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Abstract 

The durability is a severe problem in the commercial application of proton exchange 

membrane fuel cell (PEMFC). The platinum (Pt) catalyst which greatly affects performance 

and durability is one of the most important components in PEMFC. However, few PEMFC 

degradation models focused on the Pt catalyst degradation process in molecule scale. In this 

paper, a novel PEMFC catalyst degradation model is developed based on the catalyst 

transformation theory. In this model, the Pt catalyst degrades by changing form and size 

according to the transformation theory, which includes Pt dissolution and Ostwald ripening 

mechanisms. The advantage of this new model is that the transformation of every Pt particle 

is calculated directly, and the characteristics of every particle are considered, thus it can give 

more accurate catalyst degradation process. Six groups of experimental data have been used 

to validate the effectiveness of the proposed degradation model of PEMFC. Furthermore, the 

accuracy of the proposed degradation model is superior to a traditional model, and the 

application of such a degradation model to the performance prediction of the PEMFC has 

been discussed.  
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1 Introduction 

Recently, people's attitude to fossil energy is getting more and more negative, as their storage 

is limited and the traditional application of them is harmful to the environment. Therefore, a 

lot of people focus on the exploration of renewable power resources applications, such as 

wind power generators, solar panels, and fuel cells [1]. However, a lot of them are limited by 

territory and natural condition, and the manufacture of energy conversion equipment is 

costing and environmentally unfriendly [2]. Different from other applications, hydrogen fuel 

cells are totally non-polluting as the reaction product is only water [3]. Among them, proton 

exchange membrane fuel cell (PEMFC) has received much attention and has been widely 

researched [4]. 

Currently, the high cost and short durability of the PEMFC system are the main barriers to 

commercial applications [5]. For the durability problem of the PEMFC system, the 

Prognostics and health management (PHM) plays a more and more important role in recent 

year [6], as it can predict and prevent the failure before it happens [7]. The prediction of the 

remaining useful life (RUL) is the main aim of the prognosis of the PEMFC system. The 

existing prognostic models can be divided into three classes, i.e., model-driven, data-driven, 

and hybrid methods. Since model-based and hybrid methods are based on the physical 

phenomenon and degradation mechanisms, it is necessary to analyze the degradation process 

[8]. 

As is well known, all layers will degrade when fuel cell operates. However, as PEMFC is a 

multi-scale, multi-physics, and nonlinear system, it is difficult to consider all the degradation 

mechanisms in all components. Among the sub-assemblies of PEMFC, the durability problem 
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of the electrocatalyst layer is more serious and more decisive than other layers [9]. Therefore, 

the focus of this paper is on the degradation of the catalyst layer. The degradation of catalyst 

layer is governed by the catalyst transformation theory that includes three paths, i.e., the 

carbon support corrosion and falling apart, platinum particle taking off, platinum particle 

coarsening [10] [11]. However, as the mechanism of carbon corrosion in catalyst is still 

unclear, the factors that affect the durability of carbon support are still unknown [12] [13]. 

Therefore, it is difficult to find a quantitative model to distinguish the Pt particle degradation 

caused by support corrosion or transformation. Thus most researches focus on the particle 

coarsening process [14] [15]. 

A lot of experiments focusing on the degradation mechanisms of Pt catalyst have been carried 

out, and the main experiment method is the accelerating stress test (AST) [16]. Researchers 

built different reaction systems and then measured the catalyst transformation process [13]. 

The main measuring methods include: (i) scanning electron microscope (SEM) and 

transmission electron microscopy (TEM) which show the images of Pt particles and catalyst 

surface, and the Pt particle radius distribution (PRD) evolution can be detected. (ii) cyclic 

voltammetry (CV) which shows the electrochemical surface area (ECSA) of catalyst, and (iii) 

X-ray diffraction (XRD) which gives the information about particle composition and 

structure. The catalyst PRD is a direct representation of the coarsening degree of a group of Pt 

particles, and the ECSA is the active surface that is effective for the reactions. So it is very 

important to obtain the PRD and ECSA of a catalyst, so that the health state of the PEMFC 

can be monitored [17]. 

At the same time, the degradation mechanisms were also studied by theory analysis. A lot of 

researchers tried to build mathematical models in different scales [18]. Lei Tang et al. studied 

the stability of nanoparticles by thermodynamic analysis. They constructed a diagram that 

gave the Pt reaction potential dependent on particle size and pH value of solution, and some 
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thermodynamic parameters were discussed [19]. Jinnouchi Ryosuke et al. calculated the 

degradation of Pt particles with and without carbon supports by a first principle method [20]. 

It was shown that the reaction potential at edges was lower than those at flat surfaces, which 

leads to the vulnerability of edges. 

The widely confirmed catalyst transformation mechanisms are Pt dissolution and Ostwald 

ripening [21]. Pt dissolution mechanism has been researched for a long time. In Ref. [22], the 

experiment was carried out under potential cycling between different voltage ranges, and the 

relationship between Pt dissolution and ECSA degradation was obtained. In another 

experiment [23], the content of Pt during the experiment was detected by inductively coupled 

plasma mass spectrometry (ICP-MS), and the possible Pt dissolution mechanisms were 

proposed. In Ref. [18] it was also researched by first principle calculation. They studied the 

effect of particle shape on Pt dissolution, and the stability of different shapes was ranked. 

Pt particle Ostwald ripening mechanism is also researched from long time ago [24]. Ostwald 

ripening is a common phenomenon in metal material, and it is also found in Pt catalyst [25]. 

The phenomenon describes the transition of the disperse phase, in which the size distribution 

changes with a shift toward larger particle size [26].  In Ref. [27], they researched the Ostwald 

ripening of Pt nanoclusters with atomic control of initial size distribution, and mono-dispersed 

clusters were found to be more stable compared to the bimodal initial size distribution. It was 

also researched by theoretical calculation in Ref. [28]. Focusing on Ostwald ripening of 

platinum nanoparticles supported on titanium dioxide (TiO2), they found that the ripening was 

very sensitive to the structure of oxide facets and crystal phases. Smet.Y De et al. [29] used a 

molecule scale model with Ostwald ripening to get the pattern of Pt PRD evolution, but it was 

not verified by experiment. 
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However, little research gave the PEMFC degradation model based on the catalyst 

degradation process, which can be used as the basis of prognosis. A model about the 

degradation of Pt catalyst was put forward in Ref. [30], but only chemical dissolution was 

analyzed. What's more, the Pt particles were treated as a whole, thus the characteristic of 

particles was not considered. To overcome those disadvantages, a PEMFC degradation model 

is built in this paper based on the Pt particle transformation theory. In the model, a system 

with a group of Pt particles are created to model the degradation process of PEMFC catalyst. 

Those particles gain or lose molecules one by one according to the predetermined 

transformation mechanisms, i.e., Pt dissolution and Ostwald ripening mechanisms. After 

degradation, the molecule number and radius of every particle in the system can be counted, 

thus the PRD and ECSA of the system can be obtained, which is important for the health state 

assessment of PEMFC.  The advantage of the proposed method is that the dynamic 

transformation of every Pt particle is directly calculated according to their characteristics. The 

main contributions of this paper are: 

(i). A novel PEMFC degradation model is proposed based on the catalyst transformation 

theory, which considers both the Pt dissolution and Ostwald ripening mechanisms. The 

proposed model can calculate the size change of Pt particles during the operation, thus reveals 

the health state of the catalyst. 

(ii). The proposed PEMFC catalyst degradation model is verified by six groups of 

experimental data, and the PRD and ECSA calculated by the proposed model are very close to 

the experiment result. 

(iii). Compared with traditional analytical model, the proposed PEMFC catalyst degradation 

model has higher accuracy. The proposed method considers more catalyst degradation 

mechanisms, thus it is more accurate. 
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(iv). The method to apply the proposed PEMFC catalyst degradation model to forecasting 

long term PEMFC degradation is put forward. Therefore, the proposed model can be helpful 

to the degradation prediction and prognosis of PEMFC. 

The paper is organized as follows: In Section 2, the proposed PEMFC catalyst degradation 

model is described in detail. Then in Section 3, the result of the model is verified by 

experiments and compared with other model, to show its reliability and advantage. In Section 

4, the discussion about the application of the proposed model is presented. Finally, the major 

conclusions are summarized in Section 5.  

2 Molecule Scale Catalyst Degradation Model  

In this section, the details of the molecule scale Pt catalyst degradation model are presented. 

Firstly, the framework of the model is given, and the programming process is addressed in 

Section 2.1. Then, the Pt dissolution and Ostwald coarsening mechanisms are explained in 

Section 2.2 and 2.3 respectively, as they play important roles in the degradation model. 

2.1 Basic Idea of Pt Catalyst Degradation Model 

There were some analytical solutions for Pt dissolution, and they tried to treat all of the 

particles as a whole [30]. However, in the Pt catalyst system, every particle has different 

parameters that cannot be equalized, such as the reaction potential and the coverage of PtO on 

the particle surface [31]. Therefore, it is a better choice to calculate every particle respectively 

[32]. 

A group of Pt particles in a catalyst system can be calculated one by one, and then the feature 

of the system can be counted. Suppose there are 𝑀 particles, each particle 𝑖 contains 𝑛𝑖,0 Pt 

atoms at the beginning, and the radius of the particle is 𝑟𝑖,0 according to a predetermined 

distribution. The total number of the particles are set as 𝑀, and it is decided by the Pt system 
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scale that we want to simulate. The higher is 𝑀, the smoother is the particles size distribution 

and more accurate is the simulation. However, too much particles will need a lot of 

computational sources to simulate the system. In this research the 𝑀 is set as 140000, so that 

to get a balance between the computational burden and accuracy. At time step 𝑗, the particles 

exchange atoms with each other or with environment, according to the function shown as Eq. 

(1). Thus, the particle distribution transforms as time goes on. 

𝑛𝑖,𝑗 = 𝑛𝑖,𝑗−1 + Δ𝑡 ⋅ ∑ 𝑣(𝑟𝑖,𝑗)         (1) 

Where 𝛥𝑡 is the time step length; 𝑣(𝑟𝑖,𝑗) is the velocity of reactions that gain or lose atoms on 

Pt particles, which is a function of particle radius. After the molecule number of each particle 

has been obtained, as the particles are all supposed to be sphere, the new particle radius of the 

particle can be calculated according to the molecule number and molecule volume. 

Theoretically, all the reactions that cause loss or gain of Pt atoms should be considered in 

𝑣(𝑟𝑖,𝑗). However, although a lot of Pt coarsening mechanisms have been proposed, many of 

them are still uncertain, far from quantitative calculation. Therefore, we only consider Pt 

dissolution and Ostwald ripening in this paper, as the mechanisms are widely confirmed. 

As a lot of research shows, the Pt particle dissolution is one of the main paths that cause 

particle radius transformation [33]. According to the reference [32], there exist two kinds of 

reactions, i.e., electrochemical dissolution as shown in Eq. (2) and chemical dissolution as 

shown in Eq. (3) and Eq. (4). The diagrams of electrochemical dissolution and chemical 

dissolution are both shown in Figure 1. A lot of experiments have confirmed that the 

electrochemical path is more severe when the electric potential is high, while the chemical 

dissolution plays the leading role when the catalyst is in acid oxidizing environment. Some 

researchers showed that the reaction products could be PtO2, but the experiments have 
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confirmed that it takes only a small percentage in the system [32]. Therefore, it is not 

considered in this paper. 

𝑃𝑡
𝑘1
↔ 𝑃𝑡2+ + 2𝑒−          (2) 

𝑃𝑡 + 𝐻2𝑂
𝑘2
↔ 𝑃𝑡𝑂 + 2𝐻+ + 2𝑒−        (3) 

𝑃𝑡𝑂 + 2𝐻+
𝑘3
↔ 𝑃𝑡2+ + 𝐻2𝑂         (4) 

The Pt dissolution and Ostwald ripening velocity will decide the Pt number on particles, so 

they are plugged into Eq. (1). The transformation rule of Pt atoms number on every particle is 

shown as Eq. (5). At the same time, the PtO is produced during the chemical dissolution 

process, so there exist PtO molecules on particles. The PtO molecules number 𝑚𝑖,𝑗 on particle 

𝑖 at time step 𝑗 can be calculated by Eq. (6). 

𝑛𝑖,𝑗 = 𝑛𝑖,𝑗−1 + Δ𝑡 (−𝑣1(𝑟𝑖,𝑗) − 𝑣2(𝑟𝑖,𝑗) + 𝑣𝑜𝑟(𝑟𝑖,𝑗))     (5) 

𝑚𝑖,𝑗 = 𝑚𝑖,𝑗−1 + Δ𝑡 (𝑣2(𝑟𝑖,𝑗) − 𝑣3(𝑟𝑖,𝑗))       (6) 

Where 𝑣1, 𝑣2, 𝑣3 are the velocities of reaction 2, 3 and 4, respectively. And 𝑣𝑜𝑟 is the velocity 

of atoms gain or lose by Ostwald ripening. 

If both 𝑛𝑖,𝑗 and 𝑚𝑖,𝑗 equal to 0, it means that this particle has totally dissolved. By counting 

the number of particles whose radii are in a certain range, the PRD can be obtained. Also, we 

can get the ECSA of the system by summing the surface area of all particles. This model can 

be easily reformed if other degradation mechanisms are included. 

In summary, the process of the model can be shown as Figure 2. The steps are as following: 
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(i). A group of particles are created, according to a known probability density function (PDF) 

fitted by experimental data, such as Gaussian distribution and log-normal distribution. In this 

research, as there is a long tail towards big particles in the distribution, a log-normal 

distribution is chosen, and the least square fitting method is applied. 

(ii). The velocities of Pt dissolution and Ostwald ripening are calculated for every particle, 

according to the Pt dissolution mechanism given in Section 2.2 and Ostwald ripening 

mechanism in Section 2.3.  

(iii). The remaining number of Pt atoms and PtO on every particle can be obtained according 

to Eq. (5) and Eq. (6), respectively. Some particles may lose all the atoms and disappear, so 

the total number of particles will decrease. 

(iv). The operation time is checked. If it is smaller than the total time, go back to step 2 and 3 

to continue the degradation process. Otherwise, if the total time of the process is reached, we 

can go to step 5 to show the result. 

(v). Finally, the features of the system are counted and plotted, usually in the form of PRD 

and ECSA. By this method, we can monitor the degradation process and describe the 

performance of the system.  

2.2 Pt Dissolution Mechanism 

The Pt dissolution mechanisms and velocities 𝑣1, 𝑣2, 𝑣3 are explained in this part. By 

thermodynamic analysis, smaller the particle is, more violent the reaction will be [33]. For 

every particle, the equilibrium electrode potential is the function of particle radius, thus the 

reaction velocity is also different. The velocity of reaction 2 can be calculated by Eq. (7). 

𝑣1(𝑟𝑖,𝑗) = (1 − 𝜃𝑖,𝑗−1)𝑘1(𝑟𝑖,𝑗−1) exp (
𝐹(𝐸−𝐸1(𝑟𝑖,𝑗−1))

2𝑅𝑇
)     (7) 
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where: 

𝑘1(𝑟𝑖,𝑗−1) = 𝑘1
∞𝑒𝑥𝑝 (

𝛽𝛾𝑉𝑝𝑡

𝑅𝑇𝑟𝑖,𝑗−1
)        (8) 

𝐸1(𝑟𝑖,𝑗−1) = 𝐸1
∞ −

2𝛽𝛾𝑉𝑝𝑡

𝐹𝑟𝑖,𝑗−1
         (9) 

Where 𝑣1(𝑟𝑖,𝑗) is the velocity of Eq. (2) for particle 𝑖 at time step 𝑗; 𝜃𝑖,𝑗−1 is the fraction of 

particle surface covered by PtO, this is calculated for every particle at every time step; 

𝑘1(𝑟𝑖,𝑗−1) is the equilibrium rate constant of Eq. (2) for particle 𝑖, and it is a function of 

particle radius as shown in Eq. (8); 𝐹 is Faraday constant, the value is 96485 C mol-1; 𝐸 is the 

electric potential imposed on cathode, which is decided by the experiment condition; 

𝐸1(𝑟𝑖,𝑗−1) is the equilibrium potential of Eq. (2), which is function of particle radius as Eq. 

(9); 𝑅 is the ideal gas constant, the value is 8.314 J mol-1 K-1; 𝑇 is the temperature of 

environment, and it is decided by the experiment condition; 𝑘1
∞ is the equilibrium rate 

constant of Eq. (2) for Pt bulk, and it is a tuning parameter; 𝛽 is a proportional constant 

between 0 and 1; 𝛾 is the interfacial surface tension of Pt, and 𝛽𝛾 is taken as effective surface 

tension, it is set as 1.2 J m-2 according to the Ref. [26]; 𝑉𝑝𝑡 is the molar volume of Pt, the 

value is 9.09 × 10−6 m3 mol-1 (20∘C); 𝐸1
∞ is the equilibrium potential for Pt bulk, it is 1.188 

V according to the Ref. [34]. 

It can be seen that the electrochemical dissolution velocity is affected by a lot of factors. The 

coverage of PtO on particle surface will decide the contact possibility of molecules and 

external environment. The equilibrium rate constant reveals the nature of the reaction. The 

external potential will rise the reaction energy, while the equilibrium potential shows the basic 

energy needed for the reaction. 
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For reaction 3, the velocity can be given as Eq. (10). This equation declares the velocity for Pt 

atoms to transform into PtO molecules. Usually the PtO molecules cover on the surface of Pt 

particles and protect Pt from corrosion. However, the PtO itself will dissolve under acidic 

environment. Therefore, the reaction 3 does not lead to Pt dissolution directly, but it achieves 

the same effect. The velocity of Eq. (3) is also affected by coverage of PtO, equilibrium rate 

constant, external potential and equilibrium potential. 

𝑣2(𝑟𝑖,𝑗) = (1 − 𝜃𝑖,𝑗−1)𝑘2(𝑟𝑖,𝑗−1) exp (
𝐹(𝐸−𝐸2(𝑟𝑖,𝑗−1))

2𝑅𝑇
)     (10) 

where: 

𝑘2(𝑟𝑖,𝑗−1) = 𝑘2
∞exp (

𝛽𝛾𝑉𝑝𝑡

𝑅𝑇𝑟𝑖,𝑗−1
)        (11) 

𝐸2(𝑟𝑖,𝑗−1) = 𝐸2
∞ −

2𝛽𝛾𝑉𝑝𝑡

𝐹𝑟𝑖,𝑗−1
         (12) 

Where 𝑣2(𝑖, 𝑗) is the velocity of Eq. (3) for particle 𝑖 at time 𝑗; 𝑘2(𝑟𝑖,𝑗−1) is the reaction 

constant of Eq. (3) for particle 𝑖, given as Eq. (11); 𝐸2(𝑟𝑖,𝑗−1) is the equilibrium potential of 

Eq. (3), given as Eq. (12); 𝑘2
∞ is the equilibrium rate constant of Eq. (3) for Pt bulk, it is also a 

tuning parameter; 𝐸2
∞ is the equilibrium potential of Eq. (3) for Pt bulk, and it is 0.98 V [34]. 

The velocity of reaction 4 is given as Eq. (13). Unlike the velocity of reaction 2 and 3, the 

reaction 4 is not affected by external electric potential, as it is just a chemical reaction without 

the participation of electrons. It is affected by PtO coverage, reaction rate constant and pH 

level. 

𝑣3(𝑟𝑖,𝑗) = 𝜃𝑖,𝑗−1𝑘3(𝑟𝑖,𝑗−1)
𝑐

𝐻+

𝑐
𝐻+
𝑟𝑒𝑓        (13) 

where: 
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𝑘3(𝑟𝑖,𝑗−1) = 𝑘3
∞exp (

𝛽𝛾𝑉𝑝𝑡

𝑅𝑇𝑟𝑖,𝑗−1
)        (14) 

Where 𝑣3(𝑖, 𝑗) is the velocity of Eq. (4) for particle 𝑖 at time 𝑗; 𝑘3(𝑟𝑖,𝑗−1) is the equilibrium 

rate constant of Eq. (4) for particle 𝑖, given as Eq. (14); 𝑘3
∞ is the equilibrium rate constant of 

Eq. (4) for Pt bulk, it is a tuning parameter; 𝑐𝐻+ is the concentration of 𝐻+ in the solution, 

which is decided by the experiment condition; 𝑐
𝐻+
𝑟𝑒𝑓

 is the reference value of 𝑐𝐻+, which is set 

as 1 mol L-1 in this research. 

By those equations, the velocity of Pt dissolution can be calculated according to the 

experimental environment, and it varies for different particle radius. The details about the 

derivation process of Pt dissolution can be found in the reference [30]. 

 2.3 Ostwald Ripening Mechanism 

Except for the Pt dissolution, a lot of researchers reported the Ostwald ripening process of Pt 

particles [25], [26]. The phenomenon of Ostwald ripening can happen in all two phase system, 

including liquid-liquid, liquid-solid and solid-solid mixture, and it has been researched for 

several decades [35]. It is a common process in almost all metal crystal, and the system is not 

equilibrium as the chemical energy is different for big particles and small particles. In 

Ostwald ripening, a very important driven force is the interfacial energy, so the particles 

change their shape or coarsen to reduce the specific area. The process is controlled by the 

diffusion of material, and Greenwood [36], Lifshitz and Slyozov [37] and Wagner [38] (LSW 

theory) have studied the feature of Ostwald ripening process and given the diffusion 

controlled mechanism. 

The Ostwald ripening process is also shown in Figure 1, and the Pt atoms transfer from small 

particles to big particles. The velocity of Ostwald ripening can be given as Eq. (15) [29]. It 

can be seen that when the radius of a particle is smaller than the mean radius, the particle will 
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lose atoms. Otherwise, the atoms will gather on the bigger particles, thus the Pt particles 

coarsen. 

𝑣𝑜𝑟(𝑟𝑖,𝑗) = 4π𝐷𝑚𝑐𝑃𝑡𝛼 (
𝑟𝑖,𝑗

𝑟𝑗
− 1)        (15) 

Where 𝑣𝑜𝑟(𝑟𝑖,𝑗) is the velocity of Ostwald ripening for particle 𝑖 at time step 𝑗; 𝐷𝑚 is the 

diffusion coefficient of Pt, it is a tuning parameter; 𝑐𝑃𝑡 is the concentration of Pt atoms, which 

is set as 10−6 mol L-1 [19]; 𝛼 is a material decided constant in the order of 1 nm, it is set as 1 

[29]; 𝑟𝑗 is the mean radius of all particles, it is calculated at every time step. 

Other mechanisms about Ostwald ripening were also reported such as electrochemical 

Ostwald ripening, which happens by ionization. However, it is not confirmed yet, thus it is not 

considered in this paper. 

3 Verification and Comparison 

A lot of experiments focusing on the durability of Pt catalyst under different operation 

conditions have been carried out. In those experiments, the Pt catalyst was put in solution to 

proceed AST for a certain time. After AST, the catalyst was measured by different methods 

such as TEM and CV. By TEM, the PRD can be observed and plotted, which is very 

important for analyzing the particle transformation process. To have a unified criterion to 

compare the PRD at different scales, the PRD is normalized, i.e., the particle numbers of all 

different radius are divided by the maximum particle number, so that to compare the relative 

change of the particle size distribution. By CV, the ECSA can be measured during the 

experiments, and it is an important indicator for the performance of fuel cells. 

In this section, the model addressed above is applied to different experimental cases. Firstly, 

the model is verified by two experiments, where different electric potential is imposed to the 
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carbon supported catalyst. Then, the result of this model is compared with other model, based 

on two other experimental cases. 

As have been addressed above, the parameters used in our research can be divided into 3 

categories. Firstly, constant parameters which have been given below the equations in Section 

2.2 and 2.3. Secondly, experimental condition parameters which are decided by experimental 

condition, such as concentration 𝑐𝐻+, imposed electric potential 𝐸 and experiment 

temperature 𝑇. Thirdly, tuning parameters 𝑘1
∞, 𝑘2

∞, 𝑘3
∞ and the diffusion coefficient 𝐷𝑚. For 

every experiment case, the experimental condition parameters and tuning parameters are 

given when the result of proposed model is compared with experiment. 

3.1 Experimental Verification Case 1 

The material of catalyst support and the operate electric potential are the most studied two 

variables. A lot of researches have discussed the effect of electric potential [39]. The high 

electric potential condition usually happens when the power output is low, and the potential is 

close to open circuit potential. 

Yuanliang Zhang et al. carried out an ex-situ experiment under constant electric potential (1.5 

V) in a 0.1 mol L-1 HClO4 solution for 26.67 h [40]. In the experiment, they used a fuel cell 

that included a glassy carbon working electrode, an Ag/AgCl reference electrode, and a Pt 

wire counter electrode. Three different experiments were carried out under potential cycles of 

different range, and we just use the result under constant potential in this study. The process 

was detected by a lot of methods, more details about the experiment can be found in the Ref. 

[40]. The parameters used in this case are shown as Table 1. The result of the model is 

compared with the experiment as shown in Figure 3. 
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The initial distribution of model is fitted as log-normal distribution by experiment, and it 

corresponds well with the experiment. The mean radius is 3 nm for both model and 

experimental data after 26.67 h, which proves that this model is reliable. There are also some 

differences. After degradation, there are more big particles for the experimental result, while 

for model result the distribution finishes when the particle radio is bigger than 5 mm. This 

could be the result of some unknown coarsening mechanisms which are not considered in the 

model. It is possible that there exist some driven forces between big particles, so that two big 

particles join as one directly. However, this kind of mechanisms are not confirmed. The 

proposed model can give distribution with the same peak position, so it is acceptable. 

3.2 Experimental Verification Case 2 

Another experiment was carried out by Preethy Parthasarathy et al. [41]. This experiment 

happened in N2-purged 0.1 mol L-1 PtCl4 solution in dimethyl sulfoxide (DMSO), and the 

external potential was set as 0 V. In their research, they studied the degradation of both Pt and 

Ag particles on carbon by putting the catalyst in different solution. The powder samples were 

removed and detected after 1 day, 3 days, 5 days and 7 days, and the result was analyzed and 

compared. The details can be found in Ref. [41]. 

In this case, as the solvent used in the experiment is organic liquid, the Pt chemical 

dissolution path by Eq. (3) and Eq. (4) cannot happen because there is no water. Therefore, 

only the parameters of Pt electrochemical dissolution and Ostwald ripening are needed in the 

model. The parameters used in this case are show as Table 2. 

The model and experimental results are shown as Figure 4. It can be seen that the initial 

distribution of the experiment is also fitted by log-normal distribution, and the mean radius of 

particles is very small. After degradation, the model result corresponds well with the 

experiment at 5 days, but there are some differences between model and experimental result 
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for other time. At beginning, the particle transformation of model is quicker than experiments, 

like at 1 day and 3 days, as there are more bigger particles in the model result. On the 

contrary, the degradation of model is slower than experiments at 7 days, as the particle size of 

model is smaller than experiment. This could be caused by the extremely small initial radius 

of the system. In our model the molecule transportation from small particles to big particles is 

emphasized, thus the reaction is quick when there are a lot of small particles at beginning. 

Later, the transformation calculated by model slows down, as the small particles have already 

been consumed. However, the transformation velocity of experiment is almost the same 

during the process. The difference may be caused by some unknown mechanisms, in which 

the particle transportation is always remarkable regardless of the particle size. However, the 

proposed model can give approximate result, which could provide reference for the tendency 

of Pt degradation. 

3.3 Comparison with Analytical Pt Degradation Model 

Steven G. Rinaldo et al. built a model with analytical solution for the degradation of Pt 

catalyst [30]. In their model, they only considered Pt chemical dissolution, and the equations 

were obtained by analyzing the velocity of reactions. The model is given as Eq. (16)-(18), 

which shows the relationship between the number of particles and particle radius at a certain 

time. Their model was applied to two experiments, thus we use the model of this work to the 

same experiments, and the result was compared. 

𝜕𝑓(𝜉,𝜏)

𝜕𝜏
+ 𝜉2 exp(𝜉)

𝜕𝑓(𝜉,𝜏)

𝜕𝜉
= −𝜉2 exp(𝜉) 𝑓(𝜉, 𝜏)   (16) 

Where: 

𝜉 =
𝑅0

𝑟
               𝑅0 =

2𝛽𝛾𝑉𝑃𝑡

𝑅𝑇
   (17) 
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𝜏 =
𝑡

𝑇0
                𝑇0 =

2𝛽𝛾

𝑅𝑇𝑘3
∞   (18) 

Where 𝑓 is the number of particles of a certain radius; 𝑟 is the radius of the particle;  𝑡 is the 

time of the dissolution progress; 𝑅0 and 𝑇0 are the overall coefficients which can be called the 

characteristic radius and characteristic time, respectively; 𝜉 and 𝜏 is dimensionless radius and 

dimensionless time, respectively. By the method of characteristics, solution of Eq. (16) can be 

given as: 

𝑓(𝜉, 𝜏) = 𝑓0(𝜉0) exp(−(𝜉 − 𝜉0))   (19) 

 

𝐸𝑖(1, 𝜉) −
exp(−𝜉(𝜏))

𝜉(𝜏)
= 𝜏 + 𝐸𝑖(1, 𝜉0) −

exp(−𝜉0)

𝜉0
   (20) 

Where 𝐸𝑖 stands for exponential integral function; 𝜉0 is the initial value of 𝜉. By Eq. (19)-

(20), the transformation of PRD in the whole dissolution progress can be obtained for given 

initial PRD. More details about the model can be found in the reference [30]. 

Compared with the model built by Steven G. Rinaldo et al., the model proposed in this paper 

is superior in two aspects. Firstly, proposed model considers more Pt transformation 

mechanisms. Pt electrochemical dissolution, chemical dissolution and Ostwald ripening 

velocities are all applied in our model, while only chemical dissolution is considered in their 

model. What's more, by the method proposed in this research, the Pt transformation is 

obtained one particle by one particle, while in their model the particles are represented in 

several groups. Therefore, in our research the particle radius distribution is continuous, which 

is closer to the reality. 

Their model was applied to the experiment of Yuyan Shao et al. [42], where the same 

accelerating stress test was carried out for Pt catalyst supported by carbon black (Pt/C) and 
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that supported by carbon nanotube (Pt/CNT), respectively. The catalyst was put in 0.5 mol L-1 

H2SO4 solution, and the durability of Pt/C and Pt/CNT was compared. In the experiments, the 

sample was self-made, and TEM and XRD were applied to analyze the result. More details 

can be found in the Ref. [42]. The parameters used in this case are shown in the Table 3. The 

PRD of Pt/C and Pt/CNT is obtained and shown in Figure 5 and 6, respectively. The result of 

the model built by Steven G. Rinaldo et al. is also shown in Figure 5. 

It can be seen that the result of this model is more centralized than the experiment, but the 

mean radius corresponds well with experiment. Meanwhile, the Pt/CNT is more durable than 

Pt/C, which is the same as the conclusion of the experiment. By comparing the result of the 

model of this paper and that of Steven G. Rinaldo, we can see that the result of this model is 

accurate for small particles, but both models don't work well for big particles. This could be 

the result of production process of the Pt sample used in the experiment, as the process greatly 

affects the adhesion of Pt particles on the support. 

At the same time, the ECSA of the experiment and model are shown in Figure 7. And the 

mean ECSA degradation rate of experiment and model are shown in Table 4. ECSA is a key 

parameter to characterize the performance and durability of the catalyst. It can be seen that the 

ECSA degradation of the proposed model and experiment have the same tendency, and the 

ECSA degradation of Pt/CNT is much slower than that of Pt/C. For Pt/CNT, the calculated 

result is a little smaller than experiment, and this may be caused by the underestimation of big 

particles number in the model. For Pt/C, the error between model and experiment result is 

relatively big at beginning, and it decreases with time, which is caused by the different 

degradation rate of model and experiment at beginning. The relative error of mean ECSA 

degradation rate is no more than 13% for both cases, so the model result is acceptable.  
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Another experiment was also compared with the model built by Steven G. Rinaldo et al.. The 

experiment was carried out by Xin Wang et al., focusing on the comparison of Pt supported 

by Vulcan XC-72 and multi-walled carbon nanotube (MWNT) [43]. Vulcan XC-72 is a kind 

of furnace carbon black which is widely used, while MWNT is an emerging material as 

catalyst support. The electrochemical measurement was carried out in a three-electrode 

electrochemical fuel cell, by a rotating disk electrode setup with an Ag/AgCl reference 

electrode and a Pt wire counter electrode. The catalyst was put in N2 purged 0.5 mol L-1 

H2SO4 solution, with external constant potential 0.9 V. The experiment was carried out under 

thermostatic environment of  60∘C. More details about the experiment can be found in the 

Ref. [43]. The parameters used in this case are shown as Table 6. 

The PRD of Pt supported by Vulcan XC-72 and MWNT are shown in Figure 8 and Figure 9, 

respectively. The model of Steven G. Rinaldo was also carried out for this experiment, and 

the result is shown in Figure 8. It can be seen that the catalyst supported by Vulcan XC-72 

degrades quickly, while there is only a little degradation for Pt/MWNT, which shows that the 

Pt/MWNT catalyst is much more durable than Pt/Vulcan XC-72. The result of this model is 

close to the experiment. In Figure 8, the result of the model of Steven G. Rinaldo doesn't 

correspond well with the experiment, while the proposed model is closer to the experiment. 

Therefore, the proposed model of this paper is more accurate than the analytical model in this 

case. The reason why the proposed model is more accurate is that the Ostwald ripening is 

considered in our model, as it accelerates the atoms transportation between small particles and 

big particles. 

In Figure 9, the model proposed in this paper also corresponds well with the experimental 

results for Pt/MWNT. The particle size of the model is a little bigger than the experiment after 

degradation. This may be caused by the difference between the initial PRD of model and 

experiment. As the initial PRD of model does not cover some small particles, the PRD after 
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degradation is also bigger than the experiment. However, the positions of the peaks of model 

and experiment are very close, thus the result is acceptable. 

The ECSA was also recorded in the experiment. The comparison between the ECSA of model 

and experiment is shown in Figure 10. The mean degradation rate of model and experiment 

are shown in Table 6. In both experiments, the ECSA of proposed model and experiment is 

close to each other. The relative error of ECSA degradation for both cases is around 10%, 

which proves that the model is reliable. Also, there are still some differences. For Pt/Vulcan 

XC-72, the ECSA calculated by the model degrades quicker than experiment at beginning, 

and it can be caused by the effect of strong Ostwald ripening, as it emphasizes the atoms 

transport between small particles and big particles. For Pt/MWNT, the model result degrades 

slower than experiment, and this difference could be caused by the different nature of support 

material. 

4 Discussion 

The PRD and ECSA of catalyst can only be measured by ex-situ experiment, thus it is impossible to 

detect the fitness of PEMFC catalyst by experiment during the operation. However, it is necessary and 

useful to know the health state of catalyst, as it is the basis of PEMFC performance. As has been 

addressed, the effective surface of catalyst can greatly decide the intensity of oxidation-reduction 

reactions, thus affects the PEMFC performance and causes catalyst related fault. Therefore, it is 

especially important to be aware of the catalyst situation by theory analysis and calculation. Here we 

discuss how to apply the proposed model to predict the PEMFC performance degradation. 

The proposed model is effective for the calculation of future PRD and ECSA of PEMFC. Thus it can 

be applied to estimate the PEMFC performance based on the relationship between the catalyst 

situation and power output of PEMFC. Some references [44] have tried to build relationship between 

the ECSA losing and PEMFC power output degradation. For example, the relationship between the 

power output and electric current of a PEMFC under different ECSA was given [45], and the power 



21 

 

output decreases with the ECSA degradation. However, it is worth noting that the catalyst ECSA loss 

is severely related to the operation cycles of PEMFC, thus it is not a trivial issue to find the causality 

between the degradation of catalyst and PEMFC power output. It is out of the scope of this research.  

Therefore, for the PEMFC of same batch, the proposed model is able to forecast the catalyst 

degradation based on the data of one PEMFC. Special experiment can be carried out to provide 

necessary data for the proposed model, thus the unknown parameters can be obtained by the 

fitting of the degradation results, then the model can be applied to predict the degradation of 

other PEMFC. By applying this model, long term  PEMFC catalyst degradation can be predicted by 

short term experiment, thus the experiment duration will be significantly reduced, which is more 

convenient and more economical. 

5 Conclusions 

Durability is one of the most concerned problems for PEMFC. In this paper, in order to 

describe the degradation process of PEMFC catalyst, a novel PEMFC catalyst degradation 

model is proposed for the first time based on catalyst transformation theory, i.e., Pt 

dissolution and Ostwald coarsening mechanism. The biggest advantage of the proposed 

method is that the dynamic transformation of every Pt catalyst particle is directly calculated 

based on the catalyst transformation theory. The conclusions can be given as follows: 

(i)  The new PEMFC degradation model can simulate the degradation behavior of Pt 

catalyst in PEMFC. It is applied to six experimental cases, and the PRD and ECSA 

result corresponds well with the experiment, which proves that it is reliable. 

(ii) The result of the proposed model is more accurate than the analytical model in the 

reference. The proposed PEMFC catalyst degradation model considers both Pt 

dissolution and Ostwald ripening mechanisms, thus it is closer to reality. 
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(iii) This research builds a framework about how to study the transformation process of 

PEMFC Pt catalyst. With further research about Pt catalyst degradation, more precise 

mechanisms can be easily added into this model, so that the PEMFC degradation 

process can be described more clearly and accurately. 

For future research, we will try to apply the PEMFC catalyst degradation model to a real 

PEMFC whose power output is dynamic. By building the relationship between Pt degradation 

and PEMFC performance, the lifetime of the PEMFC can be predicted. Furthermore, a better 

power management strategy can be proposed based on it. 
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List of Symbols 

AST  Accelerating stress test 

CNT   Carbon nanotube  

CV  Cyclic voltammetry 

DMSO  Dimethyl sulfoxide 

ECSA   Electrochemical surface area 

MWNT  Multi-walled carbon nanotube  

PDF   Probability density function  

PEMFC Proton exchange membrane fuel cell  

PHM  Prognostics and health management 



23 

 

PRD   Particle radius distribution 

RUL  Remaining useful life  

SEM  Scanning electron microscope 

TEM   Transmission electron microscopy 

XRD   X-ray diffraction 
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Figure Captions  

Figure 1: Diagram of Pt particle coarsening mechanisms: Pt dissolution and Ostwald ripening. 

Figure 2: Diagram of the programming process of molecule scale degradation model. 

Figure 3: Normalized PRD transformation of model and experiment data of Yuanliang Zhang 

et al. [38]. 

Figure 4: Normalized PRD transformation of model and experiment data of Preethy 

Parthasarathy et al. [39]. 

Figure 5: Normalized PRD transformation of models and experiment of Yuyan Shao et al. 

[40] for Pt/C. 

Figure 6: Normalized PRD transformation of models and experiment of Yuyan Shao et al. 

[40] for Pt/CNT. 

Figure 7: Normalized ECSA of model and experiment of Yuyan Shao et al. [40] for Pt/C and 

Pt/CNT. 

Figure 8: Normalized PRD transformation of model and experiment of Xin Wang et al. [41] 

for Pt supported by Vulcan XC-72. 

Figure 9: Normalized PRD transformation of model and experiment of Xin Wang et al. [41] 

for Pt supported by MWNT. 

Figure 10: Normalized ECSA of model and experiment of Xin Wang et al. [41] for Pt/Vulcan 

XC-72 and Pt/MWNT.  
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Table Captions 

Table 1: The parameters used in the model for the experiment of Yuanliang Zhang et al. [38]. 

Parameter Value 

𝐸 / V 1.5 

𝑐𝐻+ / mol L-1 0.1  

𝑇 / K 298 

𝑘1

∞
 / s-1 10−8 

𝑘2

∞
 / s-1 10−9 

𝑘3

∞
 / s-1 10−2 

𝐷𝑚 / L mol-1 s-1 2 × 104 

Table 2: The parameters used in the model for the experiment of Preethy Parthasarathy et al. 

[39]. 

Parameter Value 

𝐸 / V 0 

𝑇 / K 298  

𝑘1

∞
 / s-1 10−8 

𝐷𝑚 / L mol-1 s-1 1.5 × 104 

Table 3: The parameters used in the model for the experiments of Yuyan Shao et al. [40]. 

Parameter value of Pt/C  value of Pt/CNT 

𝐸 / V 1.2  1.2 

𝑐𝐻+ / mol L-1 1 1 

𝑇 / K 298 298 

𝑘1

∞
 / s-1 10−7 10−9 

𝑘2

∞
 / s-1 10−8 10−10 

𝑘3

∞
 / s-1 10−2 10−4 

𝐷𝑚 / L mol-1 s-1 5 × 102 1.5 × 102 
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Table 4: Mean ECSA degradation rate of model and experiment of Yuyan Shao et al. [40]. 

Material experiment / h-1 model / h-1 relative error  

Pt/C 0.0026042  0.0025562 9.82% 

Pt/CNT 0.0013640   0.0015409 12.97% 

Table 5: The parameters used in the model for the experiments of Xin Wang et al. [41]. 

Parameter value of Pt/Vulcan XC72 value of Pt/MWNT 

𝐸 / V 0.9  0.9 

𝑐𝐻+ / mol L-1 1 1 

𝑇 / K 333 333 

𝑘1

∞
 / s-1 3 × 10−4 10−5 

𝑘2

∞
 / s-1 2 × 10−5 10−6 

𝑘3

∞
 / s-1 4 × 10−2 10−3 

𝐷𝑚 / L mol-1 s-1 103 2 × 102 

Table 6: Mean ECSA degradation rate of model and experiment of Xin Wang et al. [41]. 

Material experiment / h-1 model / h-1 relative error  

Pt/Vulcan XC72 0.0045848  0.0044573 9.72% 

Pt/MWNT 0.0021229 0.0023412 10.28% 

 


