
Energy shaping plus Damping injection of
Irreversible Port Hamiltonian Systems

Ignacio Villalobos ∗ Hector Ramrez ∗ Yann Le Gorrec ∗∗

∗ Electronics Engineering Department, Universidad Tcnica Federico
Santa Mara (UTFSM), Chile. ignacio.villalobos.a@gmail.com,

hector.ramireze@usm.cl
∗∗Department of Automation and Micro-Mechatronic Systems,

FEMTO-ST UMR CNRS 6174, UBFC, 26 chemin de l’épitaphe,
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Abstract: Irreversible port Hamiltonian Systems (IPHS) are an extension of the classical Port
Hamiltonian System (PHS) formulation for reversible systems. Irreversible port Hamiltonian
systems not only expresses the conservation of the energy but also the irreversible entropy
production as an structural property. These systems can be used to model and control a
large class of thermodynamics systems such as RLC circuits with dissipation, heat ex-changers,
continuous stirred tank reactor (CSTR) and in general multi-energy systems that have reversible
and irreversible process. Control techniques such as IDA-PBC and Energy Shaping have been
used to propose controllers for these systems using an energy based availability function to derive
a Lyapunov stable closed loop energy function. This paper presents a systematic method using
an energy based availability function with Energy Shaping and Damping Injection techniques
to derive a controller for an IPHS system.
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1. INTRODUCTION

The derivation of the control laws usually is based on
an appropriate choice of a Lyapunov function which can
be linked to the Hamiltonian of the system and derived
through the resolution of a set of associated matching
equations. Then synthesize an energy shaping controller to
modify the equilibrium of the Lyapunov function with a
damping injection input to converge to this point (van der
Schaft and Jeltsema, 2014). In irreversible phenomena,
the irreversible process of the system makes the energy
function a non convex function. In Ramirez et al. (2013a)
the framework of the IPHS has been combined with the
framework of thermodynamic availability function (Alonso
and Ydstie, 1996); (Alonso and Ydstie, 2001); (Jillson
and Ydstie, 2007) to derive an asymptotically stability
condition for irreversible thermodynamic systems.

In (Ramirez et al., 2013a) a class of quasi PHS, nameley
irrversible port-Hamiltonian systems (IPHS), has been
proposed to model a large class of thermodynamic systems.
These systems express as a structural property the first
and second principles of thermodynamics. IPHS have
are a non-linear system with a physically meaningful
structure and just as PHS systems, they are defined with
respect to the total energy of the system which make it
possible to interconnect them with other reversible or non-
reversible systems (Ramirez et al., 2013b). Recently the
IPHS structure have been employed to derive non-linear
passivity based controllers (Ramrez et al., 2016).

In this paper we propose a systematic control method for
IPHS using Casimir invariant function in order to shape
the closed loop energy function with an energy shaping-
damping injection control input in order to the energy
function to converge to the desire minimum point and
to be shaped. We use the framework of an availability
function for the irreversible process of the systems and
derive an energy based controller for an IPHS. The paper is
organized as follows. Section 2 presents the basics on IPHS.
In section 3 we derive an energy shaping plus damping
injection controller for an IPHS and we get as an example
a controller for a RLC system. Section 4 shows the IPHS
representation of a CSTR system and we get an energy
shaping plus damping injection controller for a particular
case of a reaction of two species. In section 5 we present
some conclusions of the work.

2. IRREVERSIBLE PORT HAMILTONIAN SYSTEMS

IPHS have been proposed in Ramirez et al. (2013b) as an
extension of PHS. These system represent not only the
energy balance but also the entropy balance associated
with the irreversible process. Let us first define a Poisson
bracket (Maschke et al., 1992) with respect to a constant
skew symmetric matrix J = −J> acting on any two
smooth functions Z and G as

{Z,G}J =
∂ZT

∂x
(x)J

∂G

∂x
(x). (1)

Definition 1. An IPHS is defined by the dynamical equa-
tion



ẋ = Jir
(
x, ∂U∂x

) ∂U
∂x

+ g
(
x, ∂U∂x

)
u (2)

y = g
(
x, ∂U∂x

)> ∂U
∂x

(3)

where x(t) ∈ <n is the state vector, u(t) ∈ <m the input,
y(t) ∈ <m the output, the smooth function U(x) : <n → <
is the Hamiltonian and g ∈ <n×m is the input map. The
skew-symmetric structure matrix Jir ∈ <n×n is defined as

Jir
(
x, ∂U∂x

)
= J0(x) +R

(
x, ∂U∂x

)
J (4)

with J = −JT , J0 = −JT0 and there exists a smooth
entropy like function S(x) : <n → < which is a Casimir
function of J0, i.e.,

∂S

∂x

>
J0 = 0. (5)

The non-linear modulating function R is defined as

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J (6)

where γ
(
x, ∂U∂x

)
: <n → <, γ ≥ 0, a non linear positive

function.

Definition 1 is the composition of a conservative and
a non-conservative dynamics characterized respectively
by the matrices J0 and RJ . The balance equations of
the entropy function S(x) and the energy function U(x)
of the IPHS express the first and second principles of
thermodynamics: the conservation of the energy and the
irreversible creation of entropy. Taking the time derivative
of the energy function gives

dU

dt
=
dUT

dx
(J0 +RJ)

dU

dx
+
dUT

dx
gu

= yTu

by skew-symmetry of Jir, expressing that the IPHS is a
lossless dissipative system with supply rate yTu. If we take
the time derivative of the entropy function it follows that

dS

dt
=
dST

dx
J0
dU

dx
+R

dST

dx
J
dU

dx
= {S,U}J0 + γ

(
x, ∂U∂x

)
{S,U}2J

= γ
(
x, ∂U∂x

)
{S,U}2J = σ ≥ 0

where the therm {S,U}J0 = 0 because of (5) and where σ
corresponds to the internal entropy production.

2.1 Example: RLC plus dissipation system

Consider a RLC system including the dynamics of the
thermal effects of its electrical components. So we can
consider that all electrical components are a function of the
temperature. The IPHS formulation of the thermodynamic
RLC circuit is (Ramirez et al., 2019)Q̇φ̇
Ṡ

 =

([
0 1 0
−1 0 0
0 0 0

]
+
r

T

φ

L

[
0 0 0
0 0 −1
0 1 0

])
Q

C
φ

L
T

+

[
0
1
0

]
u (7)

where the internal energy Ue(Q,φ, S) is the sum of the
electrical energy plus an entropy like function

Ue(Q,φ, S) =
1

2

Q2

C(S)
+

1

2

φ2

L(S)
+ Us(S) (8)
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Fig. 1. Energy shaping plus damping injection control of
an IPHS.

with time variation given by

dUe
dt

=
∂Ue
∂Q

Q̇+
∂Ue
∂φ

φ̇+
∂Ue
∂S

Ṡ

= −r(S)
(

φ
L(S)

)2
+
∂Ue
∂S

dS

dt
+ yTe ue

From Gibb’s relation (Callen, 1985) it is known that
∂Ue

∂S = T (S). Taking ue = 0 it follows that U̇e = 0 and
it goes that

dS

dt
=
r(S)

T (S)

(
φ

L(S)

)2

= σr (9)

with σr the internal entropy production of the system.
Notice that (7) has the structure of the Definition 1.

3. PASSIVITY BASED CONTROL OF IPHS

Passivity based control (PBC )techniques use the passivity
properties of a system to achieve closed-loop stability.
They take benefit of the existence of an open-loop storage
function to drive the system to a desired equilibrium point
(van der Schaft and Jeltsema, 2014). Among the PBC
techniques there are two of particular interest: damping
injection, which consists in adding damping to a system
such that it is driven to the minimum of its energy
function, and energy shaping which consists in changing
the closed-loop energy function such that it has a minimum
at the desired equilibrium. The main difference between
a conservative or reversible system and an irreversible
thermodynamic system, is that while the reversible energy
function has its minimum at the dynamic equilibrium
the internal energy has not. Hence the internal energy
cannot be used as a candidate Lyapunov function for PBC
design. In (Alonso and Ydstie, 2001) the available storage
function is introduced as candidate Lyapunov function for
PBC of irreversible thermodynamic processes and different
definitions of this function have been used for Lyapunov
based control of thermodynamic systems (Alonso and
Ydstie, 1996, 2001; Ydstie, 2002; Hoang et al., 2011, 2012)
and Ydstie (2002). Based on that work, let us introduce
the definition of the energy based availability function
(Ramrez et al., 2016).

Definition 2. The energy based availability function is
defined as

A(x, x∗) = U(x) + Ua(x, x∗) (10)

Where Ua(x, x∗) = −U(x∗) − ∂U
∂x (x∗)T (x − x∗), with

U(x) being the internal energy of the system and x∗ the



desired equilibrium point of the system. A(x, x∗) is strictly
positive as soon as one of the extensive variables is fixed.

The energy based availability function is hence constructed
using the internal energy of the system and it will be
strictly positive as long as one of the extensive variables is
fixed (see (Ramrez et al., 2016; Alonso and Ydstie, 2001;
Jillson and Ydstie, 2007) more details). On the other hand,
control by interconnection by means of Casimir function
has proven to be a powerful tool for energy shaping control
of PHS (van der Schaft and Jeltsema, 2014). According
to the Definition 1, an IPHS system can be seen as the
interconnection of a purely conservative part and purely
dissipative one. This property can be exploited for the
design of energy shaping controllers by combining the use
of Casimir functions and the availability function.

3.1 Energy Shaping for IPHS

Casimir functions, which are structural invariants of a
system are instrumental to perform energy shaping of PHS
(van der Schaft and Jeltsema, 2014). They are character-
ized by a set of partial differential equations (PDE) which
depend on the structure matrices of a system. Consider a
control system in IPHS form

ξ̇ = R̄
(
ξ, ∂Uc

∂ξ

)
(Jc −Rc)

∂Uc
∂ξ

(ξ) + gc

(
ξ, ∂Uc

∂ξ

)
uc(t)

yc = gTc

(
ξ, ∂Uc

∂ξ

) ∂Uc
∂ξ

(ξ)

(11)
with ξ ∈ <l the state space vector, u(t) ∈ <m the input,
y(t) ∈ <m the output, gc(ξ) ∈ <l×m the input map and
Hamiltonian function Uc(ξ). Define the state modulation
power-preserving interconnection(

u
uc

)
=

(
0 −β(x)

β(x) 0

)(
y
yc

)
(12)

where β(x) ∈ <. The closed loop system then takes the
form (

ẋ

ξ̇

)
=

(
Jir −gβgTc

gcβg
T R̄(Jc −Rc)

)∂Ucl∂x
∂Ucl
∂ξ

 (13)

with closed-loop Hamiltonian function Ucl(x, ξ) = U(x) +
Uc(ξ). Defining

Jcl =

(
Jir −gβgTc

gcβg
T R̄(Jc −Rc)

)
(14)

Let us explode the Casimir function potentials to control
system design. We look for structural invariant functions
of the form Ci(x, ξi) = Fi(x) − ξi,i = 1, .., l with F (x) =
[F1, ..., Fl] ∈ <l some smooth well defined function of x,
then on every invariant manifold defined by ξ − F (x) = κ
with κ = [κ1, ..., κl] ∈ <l a constant that depends of the
initial states of the plant and the controller. Then, the
closed loop Hamiltonian energy function can be rewritten
as Ucl(x, ξ) = U(x) +Uc(F (x) +κ). As an invariant to the

structure of the system, the follow relation ∂CT (x,ξ)
∂x Jcl = 0

holds for every pair (x, ξ). This condition leads to the set
of partial differential equations

∂FT

∂x
(x)Jir = gcβg

T

−∂F
T

∂x
(x)gβgTc = R̄(Jc −Rc)

(15)

Following the same procedure as in van der Schaft and
Jeltsema (2014) we get the set of partial differential
equations

∂FT

∂x
(x)Jir = gcβg

T

Rc = 0

∂FT

∂x
Jir

∂F

∂x
= R̄Jc

(16)

These are the matching equations for an IPHS system with
an IPHS controller form, using a modulating function β
between inputs and outputs. These matching equations
can be interpreted in the framework of the matching
equations of a PHS (van der Schaft and Jeltsema, 2014)
but with an interconnection matrix Jir, with a scalar
function β and with a modulating function R̄. Assuming
that such smooth function F (x) exists then the control

law ue(x) = −β(x)gTc
∂Uc(F+κ)

∂ξ shaped the closed loop

Hamiltonian energy function Ucl(x) = U(x)+Uc(F (x+κ))
and the reduced IPHS may be written as

ẋ = Jir
∂

∂x
(U + Uc ◦ F ) = Jir

∂Ucl
∂x

3.2 Damping Injection for IPHS

The energy shaping control input shaped the closed loop
Lyapunov energy function with respect to a desire equi-
librium point, but one have yet to stabilize the system to
actually converge to this desire point. Lets suppose that
the Hamiltonian function is shaped with respect to a point

x∗ with the control input ue = −β(x)∂UcoF (x)
∂x . Thus we

have the closed loop system

ẋ(t) = Jir
∂Ucl
∂x

+ gu(t) (17)

Lets close the system (17) with a damping injection input

such that ui = −Kgt ∂Ucl

∂x . The new system can be written
as

ẋ(t) = (Jir − gKgT )
∂Ucl
∂x

(18)

Then taking the time derivative of the closed loop energy
function Ucl(x) follows

dUcl
dt

=
dUTcl
dx

dx

dt

=
dUTcl
dx

(Jir − gKgT )
∂Ucl
∂x

= {Ucl, Ucl}Jir − {Ucl, Ucl}M
Where {Ucl, Ucl}Jir = 0 and then

dUcl
dt

= −{Ucl, Ucl}M < 0

with M = gKgT a semipositive symmetric matrix; this
implies that K = KT and such that M ≥ 0. Using the

Lasalle’s theorem, the control law u(t) = −β(x)∂UcoF (x)
∂x −

Kgt ∂Ucl

∂x = ue(t)+ui(t) stabilizes the system to the largest

invariant set included in the set {x ∈ < s.t gT ∂Ucl

∂x = 0}.



3.3 Example: Control of the RLC system

Consider the IPHS model that it is shown in the section 2,
Definition 1. We will apply the results of the subsections
3.1 and 3.2 to get an energy-shaping plus damping injec-
tion input control. We want to look for Casimir functions
of the form C(x, ξ) = F (x) − ξ such as ξ = F (x) + κ for
the system (7) with F (x) = F (Q,φ, S) : <3 → < a smooth
function and with the IPHS controller

xc = R̄Jc
∂Uc
∂xc

+ gcuc

By applying the third equation of (16) it gets Jc = 0 and
gc = 1. The first equation of (16) results in the system

−∂F
∂φ

= 0,
∂F

∂Q
+
rφ

TL

∂F

∂S
= β, − rφ

TL

∂F

∂φ
= 0

This system has multiple solution. We take

∂F

∂Q
= α1

∂F

∂φ
= 0

∂F

∂S
= α2

with β = α1 + α2
rφ
TL where α1, α2 ∈ <. The smooth

function F then takes the form

F = α1Q+ α2S

The Casimir obtained allows to make control on the charge
of the capacitor and on the entropy of the system. The
desired Hamiltonian energy for the closed loop is

Ucl(Q,φ, S) =
1

2

(Q−Q∗)2
C

+
1

2

φ2

L
+A(S, S∗)

where A(S, S∗) = Us(S) − [Us(S
∗) + T ∗(S − S∗) is the

availability function (10) for the irreversible phenomena
of the system. The interconnection between the controller
and the system has a closed loop energy function given by

Ucl(Q,φ, S) = U + Uc
where Uc is the energy of the controller and U is the
internal energy of the system. The simplest choice for the
energy of the controller is then

Uc = −QQ
∗

C
+

1

2

(Q∗)2

C
− Us(S∗)− T (S∗)(S − S∗)

Taking α1 = −Q∗

C and α2 = −T ∗ with κ = 1
2
(Q∗)2

C −
Us(S

∗)+T ∗S∗ it follows that β = −Q∗

C −T ∗
rφ
TL . The control

input is then given by

ue = −β ∂Uc
∂ξ

= −β =
Q∗

C
+ T ∗

rφ

TL

We have the energy shaping control input so we have yet
to design the damping injection input in order for the
closed loop system to converge to x∗. Following the result
presents in the subsection 3.2 we take the control input
ui(t) = −Kgt ∂Ucl

∂x with K a positive constant. Taking
K = α > 0 as an adjustment parameter, the damping
control input is then

ui(t) = −αφ
L

The control law for the system takes the form

u(t) =
Q∗

C
+ T ∗

rφ

TL
− αφ

L
which is a classic proportional plus integration control law.
It is interesting to note that the control input of the energy
shaping already has a damping input with the term T ∗ rφTL
which it comes natural when we note that the IPHS is not
entirely dissipative.

4. EXAMPLE: THE CSTR SYSTEM

In this section we will get an energy shaping plus damping
injection controller for the CSTR System. We will show
its IPHS model in subsection 1 and get a particular case
of a reaction of two species. In subsection 2 we get the
controller for this particular case.

4.1 IPHS Model

Let us consider a CSTR system with the following re-
versible reaction scheme:

m∑
i=1

ξiAi
r



m∑
i=1

ηiAi (19)

with ξi, ηi being the constant stoichiometric coefficients for
species Ai in the reaction. We will consider the following
assumptions for the standard operation of the reactor
(Aris, 1989); (Favache and Dochain, 2009):

1. The reactor operates in liquid phase.
2. The molar volume of each species are identical and

the total volume V in the reactor is constant through
the reaction.

3. The initial number of moles of a species in the reactor
is equal to the number of moles of the inlet of the
sames species.

4. For a given steady state temperature T and steady
state input there is only one possible steady state
for the mass. This mean that each steady state
temperature is associated with a one unique steady
state temperature.

Lets show now the IPHS model of the CSTR system which
has been derived before in Ramrez et al. (2016). The
system can be expressed as an IPHS system as

ẋ(t) = RJ
∂U

∂x
(x) + gu(t)

with the state vector x = [n S]
T

, where n = (n1, ..., nm)T

with ni the number of moles of the species i inside the
reactor; S the total entropy of the system and U(x) the
Hamiltonian energy function.

J =


0 · · · 0 ν̄1

0 · · · 0
...

0 · · · 0 ν̄m
−ν̄1 · · · −ν̄m 0

 , ∂U∂x =


µ1

...
µm
T


where J is a constant skew-symmetric matrix whose el-
ements are the signed stoichiometric coefficients of the
chemical reaction ν̄i = ξi − ηi, a number which is positive
or negative depending on whether the species i is a product
or a reactant; ∂U∂x the differential energy vector of intensive
variables with T being the temperature in the reactor
and µi the chemical potencial of the species i; R is the
modulating function and is given by

R =
rV

T
where r = r(n, T ) is the reaction rate which depends on
the temperature and on the reactant mole numbers vector
n. The input vector is u = [u1, u2]T with u1 = F/V the
dilution rate, where F is the volumetric flow rate, and
u2 = Q the heat flux from the cooling jacket; the input
map g is given by



g =

[
n̄ 0

φ(x) 1/T

]
with n̄ = ne − n, where ne = (ne1, ..., nem)T is the vector
containing the numbers of moles of species i at the inlet
and φ(x) =

∑m
i=1(neisei−nisi)+nei

T (hei−Tsei−µi), where
sei is the inlet molar entropy,si is the molar entropy and
hei is the inlet specific molar ethalpy of species i.

As a particular case, in order to control the system, we
take m = 2 and the reaction is

ξ1A1 + ξ2A2
r

 η1A1 + η2A2 (20)

This reaction then can be modeling with the constant
skew-symmetric matrix, the differential energy vector and
the input map, respectively

J =

[
0 0 ν̄1
0 0 ν̄2
−ν̄1 −ν̄2 0

]
∂U

∂x
=

[
µ1

µ2

T

]
g =

[
n̄1 0
n̄2 0
φ(x) 1/T

]
with φ(x) =

∑2
i=1(neisei − nisi) + nei

T (hei − Tsei − µi)

and with state space vector x(t) = [n1 n2 S]
T

; the input
of the system is u = (u1, u2)T with an internal energy of
the system U .

4.2 Passivity based control of the CSTR

In this section we shall get a controller for the CSTR
for the particular case m = 2. The system has by states
n1, n2, S so we will parametrize the design and look for
Casimir functions of the form C1(n1, ξ1) = F1(n1) − ξ1,
C2(n2, ξ2) = F2(n2)− ξ2 and C3(S, ξ3) = F3(S)− ξ3 such
that ξ1 = F1(n1)+κ1, ξ2 = F2(n2)+κ2 and ξ3 = F3(S)+κ3
with F (n1,n2, S) = [F1 F2 F3] : <3 → <3 a smooth
function. Taking the IPHS controller

xc = R̄Jc
∂Uc
∂xc

+ gcuc

The state space vector of the controller is then xc =

[ξ1 ξ2 ξ3]
T

with Jc ∈ <3×3 a skew symmetric matrix; the
input map is such that gc ∈ <3×2 and the modulating state
space β a scalar function. For the design of the controller
we take

gc =

[
g11 g12
g21 g22
g31 g32

]
For the energy design using the availability function, we
would like to get an energy close loop Hamiltonian function
Ucl = U(x) − [U(x∗) + ∂U

∂x (x∗)T (x − x∗)]. The energy of
the interconnection between the system and the controller
is also Ucl = U + Uc where U is the internal energy of the
system and Uc is the energy of the controller. Thus the
controller energy is chosen as

Uc = −[U(x∗) +
∂U

∂x
(x∗)T (x− x∗)]

Energy which is equal to

Uc = (−µ∗1n1 + µ∗1n
∗
1) + (−µ∗2n2 + µ∗2n

∗
2)+

(−T ∗S + T ∗S∗)− U(n∗1, n
∗
2, S
∗)

With the election of the Casimir function and with the
energy of the controller the vector of partial differential
equations of the function F is

∂F

∂x
=

[−µ∗1 0 0
0 −µ∗2 0
0 0 −T ∗

]

Lets us apply now the matching equations. From the first
equation of (16) we get the system of equations

g11 = 0 g21 = 0 g31 =
T ∗ν̄2
n̄2

g12 = −µ∗1ν̄1T ∗ g22 = −µ∗2ν̄2T ∗ g31 =
T ∗ν̄1
n̄1

g32 = −g31φT ∗ β = R

The system has a solution if
n̄1
ν̄1

=
n̄2
ν̄2

(21)

In Prigogine and Defay. (1954) for batch reactors the
equality (21) is the expression of De Donder’s extent
reaction

n0i − ni
ν̄i

= ξ

where this property can be easily extended to the CSTR
with assumption 3 and such that the numbers of moles of
each specie is equal to the numbers of moles at the inlet:
n(t = 0) = n0 = ne (Aris, 1989). The result in (21) is a
particular case of the condition obtained in Ramrez et al.
(2016) where an IDA-PBC light approach is taken. The
third equation of (16) gives

Jc = T ∗

[
0 0 µ∗1ν̄1
0 0 µ∗2ν̄2

−µ∗1ν̄1 −µ∗2ν̄2 0

]
with R̄ = T ∗ a real constant. The controller then can be
written as

xc = T ∗

[
0 0 µ∗1ν̄1
0 0 µ∗2ν̄2

−µ∗1ν̄1 −µ∗2ν̄2 0

][−µ∗1
−µ∗2
−T ∗

]

+

 0 −µ∗1ν̄1T ∗
0 −µ∗2ν̄2T ∗
T ∗ξ −(T ∗)2ξφ

uc
yc = gTc

[−µ∗1
−µ∗2
−T ∗

]
The energy shaping control law ue = −βgTc ∂Uc

∂xc
is then

given by

ue = −rV
T

[
−(T ∗)2ξ

−(µ∗1)2ν̄1T
∗ − (µ∗2)2ν̄2T

∗ − (T ∗)3ξφ

]
Recall that the damping injection input is given by ui =
−KgT ∂Ucl

∂x . We design K ∈ <3×3 such that M = gKgT ≥
0 with K = KT . A simple possible choice is to take
M = diag(0, 0, α), with α > 0. The election of K that
allows this is K = α diag(0, 0, T 2) and then the damping
input takes the form

ui = α

[
0

T (T − T ∗)
]

The closed loop system is then

ẋ = (−gKgT +RJ)
∂Ucl
∂x

with ∂Ucl

∂x = [µ1 − µ∗1 µ2 − µ∗2 T − T ∗]T . We note that
the closed loop system is also an IPHS with dissipation
gKgT . It has yet to prove that the closed loop system
is asymptotically global stable. In effect, taking the time
derivative of the Hamiltonian closed loop energy we get

dUcl
dt

= −∂U
T
cl

∂x
M
∂Ucl
∂x

= −α(T − T ∗)2



which is positive defined and vanishing only at T = T ∗. By
applying the La Salle’s invariance theorem in a sufficient
small region of T = T ∗ and with assumption 4 then the
proof follows.

5. CONCLUSION

This papers presents a systematic design method based on
the IPHS extended formulation, using the thermodynamic
availability function for irreversible part with an IPHS
controller structure, and a modulated state function for
the output and input of the system. An energy-shaping
controller has been design using the framework of the well
known Casimir functions to find structural invariants for
the system. Casimir function has to satisfy the matching
equations in order to be useful for the system. The con-
troller modify the natural equilibrium point of the system
but it doesn’t guarantee the the system actually converge
to this point. A damping injection input control has been
design in order for the system to be asymptotically global
stable. A controller for the PHS with thermal effects,
which is a system with a reversible-irreversible dynamic,
has been design using the energy shaping plus damping
injection technique using the availability function for the
irreversible process. A controller for a CSTR system, which
is purely dissipative, with two reaction has also been de-
sign proposing an energy controller function and finding
Casimir functions that satisfy the matching equations.
Future work will deal with numerical implementations of
the controller.
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