2 πj of
the eigenvalues of the wave equation under homogeneous
boundary conditions on u1 and u2.


