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Abstract: In this paper, we consider the asymptotic boundary stabilisation of a one-dimensional
wave equation subject to anti-damping at its free end and with control at the opposite one. The
control action, implemented through a state feedback or a dynamic controller, is derived by
using the port-Hamiltonian framework. More precisely, the standard energy-shaping approach
plus damping assignment is adapted to cope with infinite dimensional systems with anti-damping
boundary conditions. It is shown how to modify the equivalent dynamic controller to account
for the instability propagation along the domain.
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1. INTRODUCTION

Port-Hamiltonian systems have been originally introduced
to represent lumped parameter physical systems, van der
Schaft (2017). Later, they have been generalised to the in-
finite dimensional scenario: distributed port-Hamiltonian
systems, see van der Schaft and Maschke (2002); Le Gorrec
et al. (2005), have proved to be a powerful framework
for modelling, simulation and control of physical systems
described by PDEs. For this class of systems, the main
control synthesis methodologies proposed so far deal with
the linear case and are based on the so-called energy-
shaping plus damping injection paradigm, Ortega et al.
(2001). The control action, usually applied at the bound-
ary of the spatial domain, is designed so that the energy
function is modified to shift the equilibrium, and / or some
dissipative effect is added. Then, the stability proof relies
on the passivity properties of the controlled system, and
on the use of the total energy as Lyapunov function.

In the early works, see e.g. Rodriguez et al. (2001); Mac-
chelli and Melchiorri (2005), the development of the state-
feedback loop responsible for shaping the Hamiltonian
function is based on energy-balancing considerations, i.e.
on the design of a finite dimensional passive controller that
is in charge of providing the right amount of energy to
drive the plant towards the equilibrium. As a consequence,
the control system is not able to deal with pervasive
dissipation in the plant. This limitation is known as dissi-
pation obstacle, Ortega et al. (2001). To enlarge the class
of systems that can be stabilised via energy-shaping, for
the boundary control systems in port-Hamiltonian form
studied in Le Gorrec et al. (2005); Jacob and Zwart (2012),

in Macchelli et al. (2017) it has been proposed to design
a state-feedback action able to map the original dynamic
into a target one, characterised by a “desired” Hamiltonian
function and for which the equilibrium is, at least, simply
stable. Convergence of the trajectories is again obtained
via damping injection. In any case, independently from
the approach, the control design always relies on the hy-
pothesis that the distributed port-Hamiltonian system is
passive. Roughly speaking, this means that the plant is
characterised by a sort of “stable behaviour” since if the
control input is set equal to zero, then the total energy is
not increasing.

In this paper, we start to study the stabilisation problem of
boundary control systems in port-Hamiltonian form that
are not passive. In particular, the focus is on the one-
dimensional wave equation with anti-damping, a system
that has been already studied e.g. in Freitas and Zuazua
(1996); Smyshlyaev and Krstic (2009); Hassine (2017).
More specifically, the anti-damping is at the uncontrolled
side of the spatial domain. To asymptotically stabilise
the system, a procedure similar to the one discussed in
Macchelli (2016) is adopted. The idea is at first to rely
on the control by interconnection paradigm to design
a state-feedback law or a dynamical controller that is
able to shape the Hamiltonian function of the closed-loop
system or, more precisely, that provides a control action
and a related Lyapunov function to be employed in the
stability analysis. As a second step, asymptotic stability
is achieved via damping injection. In particular, a control
action whose effect on the closed-loop system is to dissipate
energy in order to reach the equilibrium is designed. The



rationale behind this second step is to modify the energy-
shaping controller to take into account the instability
propagation along the domain, and to compensate it by
adding sufficient damping. The result is another dynamical
controller that is now able to asymptotically stabilise the
system. Then, the stabilising damping injection law is
obtained thanks to a direct comparison of the control
actions that these two dynamical systems generate.

The paper is organised as follows. In Section 2, the control
problem is discussed and the port-Hamiltonian formula-
tion of the wave equation with anti-damping boundary
condition is introduced. In Section 3, the problem of
designing the energy-shaping law is addressed, while in
Section 4 it is shown how to construct a damping injec-
tion control action that leads to an asymptotically stable
closed-loop system. Finally, conclusions and some ideas
about future related activities are reported in Section 5.

2. PROBLEM FORMULATION

For simplicity, let us consider the lossless transmission
line equation with unitary capacitance and inductance
distributions that can be written in the port-Hamiltonian
form as follows, see e.g. van der Schaft and Maschke
(2002); Le Gorrec et al. (2005):

∂x1

∂t
(t, z) =

∂x2

∂z
(t, z)

∂x2

∂t
(t, z) =

∂x1

∂z
(t, z)

(1)

Here, z ∈ [0, 1] denotes the spatial coordinate, and
x := (x1, x2) ∈ L2(0, 1;R2) the state variable. Let us
assume that in z = 1 we have an anti-damping boundary
condition, i.e. given r1 > 0 and r1 6= 1

x2(t, 1) = r1x1(t, 1) (2)

and also that
u(t) = x2(t, 0) (3)

is the boundary actuation. The case r1 = 1 corresponds to
the situation in which the transmission line is terminated
in z = 1 on a load that is in “anti-adaptation” with respect
to the line impedance, and this would lead to a finite
escape time. Under these conditions, the origin of (1) with
the boundary condition (2) is unstable when u(t) = 0.
Moreover, if

H(x(t, ·)) =
1

2

∫ 1

0

[
x2

1(t, z) + x2
2(t, z)

]
dz (4)

denotes the total energy and under the hypothesis that (1)
with the boundary condition (2) and actuation (3) is well-
posed, i.e. it is a boundary control system in the sense of
Fattorini (1968), we have that

dH

dt
(x(t, ·)) = r1x

2
1(t, 1)− x1(t, 0)u(t) (5)

It is easy to show that thanks to the coordinate transfor-
mation (x1, x2) 7→ (ξ1, ξ2) defined as

x1 :=
1√
2

(ξ1 + ξ2) x2 :=
1√
2

(ξ1 − ξ2) (6)

the PDE (1) can be rewritten in the equivalent form

∂ξ1
∂t

(t, z) =
∂ξ1
∂z

(t, z)

∂ξ2
∂t

(t, z) = −∂ξ2
∂z

(t, z)

(7)

In (7), ξ := (ξ1, ξ2) are the so-called wave (or scattering)
variables, see e.g. van der Schaft (2017), with ξ1 associated
to the propagation from z = 1 to z = 0, and ξ2 in the
opposite direction. The boundary condition (2) transforms
into

ξ1(t, 1) = γ1ξ2(t, 1), γ1 =
1 + r1

1− r1
(8)

while the balance relation (5) into

dH

dt
(ξ(t, ·)) =

1

2

(
γ2

1 − 1
)
ξ2
2(t, 1)− 1

2
ξ2
1(t, 0) +

1

2
ξ2
2(t, 0)

(9)
Note that, due to the fact that r1 > 0 and r1 6= 1, we have
that |γ1| > 1. Moreover, if r1 → 1, then |γ1| → ∞. This
makes clear why for r1 = 1 the system presents a finite
escape time.

The problem tackled in this paper is to design

u(t) = β(x(t, ·)) + u′(t) (10)

so that the origin of (1) or, equivalently, of (7), is asymp-
totically stable. In (10), the function β(·) is a state-
feedback control action that is responsible to shape the
Hamiltonian function (4). Intuitively speaking, its effect
is similar to the one of the proportional term in a PD
controller. Differently, the auxiliary control input u′(t) is
designed to assure the desired convergence property to the
equilibrium, so it is in charge of dissipating energy. It is
shown that it is given by the sum of a derivative action
plus an integral term.

3. ENERGY-SHAPING CONTROL DESIGN

To design the energy-shaping control action β(·) in (10),
the idea is to rely on the control by interconnection
paradigm, discussed in the finite dimensional case e.g.
in Ortega et al. (2001) and extended to the distributed
parameter case e.g. in Macchelli et al. (2017). Differently
from what has been already presented in literature, the
plant is characterised by the presence of boundary anti-
damping, i.e. by an “(anti-)dissipative” effect that leads
to instability. Bearing in mind the balance relation (5), let
us define the dual output of u(t) as

y(t) = −x1(t, 0) (11)

Moreover, let us consider the linear control system{
ẋc(t) = −rcqcxc(t) + gcuc(t)

yc(t) = gcqcxc(t)
(12)

in which xc, uc, yc ∈ R are the state variable, and the
input and the output signals, respectively, and qc, rc ∈ R,
with qc > 0, two parameters. System (12) is in port-
Hamiltonian form, and it is passive with storage function
Hc(xc) := 1

2qcx
2
c if and only if rc ≥ 0. In fact, we have that

dHc

dt
(xc(t)) = −rc [qcxc(t)]

2
+ yc(t)uc(t) (13)

The closed-loop system resulting from the power conserv-
ing interconnection of (1) and (12), i.e.:(

u(t)
y(t)

)
=

(
0 −I
I 0

)(
uc(t)
yc(t)

)
(14)

has a total energy Hd(x, xc) := H(x) +Hc(xc).

The idea is to shape Hd(x, xc) by acting on the free gain
qc that defines the energy of (12). However, due to the
fact that the state variables of (1) and of (12), namely x



and xc, respectively, are independent, it is not clear how
to influence the x coordinates by acting on the energy
function Hc(xc), that depends on xc. When plant and
controller are both passive, the problem has been solved
by selecting the “structure” of (12) so that the closed-loop
system is characterised by (a set of) invariant functions
that take the following form:

C(xc, x) := xc +

∫ 1

0

[ψ1x1(z) + ψ2x2(z)] dz (15)

in which ψ1, ψ2 ∈ R. Such invariant functions are called
Casimir functions, see e.g. Ortega et al. (2001); van der
Schaft (2017) for their definition in the final dimensional
case, and e.g. Macchelli (2014) for the extension to dis-
tributed parameter systems. Note that, if C(xc, x) defined
as in (15) is invariant along the trajectories of the closed-
loop system for all the qc > 0, then xc is in fact a function
of x. Then,Hd(x, xc) depends on x only, and can be shaped
by acting on Hc(xc), i.e. on the gain qc. Moreover, the
output equation in (12) would provide the expression of
the energy shaping control action β(·) in (10).

Proposition 1. Let us consider the PDE (1) with input and
output u and y defined in (3) and (11), respectively, that is
interconnected as in (14) to the control system (12). The
functional C(xc, x) introduced in (15) is invariant along
the trajectories of the closed-loop system independently
from the Hamiltonian Hc(xc) = 1

2qcx
2
c of (12) if

rc = ψ1 =
1

r1
gc = −ψ2 = 1 (16)

Proof. Along the trajectories of the closed-loop system,
the time derivative of (15) is given by

dC

dt
= ẋc +

∫ 1

0

[
ψ1
∂x1

∂t
+ ψ2

∂x2

∂t

]
dz

= −rcqcxc − gcx1(0) + ψ1 [x2(1)− x2(0)] +

+ ψ2 [x1(1)− x1(0)]

= (−rc + ψ1gc)qcxc − (gc + ψ2)x1(0)+

+ (r1ψ1 + ψ2)x1(1)

where, beside (1) and (12), the boundary condition (2), the
definition of input and output (3) and (11), respectively,
and the interconnection constraint (14) have been taken

into account. Since it is required that Ċ(xc(t), x(t)) = 0
for all qc > 0, conditions (16) immediately follow.

Remark 2. The invariant function obtained in Proposi-
tion 1 is not a Casimir function in classical sense. In fact,
Casimir functions are invariants independently from the
Hamiltonian and the dissipative properties of the system,
(van der Schaft, 2017, Proposition 6.4.2). This is not what
happens in this situation, since C(xc, x) is computed for
the particular (anti-)dissipative boundary condition (2).
Note, in fact, that r1 appears in the definition of C(xc, x).
Moreover, it is interesting to note that, to keep (15) in-
variant under the effect of the regenerative effect at the
boundary in z = 1, some dissipation has to be present in
the dynamical extension (12).

If the initial condition for (12) is selected so that

xc(0) +

∫ 1

0

[
1

r1
x1(0, z)− x2(0, z)

]
dz = 0 (17)

being (x1(0, z), x2(0, z)) the initial condition for (1), then
for the closed-loop system we have that C(xc(t), x(t, ·)) =

0 for all t ≥ 0. This implies that for the closed-loop system
we have that

xc(t) =

∫ 1

0

[
x2(t, z)− 1

r1
x1(t, z)

]
dz (18)

and then the Hamiltonian Hd(x, xc) can be expressed in
terms of the state of (1) only, i.e.:

Hd(x) =
1

2

∫ 1

0

[
x2

1(z) + x2
2(z)

]
dz+

+
1

2
qc

{∫ 1

0

[
x2(z)− 1

r1
x1(z)

]
dz

}2

(19)

Moreover, the corresponding energy-shaping control action
β(·) in (10) follows from the output equation of (12) and
the interconnection constraint (14). Having in mind (18),
the result is that

β(x(t, ·)) = −qcxc(t)

= −qc
∫ 1

0

[
x2(t, z)− 1

r1
x1(t, z)

]
dz

(20)

This control action is in state-feedback and it can be
implemented directly without relying on the dynamical
extension (12). Its effect on (1) with boundary condition
(2) is to shape the Hamiltonian according to (19). With
simple calculations, it is possible to show that, for the
closed-loop system, the following energy-balance relation
holds true:

dHd

dt
= r1x

2
1(1)−

− 1

r1
q2
c

[∫ 1

0

(
x2(z)− x1(z)

r1

)
dz

]2

− x1(0)u′ (21)

Note that, when u′ = 0, the total energy can increase along
system trajectories. The idea is now to properly select the
auxiliary input u′ to add dissipation in the system. This
further control loop is usually called damping injection,
see e.g. Ortega et al. (2001). This topic is investigated in
the next section.

Remark 3. A different approach for the design of an
energy-shaping control action is to directly look at the
function β(x(t, ·)) in (10) that maps (1) with boundary
condition (2) into the port-Hamiltonian system

∂x1

∂t
(t, z) =

∂

∂z

δHd

δx2
(x(t, z))

∂x2

∂t
(t, z) =

∂

∂z

δHd

δx1
(x(t, z))

(22)

with boundary conditions

u′(t) =
δHd

δx2
(x(t, 0))

δHd

δx2
(x(t, 1)) = r1

δHd

δx1
(x(t, 1))

being u′(t) the auxiliary input that appears in (10), and in
which Hd(x) = H(x)+Ha(x), being Ha(x) a function that
has to be determined. As in van der Schaft and Maschke
(2002), with δHd

δx we denote the variational derivative
(see Olver (1993)) of the functional Hd(x). By following
Macchelli et al. (2017), a possible solution is to have
Ha(xa) = 1

2qax
2
a, with qa > 0 and

xa(t) =

∫ 1

0

[
x2(t, z) +

x1(t, z)

r1

]
dz (23)

The corresponding energy-shaping action is β(x(t, ·)) =
−qaxa(t). Such control action looks very similar to (20),



but the expressions of xc(t) and xa(t) differ. The advantage
of the procedure described here is that, if β(x(t, ·)) =
−qaxa(x(t)) with xa(t) given as in (23), the closed-loop
system is described by a port-Hamiltonian system with
energy function Hd(x) = H(x) + Ha(x). However, the
stabilising law u′(t) is more complicated to be computed.
More details on this point in Remark 7.

4. DAMPING INJECTION AND STABILITY

In the previous section, the state-feedback control action
(20) that is capable to transform the open-loop energy-
function of (1) into (19) has been obtained. But, at present
stage and due to the anti-damping boundary condition (2),
the closed-loop system is still unstable. For this reason,
in this section it is shown how to design u′(t) in (10) to
achieve asymptotic stability. Before presenting the main
result, a preliminary step is necessary, and it is discussed
in the next proposition.

Proposition 4. Let us consider the wave equation with
anti-damping written in scattering form, i.e. the PDE (7)
with boundary condition (8) in z = 1, and the linear
control system{

ẇ(t) = aww(t) + bwξ1(t, 0)

ξ2(t, 0) = cww(t) + dwξ1(t, 0)
(24)

with w ∈ R, that is interconnected to (7) in z = 0.
The closed-loop system is asymptotically stable if, given
qw > 0, we have that(

2awqw + γ2
1cw qwbb + cwdwγ

2
1

qwbb + cwdwγ
2
1 d2

wγ
2
1 − 1

)
< 0. (25)

Proof. Let us consider the Lyapunov function

W1(ξ1, ξ2, w) =
1

2

∫ 1

0

(
ξ2
1 + ξ2

2

)
dz︸ ︷︷ ︸

≡H(ξ)

+
1

2
qww

2 (26)

in which qw > 0. From (9), along the system trajectories,
we have that

Ẇ1(ξ, w) =
1

2
(γ2

1 − 1)ξ2
2(1) +

1

2
ξ2
2(0)− 1

2
ξ2
1(0)+

+ qww [aww + bwξ1(0)]

=
1

2
(γ2

1 − 1)ξ2
2(1) +

1

2
[cww + dwξ1(0)]

2−

− 1

2
ξ2
1(0) + qwaww

2 + qwbwwξ1(0)

=
1

2
(γ2

1 − 1)ξ2
2(1) +

(
c2w
2

+ awqw

)
w2+

+

(
d2
w

2
− 1

2

)
ξ2
1(0) + (cwdw + qwbw) ξ1(0)w.

Now, let us consider the function

W2(ξ2(0, ·)) =

∫ t

t−1

ξ2
2(0, τ) dτ (27)

for t ≥ 1. We can check that

Ẇ2(ξ2(0, t)) = ξ2
2(0, t)− ξ2

2(0, t− 1)

= ξ2
2(0, t)− ξ2

2(1, t)

since ξ2(1) is the delayed copy of ξ2(0) after 1 time unit.
As a consequence, for the Lyapunov function

W (ξ, ξ2(0, ·), w) := W1(ξ, w)+
1

2
(γ2

1−1)W2(ξ2(0, ·)) (28)

we have that

Ẇ (ξ, ξ2(0, ·), w) =

(
c2w
2

+ awqw

)
w2 +

(
d2
w

2
− 1

2

)
ξ2
1(0)+

+ (cwdw + qwbw) ξ1(0)w+

+
1

2
(γ2

1 − 1) [cww + dwξ1(0)]
2

=

(
1

2
γ2

1c
2
w + awqw

)
w2 +

1

2

(
d2
wγ

2
1 − 1

)
ξ2
1(0)+

+
(
qwbw + cwdwγ

2
1

)
wξ1(0)

=
1

2

(
w

ξ1(0)

)T

·

·
(

2awqw + γ2
1cw qwbb + cwdwγ

2
1

qwbb + cwdwγ
2
1 d2

wγ
2
1 − 1

)(
w

ξ1(0)

)
.

Because of (25), we have that Ẇ → 0 as long as w, ξ1(0)→
0. Under the hypothesis of existence and pre-compactness
of the orbits, the La Salle’s invariance principle for infinite
dimensional systems (Luo et al., 1999, Theorem 3.64) as-
sures that the trajectories converge to the largest invariant
set compatible with Ẇ = 0 and w = ξ1(0) = 0. Such
invariant set contains only the origin of the closed-loop
system, which means that (ξ, w)→ (0, 0) asymptotically.

As discussed in Proposition 1, the energy-shaping control
law (20) can be thought as been generated by the control
system (12) with initial condition (17) and rc and gc given
as in (16). The same control system can be written in
the form (24) in which input and output are the wave
variables in z = 0. From (6) and since u(t) = x2(t, 0) and
y(t) = −x1(t, 0), we obtain that

ẋc(t) = −
(

1 +
1

r1

)
qcxc(t)−

√
2ξ1(t, 0)

= − 2γ1

γ1 − 1
qcxc(t)−

√
2ξ1(t, 0)

ξ2(t, 0) =
√

2qcxc(t) + ξ1(t, 0)

(29)

where the definition of γ1 in (8) has been taken into ac-
count. Note that the requirements stated in Proposition 4
are not met, and this is coherent with the fact that the
control action (20) is not able to guarantee stability, but
only aims at modifying the shape of the closed-loop energy
function. From (29) it is immediate to compute how xc(t)
varies as a function of ξ1(t, 0) and ξ2(t, 0). We get that

ẋc(t) =

√
2

γ1 − 1
ξ1(t, 0)−

√
2γ1

γ1 − 1
ξ2(t, 0). (30)

With an eye on (10), the goal is now to compute u′(t) to
make the origin of the controlled system asymptotically
stable. The idea is to start from (29) that generates the
energy-shaping term β(·), and to modify it in order to meet
the requirements of Proposition 4. Then, by comparing the
control actions that both generate, the stabilising term
u′(t) can be determined. Among all the possible choices,
let us consider the following control system in the form
(24):

ẇ(t) = −
(

2γ1

γ1 − 1
+

∆

qc

)
qcw(t)+

+
√

2
1− δγ1

γ1 − 1
ξ1(t, 0)

ξ2(t, 0) =
√

2qcw(t) + δξ1(t, 0)

(31)



in which qc > 0, δ is such that δ2γ2
1 < 1 and ∆ > 0 is

sufficiently large so that (25) holds true. As a consequence,
the closed-loop system resulting from the power conserving
interconnection of (7), with boundary condition (8), and
(31) is asymptotically stable. On the other hand, we have
also that

ẇ(t) = −∆w(t) +

√
2

γ1 − 1
ξ1(t, 0)−

√
2γ1

γ1 − 1
ξ2(t, 0)

= −∆w(t) + ẋc(t)

(32)

where (30) has been taken into account. If we integrate
(32), we obtain that

w(t) = e−∆tw(0) +

∫ t

0

e−∆(t−τ)ẋc(τ) dτ

where the initial condition w(0) can be freely chosen. The
integral term is equal to[

e−∆(t−τ)xc(τ)
]τ=t

τ=0
−∆

∫ t

0

e−∆(t−τ)xc(τ) dτ =

= xc(t)− e−∆txc(0)−∆

∫ t

0

e−∆(t−τ)xc(τ) dτ

which implies that

w(t) = xc(t)−∆

∫ t

0

e−∆(t−τ)xc(τ) dτ (33)

if w(0) = xc(0). Consequently, the stabilising control
action that (31) applies to (7) is given by the corresponding
output equation, that can be now written as a function
of xc(t). This quantity is the crucial term in the energy-
shaping law (20). The result is that

ξ2(t, 0) =
√

2qcxc(t)−

−
√

2qc∆

∫ t

0

e−∆(t−τ)xc(τ) dτ + δξ1(t, 0) (34)

which is the energy-shaping plus damping injection control
law applied to (7) or, equivalently, to (1), when the bound-
ary input and output are ξ2(t, 0) and ξ1(t, 0), respectively.
The final step, then, consists in rewriting (34) in terms of
u(t) and y(t) defined in (3) and (11), respectively. From
(6) we have that

ξ1(0) =
1√
2

(u− y) ξ2(0) = − 1√
2

(u+ y)

and then (34) gives the following expression for u(t):

u(t) = −qcxc(t)−
1− δ
1 + δ

[y(t)− qcxc(t)] +

+
2qc∆

1 + δ

∫ t

0

e−∆(t−τ)xc(τ) dτ. (35)

If we compare (35) with (10) having in mind that β(·) is
given by (20), we obtain that

u′(t) = −Kδy
′(t) +K∆

∫ t

0

e−∆(t−τ)xc(τ) dτ (36)

where
y′(t) := y(t)− qcxc(t)

= y(t)− qc
∫ 1

0

[
1

r1
x1(t, z)− x2(t, z)

]
dz

(37)

is sort of “shaped output” for (1), and

Kδ =
1− δ
1 + δ

K∆ =
2qc∆

1 + δ
(38)

two positive gains, since |δ| < 1. The result is summarised
in the next proposition.

Proposition 5. Let us consider the PDE (1) with boundary
condition (2) and input u(t) defined in (3). The energy-
shaping plus damping injection control law (10) in which
β(x(t, ·)) is given by (20) and u′(t) by (36) makes the
origin of (1) asymptotically stable. Here, qc, Kδ and K∆

are positive gains, where the latter two are defined in (38),
and y′(t) is defined in (37). The constants δ and ∆ > 0
have to be selected so that, given

aw = − 2γ1qc
γ1 − 1

−∆ bw =
√

2
1− δγ1

γ1 − 1

cw =
√

2qc dw = δ

the LMI (25) holds true, with qw = qc.

Remark 6. The stabilising action u′(t) defined in (36)
results from the sum of two contributions. With an eye
on (31), we can see that the term −Kδy

′(t) is associated
to the feedthrough term δξ1(t, 0) in the output equation of
(31). From a physical point of view, its effect is to damp the
fast dynamics in the plant. On the other hand, the integral
action in (36) is strictly linked to the dissipative term
−∆w(t) that appears in the state equation of (31). This
quantity is associated to the internal dissipation of (31),
and it is responsible for attenuating the slow dynamics of
the controlled system.

Remark 7. The previous result that provides the expres-
sion for the stabilising law u′(t) in (10) in which β(x(t, ·))
is given as in (20) can be adapted to cope with the energy-
shaping action that results from the approach proposed in
Remark 3. The main issue is to find a system similar to
(29) or, better, a relation in the form (30) that gives the
evolution of xa(t) defined in (23) in terms of ξ1(t, 0) and
ξ2(t, 0). With simple calculations, it is possible to obtain
that

ẋa(t) =

√
2

γ1 − 1
ξ1(t, 0)−

√
2γ1

γ1 − 1
ξ2(t, 0) + 2x1(t, 1).

As anticipated in Remark 3, it is the last term, i.e.
2x1(t, 1), that makes the derivation of u′(t) more involved.
In any case, by following the same steps that led to
Proposition 5, it is possible to check that x1(t, 1) would
appear in the integral term in (36). Similarly to Macchelli
et al. (2015), such quantity provides an estimate of the
generated power in z = 1 because of the anti-damping
boundary condition (2). Such an estimate must be known
in order to properly dissipate the “right” amount of energy
via u′(t).

Remark 8. The energy-shaping control action and (part
of) the damping injection term depend on the quantity
xc(t) defined in (18) that requires the knowledge of the
whole state x(t, z) of (1). This is a typical limitation of
the approach, as discussed e.g. in Macchelli et al. (2017).
However, such limitation can be removed for the particular
system studied here. At first, from (6), it is immediate that
xc(t) can be equivalently written as

xc(t) =

√
2

1− γ1

∫ 1

0

[ξ1(t, z) + γ1ξ2(t, z)] dz

where the definition of γ1 in (8) has been taken into
account. On the other hand, from (7) and the boundary
condition (8), it is easy to check that



∫ 1

0

ξ2(t, z) dz =

∫ t

t−1

ξ2(τ, 0) dτ∫ 1

0

ξ1(t, z) dz =

∫ t

t−1

ξ1(τ, 1) dτ = γ1

∫ t

t−1

ξ2(τ, 1) dτ

= γ1

∫ t−1

t−2

ξ1(τ, 0) dτ

which implies that

xc(t) =

√
2γ1

1− γ1

∫ t

t−2

ξ2(τ, 0) dτ (39)

As a consequence, for t ≥ 2, (39) provides the value of xc(t)
to be employed in (10) and in (36) by integrating quanti-
ties, namely a linear combination of the state variables of
(1), see (6), that are defined in z = 0 only. As a matter
of fact, (39) is a sort of observer that converges in finite
time and provides the basic term in the energy-shaping
and damping-injection control action.

5. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the design of an
energy-shaping plus damping injection control law for
a one-dimensional wave equation with boundary anti-
damping at the uncontrolled end. This result is quite
powerful because it shows for the first time that such
techniques can be successfully employed to stabilise dis-
tributed parameter systems in port-Hamiltonian form that
are not passive. The control action consists of three main
terms. The first one is a proportional contribution that
is related to energy-shaping, the second and the third one
are a derivative and an integral action. The latter twos are
designed to add the proper amount of dissipation in the
closed-loop system and have asymptotic stability.

Future work is mainly focused on the generalisation of the
proposed approach to a wider class of boundary control
systems in port-Hamiltonian form for which the anti-
damping effect or, in general, the instability source is not
only at the boundary of the spatial domain, but also inside
the domain itself. For these systems, the goal is to achieve
not only asymptotic, but also exponential convergence to
the equilibrium.
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