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Abstract: In this paper we study a generic model of a nonlinear quasiperiodic vibration energy
harvester (VEH) based on electromagnetic transduction. The proposed device consists of multiple
moving magnets guided by elastic beams and coupled by repulsive magnetic forces. A system of two
degrees-of-freedom (DOFs) with tunable nonlinearity and mode localization is experimentally vali-
dated. The validated 2-DOFs harvester is optimized using a multiobjective optimization procedure
to improve its harvested power and frequency bandwidth. An efficient criterion using the modal
kinetic energy of the finite element model is proposed to quantify the energy localized in the structure
perturbed zones. Afterward, this concept has been generalized to a 5-DOFs VEH with two perturbed
DOFs oscillators and the optimal performances are derived using a multiobjective optimization. This
proposed model enables a significant increase in the harvested power and frequency bandwidth by
101% and 79%, respectively, compared to that of the 2-DOFs device. Moreover, it has been shown
that harvesting energy from two perturbed magnets among five provides almost the same amount of
harvested energy and enhances the frequency bandwidth by 18% compared to those of the periodic
system. Consequently, the harvester can be improved by reducing the transduction circuits number
and the manufacturing cost.

Keywords: electromagnetic vibration energy harvester; multimodal structure; energy localization;
nonlinear dynamics; multiobjective optimization

1. Introduction

Over the last years, wearable devices and embedded systems have been increasingly
introduced in diverse applications. Most portable devices depend on batteries as the main
energy source. However, they have a limited lifespan even with continuous progress in pro-
ducing high-energy-density batteries [1]. Therefore, collecting energy from the environment
ambient sources and converting it into usable electricity is challenging [2–4]. Harvesting
energy techniques from different sources have received much attention [5]. Energy har-
vesting from vibrations, as one of the most studied methods [6,7], has a major challenge
in converting vibration energy into electrical energy. Multiple studies proposed different
designs of vibration energy harvesters [8,9] used in wireless sensors which are considered
as self powered systems. The energy storage is possible through different conversion tech-
nologies namely electrostriction [10], magnetostriction [11], piezoelectricity [12,13] and
electromagnetism [14].

In spite of considerable progress, major limitations need to be overcome in the field of
vibration energy harvesting [15]. For instance, most vibration energy harvesting devices
effectively operate in a narrow bandwidth near to their resonance frequency. Consequently,
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their application is limited to specific domains and they can not be used where energy
prevails over a larger bandwidth. To overcome this problem, several approaches concerning
the vibration energy harvesters have been proposed and have proved reliable results.
Among them, one can mention the introduction of the nonlinearity [16,17], the adoption
of multimodal configurations [18,19], the combination of two or more of the techniques
mentioned, etc.

Adopting a multimodal approach helps to cover a certain range of frequency to achieve
a broader bandwidth. For that reason, multiple researchers have developed energy har-
vesters with multiple DOFs [20–23]. Benefits of the multimodal method with the function-
alization of the energy localization phenomenon have been, recently, investigated [24,25].
The energy localization phenomenon, first developed by Anderson [26], is exploited to
increase the amplitude of vibration and also to enhance the harvested power. When an
irregularity is introduced in the periodic system, the energy will be localized in regions
near to this imperfection instead of being propagated in an equal manner to all system’s
regions [27–29]. Although the fact that multimodal techniques enable a wider bandwidth
for energy harvesters, their implementation leads to severe technological constraints due to
the interface required to the electrical circuits and the high costs of the latter. Consequently,
the nonlinearity is introduced to address this limitation and also to overcome the restriction
of the conventional linear VEHs having a narrow operating bandwidth [30,31]. The non-
linearity of the device is presented in many works in different ways. The researches were
oriented to change the natural frequency of a system by controlling its geometrical charac-
teristics [32,33], by introducing external forces [34], via the interaction of the oscillator with
the magnetic field [35–38] or by imposing high displacements [39], etc. These methods
proved that the introduction of nonlinear dynamics increases significantly the frequency
bandwidth of the devices. In recent works published by the authors of this paper, the
benefits of the combination of the nonlinearity and the energy localization phenomenon
have been investigated in a two degrees-of-freedom (2-DOFs) system [40,41]. It has been
proved that the introduction of nonlinear dynamics enhances the frequency bandwidth and
offers a higher energy localization robustness compared to the linear systems. Moreover, it
has been confirmed that the functionnalization of the energy localization allows enhancing
the harvested power. Furthermore, to produce a high-efficiency output harvester, the
optimization of the vibration energy harvesters has gained a lot of interest. For instance,
many studies have been conducted to optimize the output power and the structure as-
pects of the harvesters [42,43]. Several optimization approaches have been used such as
the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [44], the new optimization
methodology based on Artificial Intelligence (AI) [45], etc.

In this work, a multimodal electromagnetic vibration energy harvester with tuning
nonlinear dynamics and energy localization is studied. The results of [40,41], allow the
experimental validation of the 2-DOFs model. The validated 2-DOFs system is optimized
using a multiobjective optimization procedure to improve the VEH harvested power and
frequency bandwidth. An efficient criterion using the modal kinetic energy of the finite
element model is proposed to quantify the energy localized in the perturbed zones of the
quasiperiodic structure. This concept is then generalized to a 5-DOFs VEH where two DOFs
oscillators among five are perturbed. A complete optimization procedure using the NSGA-
II has been conducted to search for the optimal position of the introduced perturbations.
Subsequently, a multiobjective optimization with tuning nonlinearity and mode localization
is performed to enhance the harvesting output performance. The obtained results prove
that the proposed method provides an efficient tool to design a large harvester with
promising performances in terms of harvested power and frequency bandwidth compared
to the current state of the art.
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2. Mechanical Model
2.1. Proposed Design

Figure 1 illustrates the generic proposed vibration energy harvester. It consists of
N neodymium magnets guided by elastic steel beams and weakly coupled by repulsive
magnetic forces. These moving magnets are placed between top and bottom fixed magnets.
The coupling is tuned by varying the gap between magnets thanks to the changement of
position of the beams inserted into threaded rods. Wire-wound copper coils are wrapped
around the moving magnets. When the device is subjected to a harmonic base excitation
Ÿ = Y0 cos(ωt) where Y0 is the imposed acceleration amplitude, each moving magnet
oscillates around its equilibrium position. Consequently, a current is induced in each coil
according to Lorentz’ law. vn (n = 1, . . . , N) quantifies the displacement of the magnets.
The two magnets at the ends of the array are considered to be fixed so that v0 = vN = 0.
The periodicity of the structure is broken by mistuning few magnet masses.

Y=Y0cos(�t)

Figure 1. Device of the electromagnetic vibration energy harvester of N coupled magnets.

2.2. Equation of Motion

The fourth order partial differential equations of the continuum system are derived
using the Hamilton principle as detailed in Appendix A. The following equation of motion
is then obtained:

ρSv̈n + EIvIV
n + cmv̇n −

ES
2L

v′′n
∫ L

0
v
′2
n dx +

ce

Lc
v̇n + Fm = (ρS +

M
Lc

)Ÿ (1)

where vn stands for the transverse displacement of the nth beam (n = 1, .., N). ′ and .
denote respectively the derivatives with the spatial variable and the time. L, Lc, ρ, I, E , cm,
ce, Fm, S and M are respectively the beam half-length, the magnet half-diameter, the steel
density, the beam quadratic moment, the steel’s Young modulus, the mechanical damping,
the electrical damping, the magnetic force, the beam section and the magnet mass.

For reasons of symmetry of the 1st mode, each beam is fixed at x = 0 and guided at
x = L, so the associated boundary conditions are:{

vn(0, t) = v
′
n(0, t) = 0

EIvn
′′′
(L, t) = Mv̈n(L, t)

(2)

To transform the continuous multiphysics problem into a system of discrete ordinary
differential equations in the time domain, the Galerkin modal decomposition is used
and is detailed in Appendix B. Consequently, dividing Equation (A11) of Appendix B by
the equivalent mass Meq, the equation of motion of the nth DOF is written in terms of
generalized coordinates as follows:
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{
än + c ȧn + ω2

0 [(1 + 2β) an − β (an−1 + an+1)] + fnl a3
n = −(1 + p)Ÿ1

in(t1) =
δ d

(Rload+Rint)T
ȧn, n = 1..N (3)

where c = ceq/Meq is the equivalent viscous damping, β = kl
mg/kl

mec is the coupling factor,
fnl = knl

mec/Meq is the mechanical nonlinear term while assuming that the magnetic non-
linear term is neglected compared to the mechanical nonlinear term (knl

mg/knl
mec = 0.28%),

p stands for a mass ratio and ω0 is the eigenfrequency of the decoupled 1-DOF oscilla-
tor. Y1 and t1 are defined in Equation (A6). Meq, ceq, kl

mg, kl
mec and knl

mec are defined in
Equation (A12).

The mass mistuning coefficient αn is introduced in Equation (3). Thus, the equation of
motion of the nth magnet can be written as follows:

än + cȧn +
ω2

0
αn

[(1 + 2β)an − β(an+1 + an−1)] +
fnł
αn

a3
n = (1 +

p
αn

)Ÿ1 (4)

where {
αn 6= 1 for the mistuned DOF n
αn = 1 for the non-mistuned DOF n

with n = 1, .., N,

as we consider two additional fixed magnets at the ends of the array: a0 = aN+1 = 0.

2.3. Modal Localization Phenomenon

The energy localization phenomenon occurs under conditions of internal weak cou-
pling in nearly periodic structures. In fact, when a small disorder is introduced, the
symmetry of the periodic system is broken leading to energy confinement in the perturbed
region. To illustrate the energy localization phenomenon, a multi-degree-of-freedom sys-
tem consisting of an array of 10 weakly coupled beams considered to be perfectly periodic,
shown in Figure 2, is proposed. A finite element method is, then, developed to study
this system. The elastic beams are bi-clamped and the coupling between the beams is
insured via spring connexions where their stiffnesses are fixed so that the coupling is weak
('1%). The assumption of the weak coupling leads to the creation of closed modes where
all normal frequencies ωn may be expressed with respect to the reference frequency ω0
as follows:

ωi = ω0(1 + ∆)1/2 (5)

where i = 1, 2, ..., N, ∆ = 2 β (1− cos( iπ
N+1 )) << 1 and β ' 1% is the coupling factor.

The Taylor expansion of cos( iπ
N+1 ) gives the following approximate solution of all

normal frequencies:

ωi ≈ ω0 (1 +
1
2

∆) (6)

This assumption permits to create closed modes in order to study the energy localiza-
tion phenomenon. The natural eigenfrequencies of the 10-beams system are reported in
Table 1.

Table 1. Natural eigenfrequencies of the 10-beams system in Hz.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

120.8924 120.8996 120.9109 120.9253 120.9418 120.9590 120.9756 120.9900 121.0013 121.0084

The first mode shapes and their sensitivity to the introduced mistuning are shown
in Figure 2. The vibrations of the periodic system, observed in Figure 2a, are uniformly
distributed. Then, the mistuning was introduced to the 10-beams structure by varying the
density of three arbitrary beams among 10 by 6% (the 3rd, 6th and 9th beams and the 2nd,
5th and 8th beams counting from the bottom in Figure 2b,c, respectively). The perturbed
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beams have notably more displacements than the others and this is modeled in terms of
kinetic energy confined in the mistuned regions shown in Figure 2b,c. Comparing the
results of the configurations illustrated in Figure 2c,d where the irregularities are placed in
the same positions but with different amount, the energy localization is more accentuated
and kinetic energies of the perturbed beams are significantly higher then the others in the
case of the density mistuning by 10%.

(a) (b)

(c) (d)
Figure 2. Bending vibration mode of the coupled beam system subjected to variations in mass density by (a) 0% (periodic
system), (b) 10% of the 2nd, 5th and 8th beams counting from the bottom, (c) 6% and (d) 10% of the 3rd, 6th and 9th beams
counting from the bottom.

Consequently, to quantify the mode localization and predict its occurrence, a criterion
is proposed. The ratio between the modal kinetic energies of the concerned local DOFs and
the global structure will be calculated, for each mode, as follows:
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En =
xT

n Mnxn

XT MX
(7)

where Mn is the mass matrix of the area made up of n elements, xn is the eigenvector
restriction of this area, X and M are respectively the eigenvector of the considered mode
and the mass matrix of the full model.

According to that, E12 applied to the 1st and 2nd DOFs in periodic (Figure 2a) and
quasiperiodic (Figure 2b) configurations are respectively of 20% and 50%. It can be con-
cluded through this example that the localized energy in 2-DOFs of the quasiperiodic
system is equal to the energy of 5-DOFs in the periodic system.

In the particular case of discrete system with N DOFs, this criterion can be written as
follows for the DOF n:

En =
mnx2

n

∑N
i=1 mix2

i
(8)

where mn and xn are respectively the mass and the displacement of the considered DOF n.

3. Multiobjective Optimization of the Validated Two-Coupled-Beams Harvester
3.1. Numerical-Experimental Confrontation

The concept combining the benefits of geometric nonlinearities and energy localization
is proposed to enhance the performances of a periodic weakly coupled electromagnetic
VEH device. These effects on the frequency bandwidth as well as on the harvested power
have been investigated in [40]. Following this study, it has been concluded that the energy
can be harvested from one perturbed magnet instead of two and only one electric circuit
can be used while the maximum harvested energies are comparable and the bandwidth is
enhanced compared to the results of the periodic structure. Subsequent work included the
manufacturing and experimental characterization of the proposed device under harmonic
excitations [41]. The nonlinearity level has been tuned by varying the critical resistances
and the energy localization has been controlled by the mass mistuning. Through this study,
it has been confirmed that the experimental tuning of these phenomena allows the enhance-
ment of the VEH performance in terms of frequency bandwidth and harvested energy
and the compromise solution that maximizes simultaneously the main objectives has been
experimentally determined. Moreover, it has been proved that the nonlinear dynamics
offer a higher robust energy localization compared to the linear system. Despite the signifi-
cant improvement in the performances of the 2-DOFs device, a complete multiobjective
optimization needs to be performed for further enhancement of the generic harvester.

First, a system of 2-DOFs is studied. The power is harvested only from the oscillations
of the 2nd perturbed magnet. Therefore, the harvested power is expressed as follows:

P = Rload (
ω0 δ

Rload + Rint
)2 A2

2max (9)

where A2max, Rload, Rint and δ stand respectively for the maximum amplitude of the
frequency response of the second perturbed DOF oscillator, the transduction circuit load
resistance, the coil internal resistance and the electromagnetic coefficient.

The system of equations of a 2-DOFs model where the second DOF oscillator is
perturbed, is generated according to Equation (4). It is solved using ode45 method. The
amplitudes and the harvested power are calculated. All the numerical simulations are
performed with a basis acceleration equal to arms = 1 g, a gap d = 50 mm and a coupling
coefficient β = 0.11%. The kinetic energies based on the criterion defined in Equation (8)
while varying the value of the mass mistuning is plotted in Figure 3a. The largest difference
between the kinetic energies is obtained when α = 1.06 as observed in this Figure. Based
on the test bench described in [41], several experiments have been performed in order to
validate the numerical results. To do that, the magnet masses are perturbed by adding
small masses to the magnets. In order to accurately measure voltage peak, up and down
frequency sweeps for all the following experimental tests, which allow the capture of the
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bifurcation points of the nonlinear frequency response, have been done. The amplitudes
and masses of the 2-DOFs oscillators are being experimentally obtained while varying
the mass mistuning coefficents, the corresponding kinetic energies are calculated through
Equation (8) and plotted in Figure 3a. As shown, the optimal mass mistuning is α = 1.06
and is in good agreement with that of the numerical simulations.

The harvested power with load resistances is numerically calculated for the optimal
mistuning value α = 1.06 based on Equation (9). While varying the load resistances during
the experimental tests, the current flowing in each load resistance Rload provides an electric
power calculated as P = max(V)2/Rload where V is the voltage generated by the coil. As
shown in Figure 3b, the optimal load resistance R∗load which gives the maximum power
Pmax is 6 Ω for both numerical and experimental results.
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(b)
Figure 3. (a) Numerical and experimental energies of the 1st and 2nd DOFs versus mass mistuning coefficient (arms = 1 g,
Rload = 6 Ω). (b) Harvested power from the perturbed magnet with load resistance (arms = 1 g, α = 1.06).

A quantitative comparison between theoretical and numerical results is achieved. In
fact, the optimal mass mistuning and the optimal load resistance are in good agreement
with the experimental results (Error < 1%). The model predicts the values of the maximum
harvested powers with error of 2%.

3.2. Optimization of the Validated Model

During simulations, it was possible to find a maximum power but a minimum band-
width. While the performance of the harvester in terms of harvested power and frequency
bandwidth has been improved by tuning nonlinearity and mode localization, a multiobjec-
tive optimization needs to be done to further enhance the harvester and obtain its optimal
parameters. This approach has been applied in many fields where optimal decisions need
to be taken in the presence of trade-offs between several objectives.

In the following, this procedure is introduced using an extension of the Genetic
Algorithm (GA) [46] for multiple objectives which is the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [47]. The latter is related to evolutionary multiobjective algorithm
that aims at improving the adaptive fit of a population to a Pareto front composed of a set
of compromise solutions between the objectives. The formulation of the problem is defined
in Table 2.
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Table 2. Objective function and constraints applied to the optimization problem for the 2-DOFs harvester.

Objective Function

Maximize: (P, BW) = f (α, β, Rload)
Constraints
1 ≤ α ≤ 1.1
0 < β ≤ 3%
Rc < Rload

Where Rc stands for the critical load resistance used to tune the nonlinearity level. It
has been obtained from experiments performed in [41] and it is equal to 15 Ω. The load
resistances used in the following optimization procedures should be higher than Rc to
guarantee a nonlinear behavior of the device.

The simulations performed generate the frequency responses of all the candidate
solutions using the ode45 function of MATLAB. While assuming that the bifurcation point
of the nonlinear response curves coincides with the maximum value of the frequency
response, the bandwidth and the average harvested power are calculated.

After running the multiobjective algorithm convenient to this problem, the following
Pareto front, illustrated in Figure 4, is generated.

65 70 75 80 85

Harvested Power (  W.cm
-3

.g
-2

)

0.8

0.9

1

1.1

1.2

1.3

1.4

B
a
n
d
w

id
th

 (
H

z
)

Figure 4. Pareto front of the 2-DOFs system: frequency bandwidth versus harvested power.

The compromise solution that suits for the present problem is the one which maximizes
simultaneously the two objective functions. Therefore, the selected Pareto solution and its
corresponding parameters are defined in Table 3.

Table 3. Results of the multiobjective optimization of the 2-DOFs harvester.

Compromise Solution

(P∗, BW∗) = (69.84 µW·cm−3·g−2, 1.038 Hz)
With

α∗ = 1.03
β∗ = 1.5%

R∗load = 20 Ω

The corresponding optimal parameters α∗, β∗ and R∗load are reproduced in the exper-
imental tests to compare the numerical results to the experimental ones. The measured
performances are illustrated in Figure 5.
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Figure 5. Experimental validation of the optimal configuration of the 2-DOFs model in terms of the
average power and the corresponding frequency bandwidth BW.

The error between numerical and experimental results in terms of maximal harvested
energy and maximal frequency bandwidth are respectively 5% and 0.5%. Thus, we can
consider that the optimized model is in good agreement with the experimental results.

4. Optimization of a Multiple-Degree-of-Freedom: Five-Coupled-Beams

While a proof-of-concept of the 2-DOFs structure was designed, modeled, fabricated
and characterized, demonstrating improved power and bandwidth performance, the model
is generalized to a quasi-periodic 5-DOFs and its analytical solution is derived.

4.1. Optimal Position of the Introduced Mistuning

The governing equations of the generalized periodic 5-DOFs system is written as follows:
ä1 + cȧ1 + ω2

0 [(1 + 2β)a1 − βa2] + fnla3
1 = (1 + p)Ÿ (a)

ä2 + cȧ2 + ω2
0 [(1 + 2β)a2 − β(a3 + a1)] + fnla3

2 = (1 + p)Ÿ (b)
ä3 + cȧ3 + ω2

0 [(1 + 2β)a3 − β(a2 + a4)] + fnla3
3 = (1 + p)Ÿ (c)

ä4 + cȧ4 + ω2
0 [(1 + 2β)a4 − β(a3 + a5)] + fnla3

4 = (1 + p)Ÿ (d)
ä5 + cȧ5 + ω2

0 [(1 + 2β)a5 − βa4] + fnla3
5 = (1 + p)Ÿ (e)

(10)

Based on the characterization of the previous configuration and the benefits of the
combined techniques, two moving magnets’ masses are mistuned among the 5-DOFs.
Each perturbed magnet mass will have its own mass mistuning coefficient and its own
corresponding load resistance. As a choice, we set the same gap between the magnets. The
possible combinations of the positions of the two mistuned DOF oscillators are: (a,b), (a,c),
(a,d), (a,e), (b,c), (b,d) and (b,e) where (a) for example stands for the DOF (1) as illustrated
in Equation (10). The decision of the position of the two DOFs to be perturbed will be
made according to the case that provides the maximum energy harvested as formulated in
Table 4.

Table 4. Objective function and constraints applied to search for the position of the mistuning.

Objective Function

Maximize: P = f (α1, α2, β, R1
load, R2

load)
Constraints

1 ≤ α1, α2 ≤ 1.1
0 < β ≤ 3%

Rc < R1
load, R2

load ≤ 40
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To do that, a continuous optimization procedure involving discrete variables is
used [48]. The set of discrete variables contains α1 and α2 which stand for the mistuning
coefficients of the two perturbed oscillators. For these two values, the multiple possible
combinations are treated. A continuous optimization algorithm, implemented in MAT-
LAB, is called according to each combination of discrete variables. During the continuous
optimization, those discrete variables denote the position and the value of the mistuning
simultaneously. For that, they are modeled as a first step as discrete and then as continuous.
In the case of two successive perturbed magnets, the combination is eliminated and not
treated. This choice is made in order to have distributed perturbations over the network
so that the energy localization is more efficient. During the conducted simulations, this
system of equations is solved by the ode45 MATLAB solver. The optimization returns the
position of the mass mistuning and the maximum harvested energy of the best configu-
ration. Results indicate that the 5-DOFs system with mistuning of the 2nd and 4th DOFs,
illustrated by the equivalent model in Figure 6, give the maximum harvested energy. Thus,
the harvested power will be calculated through this expression in the following study:
P = P2 + P4, where P2 and P4 are the harvested powers from the DOFs 2 and 4, respectively.

Meq

kmec
l

kmec
L

kmec
l

kmec
nl

kmec
nl

kmec
nl

kmec
nl

kmec
nl

kmec
l

kmec
l

kmg
l

kmg
l

kmg
l

kmg
l

�m�m

�m�m

�m

Meq

Meq

Meq

Meq

a2

a1

a4

a5a3

i1 i2

rint

�1 �2

rint

Rload Rload
1 2

Figure 6. The equivalent 5-DOFs model of the vibration energy harvester (VEH).

4.2. Multiobjective Optimization of the Five-Coupled-Beams Harvester

Aiming to simultaneously enhance the harvested energy and the frequency bandwidth
of the 5-DOFs harvester with two mistuning, a multiobjective optimization is carried based
on the genetic algorithm. The Pareto front of the kinetic energies of the mistuned magnets
is plotted, as illustrated in Figure 7a, in order to visualize their trending variations. From
one solution to another, the kinetic energies of the two perturbed dofs are conflicting. To
improve the harvester performance, the kinetic energies of the perturbed DOFs should be
maximized so their sum will be maximized in the following. In order to take advantage of
the mistuned DOFs, both of them should vibrate in close proportions so they should have
close energies. For that, during this procedure, the energy rates of the mistuned DOFs are
controlled. This constraint is considered as the additional subjective preference information
to choose the optimal solution enhancing the harvester. To do that, the energy localization
rate between the 2nd and the 4th DOFs is defined as follows:

τ24(%) = E2 + E4 (11)

Then, the mutiobjective optimization problem is formulated in Table 5 as follows:
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Table 5. Objective function and constraints applied to the optimization problem for the
5-DOFs harvester.

Objective Function

Maximize: (P, BW, τ24) = f (α1, α2, β, R1
load, R2

load)
Constraints

1 ≤ α1, α2 ≤ 1.1
0 <β ≤ 3%

Rc < R1
load, R2

load ≤ 40
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Figure 7. (a) Pareto front of the 5-DOFs system: E2 versus E4. (b) Pareto front of the 5-DOFs system: frequency bandwidth
versus harvested power with the corresponding energy localization rates in %.

Pareto optimal solutions of the multiobjective optimization are depicted in Figure 7b
and the two-dimensional projection is reported in Figure 8a. Among the multiple Pareto
solutions, one will be chosen. The selection criterion is based on the solution that mini-
mizes the difference between E2 and E4. To do that, for each solution located inside the
compromised interval, the corresponding difference between E2 and E4 is calculated and
is illustrated in ’red’ in Figure 8a. Consequently, taking into consideration this additional
subjective preference information, the compromised solution that maximizes the harvested
power and the frequency bandwidth simultaneously is reported in Table 6.

Table 6. Results of the optimization problem of the 5-DOFs harvester.

Compromised Solution

(P∗, BW∗,τ∗24) = (140.923 µW·cm−3·g−2, 1.87 Hz, 64.45)
With

α∗1 = 1.03
α∗2 = 1.045
β∗ = 2.4%

R1,∗
load = 28.5 Ω

R2,∗
load = 26 Ω

Introducing these optimal values in the model, the frequency response in terms of
harvested power is calculated and plotted in Figure 8b.
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Figure 8. (a) 2D projection of the Pareto front. (b) Harvested power of the optimal configuration.

The simultaneous functionalization of the nonlinearity, the energy localization phe-
nomenon and the multimodal configuration show an improvement up to 101% of the
harvested power and 79% of the frequency bandwidth compared to the performances
given by the 2-DOFs nonlinear system with perturbing only one DOF. The 5-DOFs periodic
system is also studied in order to compare its performance to the one of the optimized
quasiperiodic 5-DOFs system. In this case, the power is harvested from all the vibrating
5-DOFs oscillators (P = ∑5

n=1 Pn). Following the same strategy, the Pareto front of the
periodic system maximizing the harvested power is plotted in Figure 9. The optimal pa-
rameters that maximize simultaneously the harvested power and the frequency bandwidth
for the periodic 5-DOFs system are β = 1.1%, Rload = 22 Ω. The obtained results show
that the proposed quasiperiodic model provides a larger bandwidth and comparable har-
vested power compared to the periodic one. In fact, the difference between the harvested
powers in the two cases is of 6.15% and the frequency bandwidth is higher by 18% in the
periodic system.
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Figure 9. Pareto front of the periodic 5-DOFs system.

From these results, it can be concluded that the functionnalization of nonlinearity
and mode localization in a multimodal device overcome the challenge of increasing the
harvested energy and the frequency bandwidth. Moreover, the combination of these
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phenomena allows harvesting energy from only two DOFs oscillators instead of five while
keeping comparable performance. The benefits of this property consist of reducing the
cost of the electrical circuits to be implemented and the technological constraints of the
structure.

To compare the optimized proposed harvester performance with the current state-
of-the-art, the volume figure of merit (FoMv) proposed by [49] has been chosen among
diverse performance metrics in the literature for being the most general criterion. The
volume figure of merit is the ratio of the harvester useful power output transferred to the
load to the maximum theoretical power flowing into an equivalent device. This equivalent
device has a cubic geometry with the same volume as the original harvester one but with
a proof mass having the density of gold ρAu occupying this volume half, while the other
half is destined to oscillation [49]. Hence, this figure of merit is calculated according to the
following expression:

FoMv(%) =
use f ul power

1
16 Y0 ρAuVol

4
3 ω3

0

(12)

where Y0 is the imposed acceleration amplitude, ω0 is the resonant frequency, ρAu is the
density of gold and Vol is the harvester volume.

According to this figure of merit, the performance of the current work harvester and the
ones of other harvesters are illustrated in Figure 10. As shown, the optimized proposed har-
vester provides competitive performance compared to the harvesters based on electromagnetic
transduction as well as the ones based on hybrid piezoelectric-electromagnetic transduction.
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Figure 10. Comparison of the optimized proposed harvester FoMv with the current state-of-the-
art [23,35,50–57].

5. Conclusions

In this work, a generic model of a nonlinear quasiperiodic VEH based on electromag-
netic transduction has been studied. A 2-DOFs VEH with tunable nonlinearity and mode
localization is experimentally validated. Then, the validated 2-DOFs structure is optimized
using a multiobjective optimization procedure with respect of the harvested power and
the frequency bandwidth. To quantify the energy localized in the perturbed zones of the
quasiperiodic structure, an efficient criterion based on the modal kinetic energy of the finite
element model is presented. Afterward, the concept is generalized to a 5-DOFs structure
and the optimal performances are derived using a multiobjective optimization procedure. It
has been proved that the optimal parameters that improve the quasiperiodic 5-DOFs device
performance enable an enhancement up to 101% and 79% in terms of harvested power and
frequency bandwidth, respectively, compared to the 2-DOFs harvester. Moreover, through
the performance comparison between the quasiperiodic 5-DOFs system with well-chosen
mistuning positions and the periodic one, it has been proved that the functionalization of
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the nonlinearity and the energy localization allows more efficient frequency bandwidth and
comparable harvested powers. Hence, the proposed quasiperiodic harvester is improved
by reducing the transduction circuits number and the manufacturing cost. In addition, it
has been shown that the optimized harvester has competitive performance compared to the
current state-of-the-art. Finally, despite the fact that the generic harvester performances are
optimized, an efficient energy harvester for small-scale realistic applications is challenging.
Future work will include the miniaturization and experimental validation of the device
with more than 2-DOFs as well as the optimization of its performance while investigating
the nonlinear energy localization phenomenon and its stability [58].
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Appendix A. Dynamic Equations of Motion of the Continuous Structure

Based on the problem formulation detailed in Mahmoudi et al. [35], the continuum
multiphysics system, including the equation of motion of the present structure and the
magnetic transduction equation, is developed.

Appendix A.1. About the Hypothesis of the Localized Point Mass Magnet

To simplify the development of equations, the magnet mass has been considered to
be a localized point mass for the mode of interest (1st). FEM simulations under ANSYS
have been run to support this hypothesis. The illustrations of the distributed magnet mass
and of the localized point mass are shown in Figure A1a,c, respectively. As reported in
Figure A1b,d, the frequency of the beam and its mode shape are the same for the two
configurations (Errors of 0.005%, 0.003% and 0.09%, respectively in terms of displacement
in the center, slope and frequency).

Appendix A.2. Equation of Motion

The fourth order partial differential equations of the continuum system are derived us-
ing the Hamilton principle. Applying the Hamilton’s variational approach to the dynamical
system, we have the following equation:

H =
N

∑
n=1

Hn , Hn =

t f∫
t0

(Wn
c −Wn

p + Wn
ext)dt (A1)

where Wn
ci, Wn

p , Wn
ext are respectively the works of the non-conservative forces, damping

forces and exterior forces of the nth beam (n = 1, .., N).
The magnets and the beams are identical and the distance d between the magnets is

the same. When the magnets oscillate, magnetic and electromagnetic forces are created as a
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result of the variation of the magnetic field. The magnetic force depends on the magnetic
intensities Q and the gap d is defined as follows:

Fm =
µ0Q
4π

(
1

(d− (vn − vn−1))
− 1

(d + (vn − vn+1))
) (A2)

where Q = HcSm, Hc is the coercive force, Sm is the section of the magnetic pole and vn
denotes the transverse displacements of the nth beam (n = 1, ..., N).
For δH = 0, the following equation is obtained:

ρSv̈n + EIvIV
n + cmv̇n −

ES
2L

v′′n
∫ L

0
v
′2
n dx +

ce

Lc
v̇n + Fm = (ρS +

M
Lc

)Ÿ (A3)

(a) (b)

(c) (d)
Figure A1. Distributed magnet mass: (a) Illustration and (b) Frequency and mode shape of the beam. Point magnet mass:
(c) Illustration and (d) Frequency and mode shape of the beam.

L, ρ, I, E , cm, ce, Fm, S and M are respectively the beam half-length, the steel density,
the beam quadratic moment, the steel’s Young modulus, the mechanical damping, the
electrical damping, the magnetic force, the beam section and the magnet mass.

For reasons of symmetry, the beam is fixed at x = 0 and guided at x = L, so the
associated boundary conditions are:{

vn(0, t) = v
′
n(0, t) = 0

EIvn
′′′
(L, t) = Mv̈n(L, t)

(A4)

′ and . denote respectively the derivatives with respect to the spatial and the time variable.
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The magnetic transduction is provided by a coil wound around the separation distance
between two consecutive magnets. The following mechanical-magnetic coupling equation
is defined as follows:

in(t) =
δ

Rload + rint
v̇n|x=L (A5)

where δ is the electromagnetic coefficient and Rload and rint are respectively the load and
the internal resistances.

To simplify the equations, the following dimensionless variables are introduced:

u =
v
d

; Y1=
Y
d

; t1=
t
T

; X =
x
L

; T = L2

√
ρS
EI

(A6)

The coupled continuum multiphysics problem is then equivalent to the following equation:
ün + vIV

n + cm L4

EIT u̇n − Sd2

2I un
∫ 1

0 u′ndX + L4

EI (
ce

TLc
u̇n +

1
d Fm)

= −(1 + M
ρSLc

)Ÿ1

in(t1) =
δd

(Rload+Rint)T
u̇n

(A7)

Appendix B. Reduced Model by Galerkin Modal Decomposition

A reduced model is generated by Galerkin modal decomposition, transforming the
continuous multiphysics problem into a system of discrete ordinary differential equations
in the time domain. In order to solve the previous system, the displacements are projected
on a single mode basis. The displacement of each DOF oscillator n is written as follows:

un(X, t1) = φ(X)an(t1) (A8)

where φ(x) is the projection base and an(t) are the generalized coordinates.
To simplify the modal projection of the electromagnetic force, the latter is developed

in Taylor series at order 3 and as already proved by Mahmoudi et al. [35], the magnetic
force can be expressed as a combination of the linear stiffness kl

mg and the cubic stiffness
knl

mg as follows:
Fm = kl

mgun + knl
mgu3

n (A9)

It is assumed that the magnetic nonlinearity is neglected compared to the mechanical
nonlinearity in the case of a weak coupling between the two beams.

By replacing these latter equations in Equation (A7), multiplying by φ , integrating
between 0 and 1 and taking into consideration the boundary conditions, the equations of
the multiphysics problem of the nth DOF are expressed as follows:

(
1∫

0
φ2(X)dX + M φ2(1)

ρSL )än + ( cm L4

EIT

1∫
0

φ2(X)dX + L3φ2(1)ce
TEI )ȧn + (( 2L3

EI
µ0Q2

πd3 φ2(1) +
1∫

0
φ
′′2(X)dX)an

− L3

EI
µ0Q2φ2(1)

πd3 (an−1 + an+1) + ( Sd2

2I (
1∫

0
φ
′2(x)dx)2 + 2d2L3

EI
Q2φ4(1)

πd5 )a3
n

= −(
1∫

0
φ(X)dX + Mφ(1)

ρSLc
)Ÿ1

in(t1) =
δ d

(Rload+Rint)T
ȧn, n = 1..N

(A10)

For an admissible function φ(X) = 3(X
L )

2 − 2(X
L )

3 that satisfies the geometric bound-
ary conditions φ(0) = φ′(0) = 0, φ(1) = 1 and φ′(1) = 0, the equations of motions
are written with generalized coordinates as follows:{

Meq än + ceq ȧn + (kl
mec + 2kl

mg)an − kl
mg(an−1 + an+1) + knl

meca3
n = −FeqŸ1

in(t1) =
δd

(Rload+Rint)T
ȧn, n = 1..N (A11)
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where: 

Meq =
1∫

0
φ2(X)dX + M

ρ S Lc
= 13

35 + M
ρ S Lc

ceq = cm L4

EIT φ2(X)
1∫

0
dX + L3ce

TEI

kl
mec =

1∫
0

φ
′′2(X)dX

kl
mg = L3

EI
µ0Q2

πd3

knl
mec =

S d2

2I
∫ 1

0 φ
′
(X)dX + d2L3

EI
2Q2

πd5

Feq =
1∫

0
φ(X)dX + M

ρ S Lc
= 1

2 + M
ρ S Lc

(A12)

Equation (A11) divided by Meq leads to Equation (3). This model associated to
Equation (A11) is interpreted as an equivalent discrete model of N coupled magnets repre-
sented by Equation (3).
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