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Abstract: In this paper we consider the problem of obtaining a general port-Hamiltonian
formulation of Newtonian fluids. We propose the port-Hamiltonian models to describe the
energy flux of rotational three-dimensional isentropic and non-isentropic fluids, whose boundary
flows and efforts can be used for control purposes or for power-preserving interconnection with
other physical systems. In case of two-dimensional flows, we include the considerations about
the operators associated with fluid vorticity, preserving the port-Hamiltonian structure of the

models proposed.
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1. INTRODUCTION

In control theory, the control methods requires of models
that describes the plant dynamics with sufficient preci-
sion and simplicity. In particular, in energy-based control
methods, such as energy-shaping (Macchelli et al., 2017),
IDA-PBC (Vu et al., 2015), observer-based control (Toledo
et al., 2019), among others, are necessary models that
describes the energy flux of the physical phenomena to
control. In this sense, the models are commonly formulated
using the port-Hamiltonian (PH) framework.

Port-Hamiltonian systems provides useful properties for
the control theory, such as passivity, stability in the
Lyapunov sense and a power-preserving connectivity by
ports (van der Schaft and Jeltsema, 2014). For infinite-
dimensional systems a PH formulation based in a Stoke-
Dirac structure is proposed by Le Gorrec et al. (2005) and
a extension to include dissipative effects is presented in
Villegas et al. (2006). Similarly, a irreversible-PH formu-
lation for thermodynamic systems is proposed by Ramirez
et al. (2013). In this work we focus in the dynamics and
thermodynamics of non-reactive Newtonian fluids. These
fluid kinds are studied in different engineering areas, from
biomedical systems, as the phono-respiratory modeling
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(Mora et al., 2018), to Fluid-Structure-Interaction prob-
lems (Cardoso-Ribeiro et al., 2017).

In literature appears different energy-based approaches to
describe Newtonian fluids. However, these approaches are
constrained to a kind of fluid due to the assumptions that
were considered. For example, for ideal isentropic fluids,
a one-dimensional port-hamiltonian models are proposed
by Macchelli et al. (2017) for inviscid fluids and Kotyczka
(2013) with friction dissipation, for control purposes and
pipe network modeling, respectively, where the voricity
effects are neglect as a consequence of the one-dimensional
assumption. In this sense, a Hamiltonian model based in
stream functions to describe the vorticity dynamics of two-
dimensional fluid is presented in Swaters (2000), however
the model is limited to potential flows. A port-Hamiltonian
model of 3D irrotational fluid with dissipation is proposed
by Matignon and Hélie (2013) and a general Hamilto-
nian model for inviscid fluid is presented by van der
Schaft and Maschke (2002). For non-isentropic fluids a
one-dimensional model for reactive flows is proposed by
Altmann and Schulze (2017), neglecting the vorticity ef-
fects.

In this work we present an general energy-based formu-
lation for isentropic and non-isentropic three-dimensional
compressible fluids using the port-Hamiltonian framework,
including the vorticity effects in the velocity field. First
we develop a pseudo-PH model for non-isentropic fluids,
focused in non-reactive flows. Later, we describe the treat-
ment of terms associated with viscous tensor under an isen-
tropic assumption for the fluid, to obtain a dissipative PH



model. Finally, we describe the necessary considerations
to conserve the PH structure of the models proposed for
2D fluids.

This paper is organized as following. In Section 2 an
infinite-dimensional port-Hamiltonian model is developed
for non-isentropic fluids. In Section 3, we consider an isen-
tropic assumption, rewriting the term associated with vis-
cous stress tensor to obtain a port-Hamiltonian model with
dissipation. Section 4 describes the considerations over the
operators associated with the vorticity, to conserve the
same structure of port-Hamiltonian models developed in
previous sections. Finally, the conclusions are presented in
Section 5. The notation and mathematical identities are
summarized in the Appendix.

2. NON-ISENTROPIC FLUID

In this section we describe the energy-based formulation
for non-insentropic fluids. Denote by p, v, s and T the
density, velocity field, entropy per unit of mass and tem-
perature of the fluid, respectively. The fluid dynamics are
described by following governing equations:
Op = —div (pv) (1la)
pOv = —pv - Grad (v) — grad (p) — Div (1) (1b)
pTOrs = —pTv - grad(s) — T : Grad (v) —div(q) (lc)
where (1a) and (1b) are the continuity and motion equa-
tions, respectively, and (1c) is the general equation of
heat transfer (Landau and Lifshitz, 1987); p is the static
pressure, T is the viscosity tensor and q is the heat flux.
In this work, we consider non-reactive Newtonian fluids.
Then, 7 and q are defined as:

T=—u <Gmd (v) + Grad (v)T — %di” W1 )

— kdiv (v) I (2)

q=— Kgrad(T) (3)

where p and x are the shear and dilatational viscosities

(Bird et al., 2015), respectively, I is the identity matrix

and K is a non-negative matrix that describes the thermal
conductivity of the fluid (C)ttinger, 2005).

In fluid dynamics the tendency to rotate is characterized
by the vorticity w = curl (v) and the term w x v, from
the point of view of energy, describes the power exchange
between the velocity field components given by the fluid
rotation.

Definition 1. Let w = w1 we UJ3]T the vorticity vector of
the fluid. We define the fluid Gyroscope G, as the skew-
symmetric matrix, such that G, v = w x v. For 3D fluids,
the Gyroscope is given by:

0 —W3 W2
—wy w; 0

On the other hand, the term Div (q) in(1c) can be rewrit-
ten as

Div(q) = T'Div (qs) + qs - grad (T) ()
where q; is the entropy flux by heat conduction (Bird
et al., 2015). For non-reactive fluids q, is defined as

qs = —ggmd (T) (6)

Then, considering the Gibbs equation

1
du = —pd (p) +Tds (7)
that describes the change of the specific internal energy
u with respect to changes of p and s, the fluid enthalpy
h = u+p/p and the relationships grad (%p) = %grad (p)+

grad (%)p and T = OJsu. Then, we can rewrite the

fluid dynamics in terms of the state variables and the
temperature, namely:

Orp = — div (pv) (8a)
Ov =—grad <;v SV + h> — Gu,v+Tgrad(s)
- 1Div (1) (8b)
p

3t5:fv~grad(s)flz

- %d (a) (s¢)

Note that entropy generation, second law of thermody-
namics, is given by the following non-negative condition
(Ottinger, 2005)
1 s
——T1:grad(v) — —= -grad(T) >0 9
T grad (v) = S - grad(T) > ©)
where —piTT : grad (v) is the rate of entropy creation by
the kinetic energy dissipated into heat by viscosity friction,
and —2% - grad (T) is the rate of entropy creation by heat

flux.
2.1 Port-Hamiltonian description of non-isentropic fluids

Consider the fluid domain Q with boundary 9€2. The total
energy of the fluid described in (8) is given by:

1
H=/ Spv v+ pu(p,s) (10)
02

Then, the fluid efforts e = [e, el eS]T are given by the
variational derivative of the energy, namely

ep dpH 1V-V—&-h
ev| = |0yH| = |2 v (11)
€s 55H PT

Note that ,H = %v -v+u+ pdyu. Given the relationship
p = p*d,u, we obtain 6,H = %v~v+u—|—p/p = %v~v—|—h.
Using (11), the fluid dynamics in (8) can be related with
energy through the fluid efforts, i.e.,

Op = — div (ey) (12a)
G e
Oyv =— grad(e,) — —ey + grad (s) —
p p
1 T
— —Div | —e4 12b
P (pT ) (12b)
9 d(s) ! d (eV> (12¢)
s=—gra c— = —T:grad| — c
' pT P

2
1 K
+ —div (grad <es>)
K0P T P



To obtain the port-Hamiltonian formulation, is necessary
set the interconnections between the components of the
fluid dynamics. In the case of the velocity field and the
entropy, they are interconnected through the operator J.
and the corresponding adjoint [J* in the effort space. These
operators are defined as follows:

Lemma 1. Let T be a symmetric second order tensor and
j‘r =
entropy effort es. Then, the adjoint operator J) in the

grad (s) (;) - %Div (pLT) an operator on the

effort space of the fluid is given by J* = grad (s) - (;) +
pLT : Grad (;), such that

(eV,J.,-eS>Q — <es,j:ev>Q = —/ T (evnT> (13)
f[9) P

Proof. Consider the inner product

<eva\7‘res>Q :/ ey - j‘res
Q

€s 1 T
= [ ey |grad(s) = — =Div | —e,
/Q {g (=) PP (pT ﬂ

For a symmetric tensor, the formal adjoint of Div is given
by —Grad (Brugnoli et al., 2019). Then, using the identity
(A.2), where o0 = Te;/pT and u = e, /p, the inner product
in previous equation can be rewritten as:

e T e
ey, Jres z/es{rad s -v+:Grad(v>]
( ) Lo | (s) > T oT B

Te, ey
— | div LY
/Q (pT p>
Te, e
=(es, Jley —/ { S."].n
< Jo oo LPT p

where J* = grad(s) - (;) + o7+ Grad (;) and n is
the normal outward unitary vector to the boundary 9f).

Finally, using the mathematical identity (7-v) -n =7 :

vn? we obtain

<evn7‘res>ﬂ - <esaj:ev>ﬂ = / T: <eVnT) (15>
a0 p

where (%"nT) is the tangential projection of the velocity
field. |

Lemma 2. Let Jq be a operator on space of the entropy
effort ey, defined as

jq = QT - g’}k‘STgT7

2
where Sr = % >0, Qr = /’LTHEHS describes the
T

(14)

(16)

entropy creation by the heat flux, such that Qres > 0, Ves,
and the operator G} = %div is the formal adjoint of

Gr = —grad (;) Then, the rate of entropy addition by

heat flux can be expressed as

1
——pdiv (@) =Tae, (a7)
satisfying
<esv jqes>Q = _/ T (qs : Il) (18)
a0

Proof. Note that ;%wa (q) = ;‘5; ~grad (T) + %div (qs)-
Defining St = K/T, from (12c) we obtain

2

) ~grad (T) =

1 ’ grad <63>
pT pT P/ sy
1 . 1 . €s
—7dl’l) (qs) = 7dZ’U (STg’I"a,d ()) (20)
P p p
Given that the formal adjoint of divergence is minus the

gradient, it is easy to proof that G} = %div () is the formal

adjoint of operator Gr = —grad (;) Then, from (19) and
(20) the entropy addition by heat flux can be expressed as

1
_ﬁdiv (q) = (QT - g;“STgT) €s = qus

With respect to the inner product in the left-hand side of

(18), we obtain
e e
€sy, Jq€s :/ — ||grad <)
< q >Q a pT p .

= —i-/ s div <STgrad <es>>
QP p

= / qs - grad <es> + eidw (qs)
Q p p

—— [aw (pq) —— [div(ra) @)

Finally, applying the Gauss divergence theorem the rela-
tionship in (18) is obtained. O
Proposition 1. Let be a non-isentropic Newtonian com-
pressible fluid, the governing equations in (8) can be ex-
pressed as pseudo infinite-dimensional port-Hamiltonian
system

(19)

(21)

2

Ox = Je (23)
where x = [p vl S]T is the state vector, e = [ep ez eS]T
is the fluid effort vector described in (11) and J is a

operator given by

0 —div 0
J = | —grad —%Gw I (24)
LA
satisfying
H= (ea, fa) 5o (25)

where (e, f5) 5, is the power supplied through the bound-
ary €2 and the boundary flows fy and efforts ey are given
by

€p|aﬂ —(ey - n)lag
fa = T|3Q and ey = —vn |g)Q
Tlo —(qs - m)|ag

Proof. The fluid governing equations in (8) can be rewrit-
ten as function of the fluid efforts described in (11), as
shown in (12). Then, using the operators defined in Lem-
mas 1 and 2 we obtain

P 0 —div 0
tpP 1 €p
[&v] = |—grad ——Gy, T [ev] (26)
ats 0 P * ol €s
—— _\77- QT - gT TgT ——
Orx e
J

The energy balance of this system is given by:



ﬂz(e,je)Q:/&je
Q

=— / epdiv(ey) + ey - grad(e,) — & -Gey
Q P
+(ev, Tres)g — (es, Trev)q + (es: Jqes)q  (27)

Note that given the skew-symmetry property of the gy-
roscope <¢Gyey = 0. Then, using (13) and (18), the
equation (27) can be rewritten as

Hz—AQeP(ev~n)+T: [epvnT} +T[qs-n] (28)

Defining the boundary flows and efforts as:

€nlaq —(ev-m)[59

€y = T‘BQ fa = 7efvnT (29)
Cs P Q
P laa —(as 'n)?an

where e, - n is the normal projection of the momentum
density, %"nT is the tangential projection of the velocity

field. Then, the rate of change of the total energy is given
by:

H = (ea, fo) 90 (30)

Remark 1. Note that the effort e, = pT appear in opera-
tors Jr and Jq (see Lemmas 1 and 2), then, J = J(x,e).
This implies that the system in (23) does not generate a
Stoke-Dirac structure.

3. ISENTROPIC FLUID

In this section we describe the port-Hamiltonian formu-
lation for ideal isentropic fluids. The governing equations
are reduced to the continuity and motion equations de-
scribed in (1a) and (1b), respectively. Similarly, the Gibbs
equation is reduced to

du = —pd (1)
p

In isentropic fluids the internal energy is a function that
depends only on the density, as shown in (31). Then, the
total energy is described as

(31)

1
H=/fpv-V+pU(p) (32)
Q2
and the fluid efforts e = [ep el ]T are given by
1
ep} _ [%"H] _|=zv-v+h
= = |2 (33)
{ev ovH ov
Then, the fluid dynamics can be expressed as
Op = —div (ey) (34a)
1 1
Oyv = —grad (e,) — —Guey — —Div (T) (34b)
p p

The term %div (1) in (34b) represents the friction effects
over the velocity field, given the fluid viscosity. In previous
section, the velocity field and the entropy of the fluid
are interconnected through the heat generated by this
friction, by means of the operators J, and J;'. In this case,
given the isentropic assumption, we can interpret %div (1)

as the dissipation associated with heat generation as a
consequence of the viscosity friction of the fluid. According
to Villegas et al. (2006), in infinite-dimensional port-
Hamiltonian systems the dissipative terms are expressed
as G*SGe where G* is the adjoint operator of G, and
S = ST > 0. Then, for isentropic fluids %div (7) can
be expressed as a port-Hamiltonian dissipation term, as
shown in the following Lemma. .

Lemma 3. Let be a viscous Newtonian fluid. Defining
the operators G, = curl (;) and G4 = div (;) and
the corresponding adjoints G} = %curl(~) and G =
—% grad (). Then, the rate of velocity addition associated
with the viscous tensor, %div (1), can be expressed as

a dissipative port-Hamiltonian terms associated with the
velocity effort, namely,

1

;Dw (1) = G:S-Grey (35)

po 0
* _ [0* G* = 4
where g.,_ [gr gd]7 S‘l’ 0 gu + K

and G, = [gg]

Proof. The viscosity tensor of Newtonian fluids is de-
scribed in (2). Then, applying the identities (A.4)-(A.6)
we obtain

%Div (1) :%Div (fu (Grad (v) + Grad (V)T))

+ %Dw ((;u — m) div (v) 1)

:%curl (ueurl (v)) — %grad ((gu + ﬁ) div (V)>

1 1
=—curl (ucurl (ev)> — —grad (ﬂdiv (ev>>
P P P P
(36)
Given that the curl operator is self-adjoint and the adjoint

of divergence is minus the gradient. Then, it is easy to
check that GF = %curl is the formal adjoint of G, =

curl (7) and G =

P
div (5) Thus, the equation (36) can be expressed as the

sum of 2 dissipative terms, namely

—%gmd() is the adjoint of G4 =

1 4
;d“} (T) = g:ﬂgrev + g; <3/Jz + /<J> gdev (37)
~0: g 4, | & (39)
3 —
T S, G-

where S satisfies the positive condition S, = SZ >0. O

Note that GrS,;Gre, can be expressed as the sum of
two dissipations, as shown in (37). The first dissipation,
G uGrey, describes the losses associated with the frictions
generated by the fluid rotation or vorticity, and it is
equal to 0 for under a irrotational assumption. The second
dissipation, G} (% pu+r)Gaey, describes the losses associated
with the frictions generated by the dilation or compression
of the fluid, and it is equal to 0 under incompressible
assumption.



Proposition 2. Let be an isentropic Newtonian fluid in a
domain 2 with boundary 0. Considering the vorticity
as a phenomena strictly intern, the governing equations
can be expressed as the following port-Hamiltonian system
with dissipation:

O = (J —G*SG) e

. T
is the state vector, e = [ep eﬂ are

(39)

where © = [p VT}T
the fluid efforts, and

0 —dw
« o0 o0 [0 o0
- [‘grad p ] ’ [0 Gi] 5= [0 SJ g = [0 gf]
Satisfying the following relationship for the rate of change
of the energy:

d?—l ¢
e
At T Jpo 00
where f5 = (e, —eq) |on and esg = —(ey - n)|pn are the
boundary flow and effort, respectively, with ey as the effort
associated with the dissipation by dilatation and n the
normal unitary outward vector to the boundary.

(40)

Proof. Considering the Lemma 3, the dynamics in (34)
can be rewritten as

Op = —div (ey) (41a)

1
3tV = —grad (ep) — ;Gwev - g:,k-S‘rg‘rev (41b)

Thus, regrouping terms the governing equations can be
expressed as

p 0 —div 0 .
_ _ p
% M _grad % [Q:STQJ M
Rewriti the te 0 ¢ obtain the port
writing rm G.S.G. Wi in port-

Hamiltonian formulation described in (39).

On the other hand, for the rate of change of the total
energy we obtain

an _ e.atm:/e-je—e-g*sge
:7/ ep (evon)f/eog*Sge (42)
N Q
Defining fr = [f7 fu]" and er = [ef eq]” as the

flows and efforts associated with the dissipations, where
fr = greva fd = gdeV7 €, = ,U/fr and eq = (%/J' + K’)fda we
obtain e-G*SGe = e, -G'e, + e, -Gjeq. Then, considering
the vorticity equal to 0 in the boundaries, the equation
(42) can be rewritten as

@:—/ ep(ev'n)_/ev'g:er+ev'g;ed
dt 90 Q

:—/ CP(eV'n)_/grev'er+gdeV'ed
o0 Q
€d
+ - v
/BQ p (ev )
<gTeRveR / (
oN
=— S (fr,fr)q / <
oN

Given that S; > 0, then, from (43) we obtain the

€d

inequality %+H < [, fs - ey, where f5 = (¢, — > |9

and ey = — (ey - n) |sq.

Note that, considering different asumption the model
of fluid proposed in (39) converge to port-Hamiltonian
models of isentropic fluids described in previous works. For
example, under an irrotational assumption operators G,
G, and G} disappear, obtaining the fluid model described
by Matignon and Hélie (2013). For inviscid fluids, the
operator G*SG is equal to 0. Then, the port-Hamiltonian
system in (39) is equivalent to the model proposed in van
der Schaft and Maschke (2002).

4. TWO-DIMENSIONAL FLUIDS

The cross product and the curl operator are three-
dimensional mathematical operations. Thus, for two-
dimensional fluids we need to define appropriately the
terms associated with these operations.

Denote by {x1,z2} the variables associated with the axes

of a two-dimensional velocity field v = [v1 U2]T. Then, the
vorticity w is a scalar perpendicular to the plane x1 X xa,
defined as w = —0y,v1 + 05, v2 [ref |. For convenience we
rewrite w as

w = —div (Wv) (44)

where W = [(1) _01] is a rotation matrix.

Then, the Gyroscope in a two-dimensional velocity field is
defined as (Carodo-Ribeiro, 2016):

)

Gy =Wl = [w 0 (45)

On the other hand, with respect to the dissipative terms
of the viscosity tensor, operators G, and G for two-
dimensional fluids are defined as:

gr: [70:172 ({)f""] - = —div (W) (46)
P P
. 1[0, Ly
Gr=— | | = -Wigrad "
/) {d{l;]} p gra (> ( )

Thus, given the operator definitions in (45)-(47), the port-
Hamiltonian formulations in Propositions 1 and 2 can be
used to describe for non-isentropic and isentropic two-
dimensional fluids, respectively.

In the case of one-dimensional fluids, all terms associated
with the vorticity disappear, and div = grad = 0,,.
Under these conditions the fluid model proposed in (23) is
equivalent to the model described in Altmann and Schulze
(2017), neglecting the reactive part. Similarly, the model
described in Proposition 2 converge to the models used in
Kotyczka (2013); Macchelli et al. (2017).

5. CONCLUSION

A pseudo-PH formulation for non-isentropic Newtonian
fluid in a three-dimensional space was presented for non-
reactive flows. Similarly, under an isentropic assumption
the transformation of kinetic energy into heat by viscosity



friction is described as dissipative terms associated with
fluid rotation and compression, obtaining a dissipative-
PH model for three-dimensional isentropic fluids. These
models presents a general formulation for non-reactive
compressible flows, i.e., a description for inviscid or irro-
tational fluids can be derived from the proposed models
under the appropriated assumptions in the PH structure.
Moreover, we describes the necessary considerations on the
operators of purposed models to use the same PH structure
for two-dimensional and one-dimensional fluid, obtaining
equivalent formulations for fluids models in literature.
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Appendix A. NOMENCLATURE AND USEFUL
IDENTITIES

The nomenclature used in this paper is summarized in the
next Table.

Table A.1. Nomenclature

Symbol Description
T Transpose

v-u Scalar product between 2 vectors, v7 u.

v Xu Cross product

T:.O Scalar product between 2 tensors, T'r (TT )
div (u) Divergence of vector u.
grad (f)  Gradient of scalar f.

curl(u)  Curl or rotational of u.
Grad(u) Gradient of vector u.

Div (o)  Divergence of tensor o.

Iv]1% Square of the weighted Euclidean norm, v XTv.

fQ f Integral in domain €, fQ fd§2
faQ f Integral in boundary 99, fasz foQ

Additionally, the set of mathematical identities used in
this work are described below:

1
u - Grad(u) = grad <2u . u) +curl (u) x u

o : Grad(u) = div (o -u) —u- Div (o)

div (fu) = grad (f) -u+ fdiv (u)

Div (Grad (u)) = grad (div (u)) — curl (curl (u))
Div (Grad (u)T) = grad (div (u))

Div (div (0) I) = grad (div (u))

where f is a scalar, u is a vector and o is a symmetric
second order tensor.
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