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Proton exchange membrane fuel cell prognosis
based on frequency domain Kalman filter

Yunjin Ao, Student Member, Salah Laghrouche, Daniel Depernet, and Kui Chen

Abstract—The degradation seriously affects the durability and
cost of the Proton Exchange Membrane Fuel Cell (PEMFC).
This paper presents a novel model-driven method based on
the Frequency Domain Kalman Filter (FDKF) and voltage
degradation model to predict the degradation of PEMFC in the
frequency domain.The advantage of the proposed FDKF method
is that it can process the data in groups; thus the computation
time can be greatly reduced with high accuracy. Two degradation
experiments under constant and quasi-dynamic currents have
been used to demonstrate its prognosis performances under
different conditions and different training times. Compared with
the traditional time domain Extended Kalman Filter method and
literature, it has been demonstrated that the proposed one has
higher accuracy and requires much less calculation time.

Index Terms—Proton exchange membrane fuel cell, frequency
domain Kalman filter, voltage degradation model, degradation
prognosis, model-driven method

I. INTRODUCTION

AS fossil fuel is finitely reserved and it brings severe pol-
lution to the environment, developing renewable energy

is urgent [1]. Hydrogen fuel cells are promising alternatives as
they use renewable sources and only discharge water, which
is environment-friendly [2], [3]. Among all kinds of fuel
cells, Proton Exchange Membrane Fuel Cell (PEMFC) is one
of the most developed and concerned technologies, because
of its lower pressure and ability to operate under normal
temperature [4], [5].

PEMFCs have been applied to various fields, such as
distributed power stations, mobile devices, and automobiles.
For example, several manufacturers such as Peugeot, Toyota,
and Benz have developed a fuel cell or fuel cell/electricity
hybrid vehicles, such as Mirai and Citaro [6], [7]. However,
the high cost and short lifetime remain the biggest challenges
on the large-scale commercialization [8].

During the operation, the performance of PEMFC declines
irreversibly, which is called degradation [9]. It includes the
degradation of different components such as bipolar, catalyst,
membrane, and electrode, thus it is a complex multi-physics,
multi-units, and interactive process [10]. A lot of research
works have been carried out by experiments or theoretical
analysis, and some degradation mechanisms have been pro-
posed. However, it is still a tricky task to fully understand and
model it.
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To handle the problem of short lifetime, Prognostics and
Health Management (PHM) are proposed to predict the degra-
dation process and get the estimation of Remaining Useful Life
(RUL) of PEMFC [11]. Based on PHM, certain measures can
be taken to prevent degradation and improve lifetime [12].
The existing prognosis methods can be divided into three
categories: model-driven methods, data-driven methods, and
hybrid methods.

The model-driven methods learn and predict the PEMFC
degradation trend based on specific PEMFC degradation mod-
els. The degradation models can be divided into three cat-
egories, i.e., physical models, empirical models, and semi-
empirical models [10], [13]. Mathieu Bressel et al. predicted
the degradation and RUL of a PEMFC based on the Extended
Kalman Filter (EKF) and a new empirical model, and the
uncertainty of the prediction was quantified [12], [14]. At the
same time, a particle filter and a voltage degradation model
were applied by Marine Jouin et al., and the degradation
and RUL were predicted [15]. Also, a model that considered
the characterization disturbances and voltage recovery was re-
searched by them [16]. Meanwhile, Kui Chen et al. researched
the voltage degradation by unscented Kalman filter, and three
different models were tried. The result was validated by three
PEMFCs in different Fuel Cell Electric Vehicle (FCEV) with
real load mission [17]. Model-driven methods can give explicit
expressions of degradation. However, as the degradation is
highly nonlinear, it is not easy to find a suitable model that
can be widely used for different fuel cells [9].

The data-driven methods use the historic operation data to
learn the inner relationship between them and then predict the
degradation. Those methods need no specific models, and they
are realized by artificial intelligence [18], [19]. In Ref. [20]
[21] [22], Echo State Network (ESN) was used to forecast
the aging process, and the most influential parameters of ESN
were analyzed by analysis of variance method. Ma Rui et al.
studied 8 experiments on 3 different PEMFCs by grid long
short-term memory recurrent neural network, and the result
corresponded well with experiments [23]. At the same time, in
Ref. [24], the degradation of the real mission FCEV was pre-
dicted by a combined method which was based on the wavelet
analysis, extreme learning machine, and genetic algorithm. In
Ref. [25], the adaptive neuro-fuzzy inference system method
was given in detail, and the parameters of the method were
researched. Generally, these data-driven methods need enough
amount of data to recognize the hidden relationship between
them, and there are more parameters that need to be decided,
than model-driven methods. Also, those parameters have little
physical meanings; thus it is difficult to identify the causality
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based on the data-driven methods [10].
The hybrid methods are the combination of model-driven

methods and data-driven methods. In Ref. [26], a hybrid
prognostic method was proposed, which was based on the
least square support vector machine and regularized particle
filter. Meanwhile, Zhou Daming et al. combined Nonlinear
Autoregressive Neural Network (NANN) and Particle Filter
(PF), as NANN was good at local fluctuation prediction while
PF could give long-term degradation trends [27]. The hybrid
methods can combine the advantages of both model-driven
and data-driven methods, but as more than two methods are
connected, the complexity of the hybrid methods is usually
higher than a single model-driven or data-driven method [28].

By the analysis above, it can be seen that all those methods
have their advantages and disadvantages. Usually, the model-
driven methods can give the long-term trend with less com-
putation, and the explicit relationship can help with decision-
making. However, the existing model-driven methods are still
time-consuming when there is a lot of data to process, thus
any reduction in the computation complexity is advantageous
[29]. Therefore, a novel method based on FDKF is proposed
in this paper, which can achieve accurate prediction and which
is faster than traditional methods.

In this paper, we contribute to PEMFC prognosis by in-
troducing a new model-driven method based on Frequency
Domain Kalman Filter (FDKF), which can achieve volt-
age degradation prediction quickly and accurately. FDKF is
initially used on Acoustic Echo Cancellation (AEC) prob-
lem [30], [31], and it is adapted to the PEMFC prognosis
field for the first time. The prognosis process is achieved in the
frequency domain. Four different voltage degradation models
are researched by the proposed method, and the results are
compared with each other. Different training times are also
researched, which proves that the method is robust for both
short-term and long-term prediction. The method is validated
by two groups of experimental data, which were obtained
under constant and quasi-dynamic current respectively. The
main contributions of this paper are as follows:

(1) A new model-driven prognosis method is proposed
for PEMFC degradation prediction, which is accurate and
efficient. The advantage of the proposed FDKF method is that
it can process data in groups, thus the computation time can
be greatly reduced.

(2) Four different PEMFC voltage degradation models are
studied with the proposed FDKF method. Linear model,
quadratic model, logarithmic model, and exponential model
are employed and compared under the framework of the FDKF
method.

(3) Two groups of experimental data are used to validate
the proposed method. One of the experiments was carried out
under a constant current and the other under quasi-dynamic
current. The degradation of PEMFC under different conditions
can be predicted by the proposed method, which proves that
the method is robust.

(4) The proposed FDKF method is compared with the EKF
method. It was demonstrated that the proposed method is more
time-saving and more accurate than the EKF method.

This paper is organized as follows: in Section II, the
experiments and the data used in this research are explained in
detail. Then in Section III, the model-driven prognosis method
based on FDKF is addressed. The framework of the method
is given, as well as the detailed explanation of FDKF. Four
voltage degradation models are also chosen here. The result
is obtained and analyzed in Section IV. Two case studies are
applied to verify the method, and different models and training
time are researched. The result of EKF is also compared
with the FDKF method here. At the same time,the prediction
horizon (PH) is calculated and proved more accurate than the
literature. Finally, the main conclusions are summarized in
Section V.

To prevent confusion, rules of notation in this paper are as
follows. The variables are taken in italic letters. The lowercase
means that it is in the time domain, while uppercase means
frequency domain. Meanwhile, a bold variable means vector
and matrix, while the normal letter means that it is a scalar.

II. EXPERIMENTS AND DATA

A. Experiments

Two experiments were carried out in the Federation for Fuel
Cell Research (FCLAB), where two PEMFC stacks degraded
under different operating conditions [32]. The experiment
platform is shown in figure 1. In the first experiment, a PEMFC
stack with 5 fuel cells operated under a constant current of 70
A, and it lasted for more than 1100 h. It is called PEMFC1
in short. The main operating parameters of the experiment are
shown in table I. The second experiment was carried out on
another 5-cells stack, but under quasi-dynamic current, i.e., 70
A with 7 A high-frequency ripples, and it is called PEMFC2.
The main operating parameters of PEMFC2 are shown as
table II. The information of the stacks was recorded during
the experiments, including the temperature, pressure, current,
and voltage, etc.. There were characterization experiments
about every week during both of the degradation experi-
ments, including the polarization curve and electrochemical
impedance spectroscope (EIS) measurement. The voltage has
an obvious recovery after the characterization experiments,
which enhances the nonlinear property of voltage. More details
about the experiments can be found in the reference [32].

PEMFC

Gas supply 

system

Electronic load

Sensors and 

related devices

Measurement and 

control system

Fig. 1. PEMFC degradation experiment platform in FCLAB [32]
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TABLE I
EXPERIMENT PARAMETERS OF PEMFC1

Parameter Value

Number of cells 5
Active area 100cm2

Stack rated current 70A
Temperature 54 ◦C

Hydrogen pressure 1.3 bar
Relative humidity 50%

TABLE II
EXPERIMENT PARAMETERS OF PEMFC2

Parameter Value

Number of cells 5
Active area 100cm2

Stack rated current 70A with 7A vibration
Temperature 54 ◦C

Hydrogen pressure 1.3 bar
Relative humidity 51.8%

B. Data processing

The voltage data has to be processed before it is applied
to the prognosis because there are random errors and violent
fluctuations during the experiment. Gaussian kernel smooth
method [33] is applied to process the voltage data in this
research. It gives a weight to every data according to Gaussian
distribution and then gets the weighted average as the new
value. However, it should be noticed that the future data should
not be used to smooth the data in prognosis, thus to prevent
data leakage. Therefore, only the left half of the Gaussian
distribution is applied, while the right half is set as 0. For a
time series data d(ti), where i is the index of the data, ti is the
corresponding time, the processed data p(ti) can be obtained
as:

p(ti) =

∑ti
tj=ti−∆tK(tj) · d(tj)∑ti

tj=ti−∆tK(tj)
(1)

Where ∆t is the smoothing interval, which is set 10 h in
this case. The K(tj) is the Gaussian kernel function as:

K(tj) =
1√
2π
e

−(tj−ti)
2

2h2 (2)

Where the h is the bandwidth, which is set as 500. The
raw data and processed data of voltages are shown in figure
2(a) and 2(b) for PEMFC1 and PEMFC2, respectively. The
corresponding operation currents of PEMFC1 and PEMFC2
are also shown in the figures. It can be seen that the processed
data is smoother, but it can also represent the trend of original
data. Afterward, only the processed data is used.

III. PROGNOSIS METHOD BASED ON FDKF

In this part, the model-driven prognosis method based on
FDKF is presented. First of all, the framework of the model-

(a)

(b)

Fig. 2. Voltage raw data and processed data for (a) PEMFC1 and (b) PEMFC2

driven method is discussed in Section III-A. Then, the sup-
posed voltage degradation models are given in Section III-B.
Thirdly, the FDKF is explained in detail in Section III-C.
Finally, the method to apply FDKF in the prognosis problem
is addressed in Section III-D.

A. Model-driven prognosis method based on FDKF

Model-driven prognosis methods are based on models that
describe the degradation phenomenon in PEMFC. The overall
framework of the model-driven prognosis method based on
FDKF is shown as figure 3. Firstly, the operation data of two
experiments are used. During the experiment, the temperature,
pressure, current, and voltage data are all recorded. Then the
characterization of the data can decide which kinds of data will
be used in the prognosis. In the PEMFC prognosis problem,
stack voltage is usually easy to obtain and it can represent
the degradation of PEMFC, so it is taken as an indicator of
the state of health of PEMFC. Thirdly, as has been discussed
in the introduction, model-driven methods rely on degradation
models, so four empirical models are chosen in this research.
Then the experimental data can be used to get the estimation of
the state variables and output voltage by the proposed FDKF
method. Furthermore, the degradation can be predicted by the
FDKF method based on the state variables during the training
period, thus the prognosis can be achieved.

B. PEMFC voltage degradation models

The degradation of PEMFC has been researched by exper-
iments as well as theoretical analysis. However, as the degra-
dation is a nonlinear and multi-physics process, it is difficult
to get an exact model that perfectly corresponds to reality. In
most research, it is given as a function of time with some
undetermined parameters. Based on the Ref. [17] [34] [35],
four different voltage degradation models are applied in this
research. Namely, linear model, quadratic model, logarithmic
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Fig. 3. Model-driven prognosis method based on FDKF for PEMFC

model and exponential model, which are shown as equations
3, 4, 5 and 6, respectively.

Linear model : xi+1 = xi − α (3)

Quadratic model : xi+1 = xi − α− β · i (4)

Logarithmic model : xi+1 = xi − α− β · ln(
i+ 1

i
) (5)

Exponential model : xi+1 = xi−α−β ·(eγ·i−eγ·i−γ) (6)

Where x is the PEMFC voltage; i is the time index; α, β, γ
are undetermined parameters. The α is related to the voltage
degradation rate under constant operating condition, and β, γ
are the parameters related to voltage degradation under dy-
namic operating conditions, such as load current change. The
degradation of PEMFC is in a near-linear trend under constant
load and constant operating condition [35]. When the load
changes, the PEMFC will have some transient processes, such
as gas diffusion and water accumulation. During the transient
process, the degradation is usually accelerated due to the worse
environment for the components such as a catalyst, and it is
usually in a logarithmic or exponential modes [19].

The linear model is widely used to describe the voltage
degradation under normal condition in a lot of references
[17]. However, when the operating condition changes, this
model is not enough to describe the degradation, therefore,
other terms are introduced to amend it. So the quadratic term,
logarithmic term, and exponential term are added in other
models, respectively, so that to capture the behaviors under
transient operating conditions [34]. Here the parameters in the
proposed models are fitted by the least square method based
on the training data.

C. Frequency domain Kalman filter

Originally, FDKF is widely used in AEC problem [36] [37].
In this part, we adapt the fuel cell prognosis problem into the
form that can be solved by FDKF, which is shown as figure
4.

Model input

 x(i)

Impulse 

response

w(i)

Output 

voltage

y(i)
noise

s(i)

d(i)

Fig. 4. Fuel cell prognosis problem in time domain

Here i is the time index. x(i) is the voltage signal from
model. w(i) is the impulse response path, which is unknown
parameter decided by the fuel cell and the operating condition.
The convolution of x(i) and w(i) forms d(i). s(i) is a white
noise, and it forms the output signal y(i) together with d(i).

In this problem, the most important task is to find the path
w(i), so that to get rid of the noise and obtain d(i). The
relationship between x(i), w(i) and d(i) can be shown as:

d(i) = x(i) ∗ w(i) (7)

Here the ∗ is the convolution operator. So for y(i), we have:

y(i) = d(i) + s(i)

= x(i) ∗ w(i) + s(i)
(8)

To solve this problem, we can change the equations from
the time domain to the frequency domain, so Discrete Fourier
Transfer (DFT) operation is applied to a series of data. To
achieve DFT, a window of data at length M is taken, and the
window moves forward at a speed of R data each step. In this
research we take M = 256 and R = 128. For step k, take a
vector to represent the latest M data of x(i):

x(k) = [x((k−1)R+1), x((k−1)R+2), ..., x((k−1)R+M)]H

(9)
Where the superscript H means the Hermitian transposition.

So we get frequency domain input X(k) as:

X(k) = diag{Fx(k)} (10)

Where diag{} creates a new matrix that takes the vector as
the main diagonal items of it. F is the Fourier matrix which
can achieve the effect of Fourier transfer of a vector, thus
changes the vector from the time domain to the frequency
domain.

Fx(k) = [X(1, k), X(2, k), ..., X(M,k)]H (11)

For w(k), only the first M − R order response is used,
which is obtained from the last step, and we suppose that it
can cover all the span of the impulse response. For the part
where we ignore, add 0 to make it a M data vector.

w(k) = [w(1, k), w(2, k), ..., w(M −R, k), 0, ..., 0]T ; (12)

Also, in the frequency domain, we can get the complex
frequency domain impulse response path as:

W (k) = Fw(k)

= [W (1, k),W (2, k), ...,W (M,k)]T
(13)

For y(i) and s(i), take the latest R data as a vector, it can
be represented as:

y(k) =[y((k − 2)R+M + 1), y((k − 2)R+M + 2),

..., y((k − 1)R+M)]T
(14)

s(k) =[s((k − 2)R+M + 1), s((k − 2)R+M + 2),

..., s((k − 1)R+M)]T
(15)
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Take QH = [0R×(M−R) IR×R], which is a R row M
column matrix. It can take only the last R items from a vector
of length M . According to the of the convolution theory, the
convolution of the time domain signal can be transferred to
multiplication in the frequency domain, so we have:

d(k) = QHF−1X(k)W (k) (16)

The equation 8 can be written as:

y(k) = d(k) + s(k)

= QHF−1X(k)W (k) + s(k)
(17)

Change it into the frequency domain and we can get:

Y (k) = FQQHF−1X(k)W (k) + FQs(k) (18)

Here the Q is used to add 0 in the first M − R data of a
vector, to make a vector change from length R to length M .
Then, by taking:

C(k) = FQQHF−1X(k) (19)

S(k) = FQs(k) (20)

We can get:

Y (k) = C(k)W (k) + S(k) (21)

We can see that this equation gives the relationship between
the frequency domain input signal X(k), frequency domain
impulse response W (k), and the frequency domain output
signal Y (k).

By taking W (k) as state variable, C(k) as measurement
matrix, Y (k) as output and S(k) as noise, supposing the fre-
quency domain response W (k) only change slowly between
two steps, we can get the system equations as:{

W (k + 1) = AW (k) + ∆W (k)

Y (k) = C(k)W (k) + S(k)
(22)

Where A is a constant close to 1. Take ∆W (k) as white
noise, then, in the frequency domain, the system can be
represented as:

C(k) Y(k)

S(k)

Z -1
W(k)

A

∆W(k)

Fig. 5. System of fuel cell prognosis problem in frequency domain

For the problems like figure 5, we can use Kalman filter to
obtain W (k). Suppose that S(k) and ∆W (k) are uncorre-
lated Gaussian noise, with the covariance matrix as ΦSS and
Φ∆∆, respectively. We can get the solution in Kalman filter
form:

W+(k) = AW (k − 1) (23)

P+(k) = AP (k − 1)A′ + Φ∆∆ (24)

K(k) = P+(k)CH(k)[C(k)P+(k)CH(k) + ΦSS ]−1 (25)

W (k) = W+(k) +K(k)[Y (k)−C(k)W (k)] (26)

P (k) = (I −K(k)C(k))P+(k) (27)

Where the P (k) is the estimation error covariance, W+(k)
and P+(k) means the step ahead estimation of W (k) and
P (k). K(k) is the Kalman gain in the frequency domain. By
this method, we can update W (k) step by step, then use it to
predict the voltage output. The stability and convergence of
the proposed FDKF method is given in the Appendix.

In this research, the parameters A, ΦSS , and Φ∆∆ are
tuning parameters, and they are chosen according to the
criterion that the estimated voltage is the closest to the
experimental data. So A = 0.9999, ΦSS = 10−2IM×M , and
Φ∆∆ = 10−4IM×M are applied.

D. Prognosis by FDKF

In this part, we summarize the method to solve the prognosis
problem with FDKF, and the diagram of the method is shown
as figure 6. The prognosis process can be divided into two
parts, i.e., the learning period and the prediction period. In
the learning period, by the models given in Section III-B, the
x(i) can be obtained. Group x(i) in a block of M data, and
at each step the DFT of it can give the frequency domain
input X(k). By frequency domain impulse response W (k),
the estimated frequency domain output Ŷ (k) can be obtained.
At the same time, the real output data y(i) is also transferred
into the frequency domain, which is Y (k). Then the frequency
domain error E(k) can be obtained by the subtraction of real
frequency domain output Y (k) and the estimated output Ŷ (i).
It will be used to update W (k), according to the equations 23
to 27. Finally, the Inverse Discrete Fourier Transform (IDFT)
can change the estimated frequency domain output Ŷ (k) into
the time domain. By this method, the impulse response updates
and the output voltage can be estimated.

Fig. 6. PEMFC prognosis by FDKF

When the learning period is over, the process moves to the
prediction period. During the prediction period, the W (k) of
the learning period is used in the prediction. By the same
process as the learning period, the x(i) can be transferred to
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the frequency domain, and the predicted Ŷ (k) can be obtained
by X(k) and W (k) according to equation 22. At last, the
predicted voltage ŷ(i) can be calculated by IDFT, thus the
prediction of voltage degradation is achieved.

IV. RESULT AND VALIDATION

In this section, the prediction of PEMFC voltage is obtained
according to the proposed method. Two case studies are carried
out, where the experimental data of PEMFC1 is used in
Section IV-A while PEMFC2 is used in Section IV-B. At the
same time, the EKF method is compared with the proposed
FDKF method in Section IV-C.

In each case study, four different models are studied re-
spectively, and predictions are carried out under different
training length so that to achieve both short-term and long-
term prediction. The models are trained under 50%, 60%, 70%,
80%, 90% of the total time respectively, and the rest part of
the experimental data is used as verification. Mean Relative
Error (MRE) and Root Mean Square Error (RMSE) are taken
as the judgments of its performance, which can be calculated
by equation 28 and 29, respectively.

MRE =
1

N

N∑
i=1

∣∣∣∣∣ V̂ (i)− V (i)

V (i)

∣∣∣∣∣ (28)

RMSE =

√∑N
i=1 (V̂ (i)− V (i))2

N
(29)

In the equations the N is the number of data; V̂ (i) is the
predicted voltage; V (i) is the real voltage output. The MRE
is the mean relative errors, while RMSE is more sensitive to
the big errors. By those two methods, the performance of a
prediction can be measured.

A. Case study 1: voltage degradation prediction for PEMFC1

In this part, based on the PEMFC1 data, four voltage
degradation models are researched under different training
time. The predicted voltage and relative error are analyzed.
They are given in the following order: linear model, quadratic
model, logarithmic model, and exponential model.

1) Linear model for PEMFC1: The training and prediction
voltage and corresponding relative error under linear model
for PEMFC1 are shown as figure 7(a) and 7(b), respectively.
It can be seen that the training result follows the experimental
data well, and the predicted voltage is close to the real output
voltage. As there are characterization experiments during the
degradation experiment at some chosen points, the voltage
sharply fluctuates and it is quite nonlinear. The predicted
voltage is affected by the training length, and the result is
more accurate with longer training time.

The relative error of the training period is smaller than
0.4%, so it follows the training data well. For the prediction
period, the error arises when the experimental voltage abruptly
changes, but the prediction error is always smaller than 1.8%,
and the averaged RMSE is 0.0327V. The experiment voltage
suddenly rises at about 1000 hours, which is not recognized
by the long-term prediction, thus the error is relatively big.

However, the predicted voltage under 90% training time
corresponds well with the experiment. In summary, as some
nonlinear behaviors of PEMFC in the future are not consid-
ered, the long-term prediction is less accurate than short-term
prediction.

(a)

(b)

Fig. 7. (a) The voltage prediction result based on FDKF under linear model
and (b) the relative error under linear model for PEMFC1

2) Quadratic model for PEMFC1: The quadratic model is
the combination of a linear term and a quadratic term. Differ-
ent training time is researched in this case, and the predicted
voltage and relative error are shown as figure 8(a) and 8(b),
respectively. As shown in figure 8(a), the predicted voltage
can follow the actual voltage degradation trend for PEMFC1.
As shown in figure 8(b), the relative error of this model is
always smaller than 1.4%, while the maximum error of the
linear model is 1.8%. The reason for the high accuracy of the
quadratic model is that the quadratic term effectively considers
the voltage recovery phenomenon of PEMFC1 caused by the
characteristic experiment.

3) Logarithmic model for PEMFC1: The logarithmic
model is the combination of a linear term and a logarithmic
term. The training and prediction result and corresponding
relative error under logarithmic model for PEMFC1 are shown
as figure 9(a) and 9(b), respectively. It can be seen that the
result of the logarithmic model is quite similar to the linear
model, and it is more accurate than the linear model, which
is shown by the average MRE in table III. The reason for the
high accuracy of the logarithmic model is that the logarithmic
term effectively considers the voltage recovery phenomenon of



IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, OCTOBER 2020 7

(a)

(b)

Fig. 8. (a) The voltage prediction result based on FDKF under quadratic
model and (b) the relative error under quadratic model for PEMFC1

PEMFC1 caused by the characteristic experiment. It is notable
that the result is quite accurate before the sudden jump of
voltage at 1000h, where the relative error is less than 1%.
Therefore, for some works that declares the end-of-life (EOL)
of the stack at 800h [15], the prediction can be more accurate
because the voltage degradation after EOL isn’t concerned.

4) Exponential model for PEMFC1: For the exponential
model, the voltage result and corresponding relative error for
PEMFC1 are shown as figure 10(a) and 10(b), respectively.
It can be seen that the result under 70% and 80% training
time is accurate compared with experiment voltage, while the
relative error under other training time is huge. The predicted
voltage goes up dramatically because of the existence of an
exponential term, which is far from reality. This proves that
the exponential model is not robust for different training time,
thus it is not proper to be used in the method.

5) Comparison of different models: To compare those four
models, the MRE and RMSE of predictions under different
models and different training time are listed in table III and
table IV, respectively. It can be seen that the average MRE of
the quadratic model is the smallest, which is 0.4419%, and the
average MRE of the linear model and logarithmic model are
very close to that of the quadratic model, which are 0.6131%
and 0.5999%, respectively. All those three models can give
an acceptable result. They are also applied to PEMFC2 in the
next section, to verify if they are effective under the quasi-
dynamic current condition. The RMSE of the predictions give

(a)

(b)

Fig. 9. (a) The voltage prediction result based on FDKF under logarithmic
model and (b) the relative error under logarithmic model for PEMFC1

the same conclusions as MRE. As we can see, the RMSE of
the exponential model is much higher than the linear model,
quadratic model, and logarithmic model, thus the exponential
model is unacceptable.

TABLE III
MRE (%) OF PREDICTION UNDER DIFFERENT MODEL AND DIFFERENT

TRAINING TIME FOR PEMFC1

model 50% 60% 70% 80% 90% average

linear 0.6825 0.5302 1.0096 0.6698 0.1736 0.6131
quadratic 0.5449 0.3423 0.5276 0.4087 0.3861 0.4419
logarithmic 0.6593 0.5142 0.9808 0.6438 0.2014 0.5999
exponential 4.6888 0.5811 0.3844 0.3523 1.7269 1.5466

TABLE IV
RMSE (V) OF PREDICTION UNDER DIFFERENT MODEL AND DIFFERENT

TRAINING TIME FOR PEMFC1

model 50% 60% 70% 80% 90% average

linear 0.0477 0.0357 0.0466 0.0273 0.0060 0.0327
quadratic 0.0306 0.0115 0.0202 0.0146 0.0135 0.0181
logarithmic 0.0467 0.0347 0.0456 0.0263 0.0070 0.0320
exponential 0.4127 0.0321 0.0124 0.0119 0.0662 0.1071
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(a)

(b)

Fig. 10. (a) The voltage prediction result based on FDKF under exponential
model and (b) the relative error under exponential model for PEMFC1

B. Case study 2: voltage degradation prediction for PEMFC2

The experiment PEMFC2 is carried out under a quasi-
dynamic current of 70A with 7A high-frequency ripples,
whose operation conditions and voltage output can be found
in Section II. The degradation pattern of PEMFC2 is differ-
ent from PEMFC1, as PEMFC1 is obtained under constant
current. To verify the FDKF prognosis method under the
quasi-dynamic current case, it is also applied to PEMFC2.
The FDKF method is also trained under 50%, 60%, 70%,
80%, 90% of the total time respectively, and the rest part of
the experimental data is used as verification. In this section,
the quadratic model, linear model, and logarithmic model are
calculated, as the exponential model has already been proved
unsuitable to be used in this method by the research above.

1) Quadratic model for PEMFC2: As the quadratic model
has the smallest relative error in the PEMFC1 case, it is
applied to PEMFC2 firstly. The training and prediction result
and corresponding relative error under quadratic model for
PEMFC2 are shown as figure 11(a) and 11(b), respectively.
The result is very different under different training time. The
model results under 60% and 70% training time corresponds
badly with the voltage of PEMFC2, which could be caused by
the nonlinear feature of PEMFC2. Compared with the result
of PEMFC1 based on the quadratic model, the quadratic term
cannot accurately model the voltage recovery phenomenon of
PEMFC2. Therefore, this model is unsuitable to be used in
this case, especially for long-term prediction. As the result

of the linear model and logarithmic model are acceptable in
PEMFC1, both of them are calculated for PEMFC2 by the
proposed FDKF method.

(a)

(b)

Fig. 11. (a) The voltage prediction result based on FDKF under quadratic
model and (b) the relative error under quadratic model for PEMFC2

2) Linear model for PEMFC2: The voltage result and
corresponding relative error under linear model for PEMFC2
is shown as figure 12(a) and 12(b), respectively. It can be
seen that although the relative error arises when the voltage
fluctuates, it is always smaller than 2.5%, thus the result of
the linear model is more accurate than the quadratic model.
As can be seen in table V, the average MRE of the linear
model is 0.5300%, which is much smaller than the quadratic
model. The MRE of PEMFC2 is also smaller than the result
of the linear model for PEMFC1. Thus, the linear model can
be used in the FDKF method for both cases.

3) Logarithmic model for PEMFC2: For the logarithmic
model, the training and prediction result and corresponding
relative error for PEMFC2 are presented in figure 13(a)
and 13(b), respectively. Again, the result is similar to that of
the linear model. The predicted voltage is close to the actual
degraded voltage, and the maximum relative error is less than
2.5%. The average MRE of this model is 0.5291%, which is
slightly smaller than 0.5300% of the linear model, and it is also
smaller than the MRE of the logarithmic model for PEMFC1.
Compared with the result of PEMFC1 based on the logarithmic
model, the logarithmic term can also accurately model the
voltage recovery phenomenon of PEMFC2. Recall that the
logarithmic model is also a little more accurate than the linear
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(a)

(b)

Fig. 12. (a) The voltage prediction result based on FDKF under linear model
and (b) the relative error under linear model for PEMFC2

model for PEMFC1, we can conclude that the logarithmic
model is the most suitable model when considering both
PEMFC1 and PEMFC2. This agrees with the conclusion of
the particle filter method [15].

The MRE and RMSE of different models under different
training time for PEMFC2 are shown in table V and VI,
respectively. It can be seen that although the MRE of the
quadratic model is smaller than the linear model and log-
arithmic model under 50% training time, the error is high
with longer training time. Therefore, the quadratic model
is unsuitable for this case. The errors of the linear and
logarithmic model are both small enough under all training
time, which proves that they can achieve both short-term and
long-term prediction, thus they are robust for both two cases.
The RMSE of the predictions shows the same tendency as
MRE, i.e., the RMSE of linear and logarithmic models are
much smaller than the quadratic model, thus both linear and
logarithmic model are accurate. Both MRE and RMSE of the
linear model and logarithmic models are very close, thus both
MRE and RMSE can be used to evaluate the performance of
prediction.

C. Comparison with extended Kalman filter

Kalman filter can also be applied to degradation prediction
in the time domain. However, a normal Kalman filter cannot
solve nonlinear problems. As an adaptation of the Kalman
filter, Extended Kalman Filter (EKF) takes the Jacobi matrix

(a)

(b)

Fig. 13. (a) The voltage prediction result based on FDKF under logarithmic
model and (b) the relative error under logarithmic model for PEMFC2

TABLE V
MRE (%) OF PREDICTION UNDER DIFFERENT MODEL AND DIFFERENT

TRAINING TIME FOR PEMFC2

model 50% 60% 70% 80% 90% average

quadratic 0.7013 2.4230 1.7366 0.9723 0.7074 1.3081
linear 0.8867 0.3784 0.4506 0.5611 0.3729 0.5300
logarithmic 0.8545 0.3664 0.4595 0.5610 0.4041 0.5291

TABLE VI
RMSE (V) OF PREDICTION UNDER DIFFERENT MODEL AND DIFFERENT

TRAINING TIME FOR PEMFC2

model 50% 60% 70% 80% 90% average

quadratic 0.0653 0.1668 0.1110 0.0442 0.0237 0.0822
linear 0.0335 0.0086 0.0185 0.0131 0.0138 0.0175
logarithmic 0.0325 0.0090 0.0195 0.0139 0.0147 0.0179
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of the nonlinear equation, so that it can be applied to a slightly
nonlinear problem. The EKF method has been applied to the
fuel cell prognosis and proved advanced [12] [38] [39], thus
it is applied to the PEMFC prognosis problem here, and it is
carried out with three models for both PEMFC1 and PEMFC2
experiments. The computation time as well as the relative
error of prediction are obtained and compared with the FDKF
method.

The total number of data used in this research is 1120000
and 1040000 for PEMFC1 and PEMFC2, respectively. There-
fore, the sampling frequency is 0.278 Hz. For both FDKF
method and EKF method, the calculations are all carried
out on under same test conditions, i.e., a personal com-
puter with processor Intel(R)Xeon(R)W-2123CPU@3.60GHz;
memory RAM 32GB; operation system Window 10 education
and Matlab R2018a. For the linear model, quadratic model,
and logarithmic model, the voltage degradation is predicted
for both PEMFC1 and PEMFC2 by FDKF and EKF method,
respectively. The computation time is shown as table VII. It
can be seen that the FDKF method uses much less time than
EKF for both experiments under all three models. The FDKF
method can give results in several seconds, while the EKF
method needs thousands of seconds. As has been addressed,
the FDKF method is more efficient because it can process the
data in groups, and it moves forward with R data at each step,
which is the advantage of FDKF.

TABLE VII
COMPUTATION TIME (S) UNDER DIFFERENT DEGRADATION MODELS FOR

EKF AND FDKF

Method linear quadratic logarithmic average

FDKF for PEMFC1 5.269 4.879 13.60 7.915
EKF for PEMFC1 1506 2456 2452 2138
FDKF for PEMFC2 4.319 4.422 11.20 6.647
EKF for PEMFC2 1507 1932 1895 1628

Compared with the EKF method, the FDKF method also
has better performance in terms of accuracy. The MRE and
RMSE under 50%, 60%, 70%, 80%, and 90% training time
are averaged to represent the performance of the method,
and they are shown in table VIII and IX, respectively. As
we can see, the relative error of the EKF method under
the quadratic model is very big, while that of the FDKF
method is acceptable. Thus FDKF method can be used under
more models. Furthermore, the error of the FDKF method is
smaller than the EKF method under all three models, and the
RMSE can give the same conclusion, which proves that the
proposed method is advantageous. This is due to the different
characteristics of FDKF and EKF method. The FDKF method
deals with the data in the frequency domain, and it finds the
basic structure of the data in the frequency domain so that to
find the invariance of the data. For EKF, it uses the Taylor’s
expansion to replace the nonlinear function, then only the
first-order term is reserved and the terms of higher order are
neglected. In this way, a linear system can be obtained and
the Kalman filter can be applied to the linearized system. The
performance of EKF is worse than FDKF in our case because

the real system is highly nonlinear, thus the linearization
process of the EKF method will introduce more error because
of the neglected high-order terms. Therefore, the prediction
error of the EKF method is bigger.

TABLE VIII
AVERAGED MRE (%) UNDER DIFFERENT DEGRADATION MODELS FOR

EKF AND FDKF

Method linear quadratic logarithmic average

FDKF for PEMFC1 0.6131 0.4419 0.5999 0.5516
EKF for PEMFC1 0.7718 4.2740 0.7717 1.9392
FDKF for PEMFC2 0.5300 1.3081 0.5291 0.7891
EKF for PEMFC2 1.0775 6.1435 1.0755 2.7655

TABLE IX
AVERAGED RMSE (V) UNDER DIFFERENT DEGRADATION MODELS FOR

EKF AND FDKF

Method linear quadratic logarithmic average

FDKF for PEMFC1 0.0327 0.0181 0.0320 0.0276
EKF for PEMFC1 0.0345 0.1637 0.0345 0.0776
FDKF for PEMFC2 0.0175 0.0822 0.0179 0.0392
EKF for PEMFC2 0.0412 0.2344 0.0412 0.1056

D. Prediction horizon

According to the references [40], the Prediction Horizon
(PH) is an important index for prognosis, thus the PH is
calculated and compared with the references here. The PH
is a measurement of the accuracy of the Remaining Useful
Life (RUL). At different prediction time, the real RUL and
predicted RUL can be plotted to see the performance of the
prediction. Usually, an acceptable error is set, which is a
certain percent of the End of Life (EOL). After a certain
prediction time, the predicted RUL will all located within the
acceptable error region, thus we can indicate how long ago
the acceptable prediction can be obtained and ensured. In this
research, the error bound α is set as 10% according to most
researches. The EOL can be declared when the performance of
the PEMFC is smaller than a critical line. In this research the
critical line is set as 95% of the initial voltage, thus the EOL
is 936 hours. According to the proposed method, the RUL
prediction and PH can be given as figure 14. The predicted
RUL is within the acceptable region after 529 hours, thus the
PH can be obtained as 407 hours.

In the reference [41], the particle filter was applied, and
the voltage recovery phenomenon was considered. In their re-
search, the PH without consideration of recovery phenomenon
is 310 hours, and the PH by the model with consideration of
recovery phenomenon is 380 hours. Therefore, the PH of the
proposed method is longer, which means that the proposed
method can give accurate prediction earlier, thus it is more
accurate.
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Fig. 14. The prediction horizon for PEMFC2 by logarithmic model

V. CONCLUSIONS

In this paper, we proposed a novel model-driven method for
the PEMFC prognosis problem, which is based on FDKF and
voltage degradation model. The advantage of this method is
that it can process data in groups, thus it is more efficient.
The proposed method is verified by two case studies, and
the voltage degradation is predicted both in short-term and
long-term under 4 degradation models. The result of the
FDKF method is also compared with EKF and literature. The
conclusions are given as follows:

(1) With the proposed FDKF method, the quadratic model
is only effective for PEMFC1, while both the linear and
logarithmic models give acceptable results for both PEMFC1
and PEMFC2.

(2) In our research, the relative error of voltage degradation
prediction is always smaller than 1.8% for PEMFC1, and it
is smaller than 3% for PEMFC2. It proves that the proposed
method is accurate and robust for both constant and quasi-
dynamic current cases.

(3) The performance of the proposed FDKF method out-
weighs the EKF method both in terms of efficiency and
accuracy. The proposed method can give results in several
seconds, which is much more efficient than the EKF method.
More importantly, the result of the FDKF method is also more
accurate than the EKF method. The PH is also calculated and
compared with other research, which proves that the proposed
method is more accurate.

This method can also be applied to other kinds of fuel cells
or some other fields where there are similarities between the
problems. Combining the proposed FDKF method with energy
management strategies to improve the durability and economy
of fuel cells will be considered in future research work.

APPENDIX
PROOF OF STABILITY AND CONVERGENCE OF FDKF

METHOD

The FDKF can be considered as a variable step-size
frequency domain adaptive filter [36] [42], thus the solution
can also be given as:

W (k + 1) = A[W (k) +Qµ(k)Λ−1(k)CH(k)E(k)] (30)

Where
E(k) = Y (k)−C(k)W (k) (31)

Λ(k) = CH(k)C(k) (32)

µ(k) = C(k)P (k)CH(k)[C(k)P (k)CH(k) + ΦSS ]−1

= diag{[µ0(k), µ1(k), ..., µM (k)]T } (33)

Where the µ(k) is called the variable step-size matrix.
Take equation 24 and 25 into equation 27, we can get:

P (k + 1) = A2[I − 1

2
µ(k)]P (k) + Φ∆∆(k) (34)

As all the matrices are diagonal, every diagonal item in
P (k) can be given as:

Pi(k + 1) =A2

[
1− 1

2

Pi(k)

Pi(k) + ΦSS,i(k)/|Ci(k)|2

]
× Pi(k)

+ Φ∆∆,i(k)
(35)

It can be seen that the coefficient
A2
[
1− 1

2
Pi(k)

Pi(k)+ΦSS,i(k)/|Ci(k)|2

]
< 1 is always satisfied,

thus the Pi(k) can achieve an equilibrium after iterations. To
find the steady state Pi(∞), we suppose that the far-end signal
and noise signal are stationary, so that the ΦSS,i(k)/|Ci(k)|2
can be replaced as ηi. And the Φ∆∆,i(k) can be replaced by
(1−A2)ΦWW,i(k). Therefore, the steady state is:

Pi(∞) = A2

(
1− 1

2

Pi(∞)

Pi(∞) + ηi

)
Pi(∞) + (1−A2)ΦWW,i

(36)
Then this equation can be solved and the positive solution is:

Pi(∞) =
1−A2

2−A2
·(

ΦWW,i − ηi +

√
Φ2
WW,i + η2

i +
2ηiΦWW,i

1−A2

)
(37)

The solution can be normalized by dividing both sides
with ΦWW,i, thus the normalized prediction distance
P̄i(∞) = Pi(∞)/ΦWW,i, and take δi = ΦWW,i/ηi, and the
solution can be given as:

P̄i(∞) =
1−A2

2−A2

(
1− 1

δi
+

√
1 +

1

δ2
i

+
2

(1−A2)δi

)
(38)

Take the solution into equation 33, the steady state step
size can be given as:

µi(∞) =
δiP̄i(∞)

δiP̄i(∞) + 1
(39)
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Therefore for all 0 < A ≤ 1, the FDKF is stable and can
converge to a finite constant, and the converge rate can be
decided by A and δi.
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