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Abstract:
The linear quadratic regulator is a widely used and studied optimal control technique for the
control of linear dynamical systems. It consists in minimizing a quadratic cost functional of the
states and the control inputs by the means of solving a linear Riccati equation. The effectiveness
of the linear quadratic regulator relies on the cost function parameters hence, an appropriate
selection of these parameters is of mayor importance in the control design. Port-Hamiltonian
system modelling arise from balance equations, interconnection laws and the conservation of
energy. These systems encode the physical properties in their structure matrices, energy function
and definition of input and output ports. This paper establishes a relation between two classical
passivity based control tools for port-Hamiltonian systems, namely control by interconnection
and damping injection, with the linear quadratic regulator. These relations allow then to select
the weights of the quadratic cost functional on the base of physical considerations. A simple
RLC circuit has been used to illustrate the approach.
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1. INTRODUCTION

In classical linear control theory there is an important con-
trol technique known as linear quadratic regulation (LQR)
(Kwakernaak and Sivan, 1972; Anderson and Moore,
2007), which gives rise to a set of other optimal control
and estimation techniques in different setups. In LQR, the
goal is to minimize a quadratic cost function that depends
on the system state and also on the control signal, and
two weighting matrices. An advantage of this technique is
that the solution of the problem is well defined (Goodwin
et al., 2001) and consists in a state feedback. The weighting
matrices are design parameters, which allow to adjust the
importance of every state and input of the system. How-
ever, the choice of these matrices is not necessarily based
on some criteria which permits to interpret the resultant
cost function with a physical meaning.

On the other hand, the port-Hamiltonian framework al-
lows to represent a large class of physical systems with
respect to a set of structure matrices and Hamiltonian
energy function. While the energy function is defined by
the parameters of the energy storing elements, the struc-
ture matrices represents Kirchoff’s interconnection laws
and dissipation relations. Furthermore, port-Hamiltonian
systems (PHS) are passive systems (van der Shaft, 2017;
van der Shaft and Jeltsema, 2014), hence there are many
Lyapunov based properties and results which are available

for the modeling and control of this class of systems.
(Duindam et al., 2009). This system representation allows
to design controllers based on closed-loop energy require-
ments. For instance, a type of control in this context aims
to change the rate of convergence of the systems state to
the natural equilibrium point, this procedure is denom-
inated damping injection (Ortega et al., 2001). Another
well-known control technique is the denominated control
by interconnection (Ortega et al., 2001; van der Shaft,
2017), which aims to change the shape of the closed-loop
energy of the system and modify the equilibrium point
to a desire one. Unlike LQR control, the design of these
controllers is not based on the solution of an optimal
control problem but is heavily related with the physical
properties of the system.

In this paper some relationships and equivalences between
the aforementioned passivity based control (PBC) tech-
niques and the standard LQR are established. This allows
to design the weighting matrices of the optimal control
problem in the LQR setup in terms of a desired closed-
loop energy function. This will be useful because with that
election for the weighting matrices, the cost function in the
linear quadratic regulator setup can be interpreted and
designed in terms of the physical properties of the system.
On the other hand, the controllers designed by PBC can be



interpreted in terms of optimal control and of associated
cost function.

In this paper, we first present in Section 2 the class of
considered linear PHS (LPHS) and its essential properties.
In Section 3 we introduce two passivity based control
approaches for LPHS: damping injection and control by in-
terconnection. In Section 4, the linear quadratic regulator
is introduced for linear systems. In Section 5, we establish
two propositions that allow to find explicit relations which
render damping injection and control by interconnection
equivalent to LQR. Section 6 presents a simple RLC circuit
as illustrative example. Finally Section 7 presents some
conclusions and comments on future work.

2. PORT-HAMILTONIAN SYSTEMS

Port-Hamiltonian systems are defined in, for instance,
van der Shaft (2017); van der Shaft and Jeltsema (2014).
In this paper we will focus only on the linear case, which
are denominated linear port-Hamiltonian system (LPHS),
and have the form

ẋ = [J −R]Qx+ gu (1)

y = gTQx, (2)

where x ∈ Rn is the state variable, u ∈ Rm and y ∈ Rn

are the input and output of the system respectively, g ∈
Rn×m is the input mapping to the system, Q ∈ Rn×n

is related with the energy of the system, J ∈ Rn×n

represent the interconnection structure matrix and R ∈
Rn×n corresponds to the resistive structure of the system.

For LPHS, the input and output are conjugated, hence for
physical systems the product yTu has the unit of power.
Additionally, the matrices J , R and Q satisfy

J = −JT (3)

R = RT ≥ 0 (4)

Q = QT > 0 (5)

Note that J is power-conserving and R is responsible for
the internal dissipation of energy.

The so called Hamiltonian of the system is a function H(x)
that represents the total energy of the system such that

H : Rn → R+
0, (6)

that is, it is a non negative scalar-valued function of the
n-dimensional state space of the system. The Hamiltonian
for the system defined above can be written as

H(x) =
1

2
xTQx. (7)

Now, taking the derivative of H with respect to time, we
have

Ḣ = xTQT (J −R)Qx+ xTQT gu

≤ yTu,
(8)

where it is concluded that the LPHS is a passive system
(see e.g. Ortega et al. (1999))

3. CONTROL OF PORT HAMILTONIAN-SYSTEMS

In this section, two control methods based on the energy
of the port-Hamiltonian system are shown. These are
Damping Injection and Control by Interconnection (see
Ortega et al. (2001) and van der Shaft (2017)).

3.1 Damping Injection

Damping injection control aims to modify the rate of
convergence of the system state to a natural equilibrium
point by designing the dissipation matrix of the closed loop
system. For this, assume that the input u is given by

u = −Kdy, (9)

where Kd ≥ 0 is a design parameter. For this case, Ḣ is
given by

Ḣ = −xTQTRQx+ yTu.

Then, given (9) and (2) we obtain

Ḣ = −xTQTRQx− xTQT gKdg
TQx

= −xTQT (R+ gKdg
T )Qx. (10)

Hence, we can define a desired dissipation matrix of the
closed loop system, Rd = RT

d ≥ 0, as follows

Rd = R+ gKdg
T , (11)

where Kd is the design parameter.

3.2 Control By Interconnection

The second control technique studied here is the Control
by interconnection, that allows us to drive the system to a
new desired equilibrium point, different from the natural
one(s), with a desired for the energy shape.

Consider that the LPHS defined in (1), (2), with Hamilto-
nian (7), is controlled by the system Σc, which is defined
by the following equations:

Σc :


ẋc = (Jc −Rc)(Qcxc +Qp) + guc
yc = gTc (Qcxc +Qp)

Hc =
1

2
xTc Qcxc +

1

2
xTc Qp +

1

2
QT

p xc +Q0

(12)

where nc is the dimension of the state vector xc, gc is
the map from the state to the controller output yc, the
matrices Jc, Rc and Qc are matrices in Rnc×nc , satisfying
the properties in (3) and (5) respectively (considering the
corresponding sub index c), Qp ∈ Rnc×1 and Q0 a scalar.

The power preserving interconnection between the system
and the controller yields into another passive and port-
Hamiltonian system for the closed loop. This is carried
out by setting

u = −yc
y = uc

(13)

which yields the following closed loop system:[
ẋ
ẋc

]
=

([
J −ggTc
gcg Jc

]
−
[
R 0
0 Rc

])[
Q 0
0 I

] [
x

Qcxc +Qp

]
(14)[

y
yc

]
=

[
g 0
0 gc

]T [
Q 0
0 I

] [
x

Qcxc +Qp

]
(15)

The Hamiltonian of the closed loop system is given by:

Hd(x, xc) = H(x) +Hc(xc) (16)

Now the aim is to write the energy function only in terms
of the states of the system, that is Hd(x). Thus, we can
assign the minimum of the energy at a new desired point
and characterize it in terms of the plant system.



In order to achieve this, we have to restrict the dynamics
(x, xc) to a submanifold parameterized only by x. This
means that we are looking for Casimir functions, denoted
by C(x, xc), that can relate each state of the controller
with the states of the plant. These functions have the form

C(x, xc) = F (x)− xc. (17)

We can choose the function F (x) as follows:

F (x) = Kx =

 k
1
1 · · · k1n
...

. . .
...

knc
1 · · · knc

n

x, (18)

where C(x, xc) ∈ Rnc×1, K ∈ Rnc×n and xc ∈ Rnc×1.
The Casimirs function should be invariant with respect
to time, therefore from Ċ(x, xc) = 0 we can derive the
following matching conditions:

[K −I]

[
J −R −ggTc
gcg

T Jc −Rc

]
= 0 (19)

Thus, the following four equations can be derived from
(19) and are denominated Matching Equations :

KJKT = Jc (20)

RKT = 0 (21)

Rc = 0 (22)

KJ = gcg
T (23)

Finally, with this equations we can design the Hamiltonian
of the closed loop as:

Hd(x) = H(x) +Hc(Kx− C) (24)

So, the closed loop system can be re-written as:

ẋ = (J −R)
∂Hd

∂x
(x). (25)

With this expression we can design Hd(x) and therefore
its gradient to obtain a desirable closed loop dynamics, so
we choose the following desire Hamiltonian for the closed
loop system:

Hd(x) =
1

2
(x− x∗)TQd(x− x∗) (26)

where Qd = QT
d ∈ Rn×n is a symmetric, definite positive

energy matrix and x∗ ∈ Rn×1 a vector of the desired
equilibrium point. This implies that the dynamics are
given by:

ẋ = (J −R)Qd(x− x∗) (27)
It is easy to prove that from equation (24) and using the
matching equations (20) to (23), Qd satisfies the following
equation:

Qd = Q+KTQcK (28)
Finally, with these design, the input u is given by

u = −gTc (Qcxc +Qp) (29)

= −gTc (QcKx−QcC +Qp). (30)

4. LINEAR QUADRATIC REGULATOR

In this section, a brief review of the Linear Quadratic Reg-
ulator design is recalled to define the considerate notation
and the kind of problem to solve. First, consider a linear
time-invariant system with state-space representation:

ẋ(t) = Ax(t) +Bu(t) (31)

y(t) = Cx(t) +Du(t) (32)

where x ∈ Rn is the state vector, u ∈ Rm input and
y ∈ Rm the output of the system, x0 ∈ Rn the initial

state at t = t0 and A, B, C, D matrix of appropriate
dimensions. Note that the input and output are assumed
to have the same dimensions as the ones of corresponding
signals in the port-Hamiltonian framework.

The control problem consist to find a LTI controller that
minimizes the cost function

Ju =

∫ ∞
0

[xT (t)Φx(t) + uT (t)Λu(t)]dt (33)

where Φ ∈ Rn×n is a symmetric and positive semi-
definite matrix that penalizes the state, and Λ ∈ Rm×m is
a symmetric and positive definite matrix that penalizes
the magnitude of the input. Both Φ and Λ are design
parameters that allow to define a comparative importance
among each component of the state and also of the control
signals. Certainly, for Ju to be finite, the state and the
control signal must converge to zero.

The optimal solution to this problem is widely known (see
e.g. Anderson and Moore (2007); Goodwin et al. (2001)),
yielding the optimal control signal

uo = −Klqrx, (34)

where x is the system state and

Klqr = Λ−1BTP (35)

is a constant matrix such that P is the solution to the
following Algebraic Ricatti Equation

0 = Φ− PBΛ−1BTP + PA+ATP. (36)

If we want to drive the state to an equilibrium point x∗,
different from the origin, we can modify the cost function
and write

Ju =

∫ ∞
0

[
(x(t)− x∗)T Φ (x(t)− x∗)

+ (u(t)− u∗)T Λ (u(t)− u∗)
]
dt,

(37)

where u∗ is the input associated to the steady-state that
x = x∗. Defining

x̃(t) = x(t)− x∗

ũ(t) = u(t)− u∗,
the cost function can be re-written as

Ju =

∫ ∞
0

[x̃T (t)Φx̃(t) + ũT (t)Λũ(t)]dt. (38)

Hence, the optimal solution is exactly the same from
equation (34) but in terms of the new variables, this means
that the optimal input signal is given by:

ũ(t) = −Klqrx̃(t). (39)

Finally, in terms of the original variables

uo(t) = −Klqr(x(t)− x∗) + u∗. (40)

5. LINEAR QUADRATIC REGULATOR OF LINEAR
PORT-HAMILTONIAN SYSTEMS

In this section, we connect the results in the Linear
Quadratic Regulator setup with the damping injection and
control by interconnection for the LPHS defined in section
3. In order to do this, in this section we set A = (J −R)Q
and B = g, which equals the state of the LPHS in (1) with
the state of the LTI system in (31).



5.1 Damping Injection as a LQR problem.

Proposition 1. Consider a LPHS described by equations
(1), (2), (7) and a Damping injection controller defined
by an invertible gain Kd. Then, such controller design
correspond to the optimal solution of the standard LQR
problem applied to the LPHS, when the weighting matrices
of (33) are chosen as

Λ = K−1d , (41)

and
Φ = QT

[
2R+ gKdg

T
]
Q. (42)

Proof. We start this proof with a Lyapunov analysis of
the Linear Quadratic Regulator. The following equation
will be considered as Lyapunov candidate function (see
Khalil (2002))

V (x) =
1

2
xTPx (43)

where P = PT ≥ 0 is the solution of the algebraic Ricatti
equation (36)

Φ− PgΛ−1gP + P (J −R)Q+QT (J −R)TP = 0, (44)

where we have used the fact that A = (J−R)Q and B = g.

If we use the Linear Quadratic Regulator, the optimal
control law given by (34) leads to the closed loop dynamics
given by

ẋ = [(J −R)Q− gKlqr]x (45)

Then, the derivative of V (x) respect to time becomes

V̇ (x) =
1

2
xT [QT (J −R)TP +P (J −R)Q− 2PgΛ−1gTP ]x

(46)
This expression can be reduced using the algebraic Ricatti
equation (44) as:

V̇ (x) = −1

2
xT [Φ + PgΛ−1gTP ]x (47)

If we impose that the solution of (44) is P = Q, we will
have that

V (x) = H(x),

and thus we have from (10) and (47) that.

−1

2
xT [Φ +QT gΛ−1gTQ]x = −xTQTRdQx (48)

Since such equality is valid for every x, we conclude that

Φ

2
= QT

[
Rd −

gΛ−1gT

2

]
Q (49)

On the other hand, comparing the control laws in the LQR
and Damping Injection setups, we have that

ulqr = −Λ−1gTQx (50)

ud = −Kdg
TQx. (51)

We have the same control input if we choose:

Kd = Λ−1 (52)

Given (52), and recalling that Rd = R+gKdg
T , we rewrite

(49) to obtain (42). �

The result of Propisition 1 can be interpreted as if we have
a Damping Injection with known gain Kd, an equivalent
LQR control problem with this energy-based design can
be obtained, where the matrices Φ, Λ, are chosen like in
(41) and (42) respectively.

5.2 Control by Interconnection as a LQR problem.

Proposition 2. Consider a LPHS described by equations
(1), (2), (7) and a Control by Interconnection design
controller defined by some gc, Qc, K. Then, if there exist
matrices X = XT > 0 and Y = Y T ≥ 0 satisfying

gTc QcK = XgTY, (53)

then such controller design correspond to the optimal
solution of the LQR problem, with non-zero equilibrium
point, applied to the LPHS, when the weighting matrices
of (37) are chosen such that

Λ = X−1, (54)

Φ = Y gXgTY −Q(J −R)TY − Y T (J −R)Q. (55)

Proof. To prove this proposition we will compare the
input u given by the implementation of a closed loop
with control by Interconnection and the Linear Quadratic
Regulator, to the LPHS described by equations (1), (2)
and (7). This control inputs are known from the previous
sections, having the form

ucbi = −gTc QcKx+ gTc QcC − gTc Qp (56)

ulqr = −Λ−1gTPx+ Λ−1gTPx∗ + u∗. (57)

First, note that ucbi is the input derived by control by
interconnection and ulqr is the one given by the linear
quadratic regulator for non zero equilibrium point. Thus,
if we want the same control law, the gains that multiply
the vector state x have to be the same. This leads to

gTc QcK = Λ−1gTP, (58)

which is (53) with Λ−1 = X and P = Y . Hence, from the
algebraic Ricatti equation (44) we conclude that

Φ = Y gXgTY −Q(J −R)TY − Y T (J −R)Q.

On the other hand, we notice that the output of the
controller Σc in steady state is equal to the input in steady
state of the plant. Such stationary value also satisfy (31)
with ẋ = 0. This implies that the constant parts in uci and
ulqr are equal, by design. That is

gTc QcC − gTc Qp = Λ−1gTPx∗ + u∗,

which ensures ucbi = ulqr, completiong the proof. �

Proposition 2 allows to design a closed loop according to
control by interconnection and then obtain an equivalent
LQR controller that satisfies (53) and therefore the re-
quirements of the energy-based control. Nevertheless, the
existence of X and Y that satisfy (53) is not guaranteed for
every LPHS and control by interconnection design. Unlike
Proposition 1, in this case a direct relation between design
parameters as the one in (41) is not revealed.

6. NUMERICAL EXAMPLE

In this section, we consider the following port-Hamiltonian
system: [

q̇

φ̇

]
=

[
0 1
−1 −R

] 1

C
0

0
1

L

[qφ
]

+

[
0
1

]
vf (59)

y = [0 1]

 1

C
0

0
1

L

[qφ
]

(60)
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Fig. 1. Time evolution of the Hamiltonian for different
LQR controllers
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Fig. 2. Time evolution of the states for different LQR
controllers

which correspond to a series RLC circuit with voltage
source (Ortega et al., 2001), where the values of the
physical parameters are R = 4 for the resistance, the
capacitance C = 6 and the inductance L = 2. Also the
initial conditions are q(0) = 12 and φ(0) = 4.

First, we use Proposition 1 to study how the value of
Λ affects the energy of the system, more specifically
the rate of convergence to its minimum and thus its
relation with damping injection. We use the following set
of Λ = {0.1, 0.5, 1, 10, 100} for the simulation, the results
are shown in figures 1 and 2. From Fig 1 it can be seen
that for smaller values of Λ the energy tends slower to
zero. This can be explained from Fig 2. where the state
φ tends faster to zero as the value of Λ is smaller. Thus,
the inductor can be interpreted like an open circuit and in
consequence the discharge of the capacitor is slower. Also,
recalling that Rd = R + gKdg

T this value increases as Λ
decreases (41), hence the relationship between the election
of Λ and the increase of the apparent damping Rd depends
inversely.

Secondly, we design a controller using control by intercon-
nection and try to find an equivalent LQR controller using
Proposition 2. From the matching equations (20) to (23)
we obtain

K = [k1 k2] (61)

Jc = 0 (62)

k2 = 0 (63)

k1 = gc = 1 (64)

The desire Hamiltonian function is:

Hd(q, φ) =
1

2

(q − q∗)2

C + Ca
− 1

2

φ2

L
(65)

where Ca is a new design parameter that allows to change
the capacitance in closed loop of the system. From equa-
tion (28) Qc is

Qc =
1

C + Ca
− 1

C
. (66)

To find when LQR is equivalent to control by interconnec-
tion with the previous design we set Y as

Y =

[
a b
b c

]
(67)

and from (53) from Proposition 2, we have the following
equality

[Qc 0] =
[
X−1b X−1c

]
(68)

which implies c = 0 and b 6= 0. This implies

Y =

[
a b
b 0

]
(69)

and this matrix is non-definite positive. This contradicts
one of the properties of Y , in particular Y ≥ 0, in
Proposition 2 and therefore there is no equivalent LQR
controller for this particular system.

7. CONCLUSION

The relation between two classical passivity based control
(PBC) schemes, namely damping injection and control
by interconnection, with the linear quadratic regulator
(LQR) has been established for a class of linear port-
Hamiltonian systems (LPHS). The weights of the LQR
cost function have been related with the parameters of
the Hamiltonian function, the structure matrices and the
PBC control gains. Moreover, for the case of damping
injection the weights of the LQR cost functional have also
been related with the injected dissipation and in the case
of control by interconnection with the Casimir functions
and shaped Hamiltonian energy. These relations allow to
interpret the LQR either as the injection of damping with
respect to the physical energy of a system, or as the energy
provided to a system in order to shape it. A simple RLC
circuit has been used to illustrate the approach. Future
work will study the dynamic LQR case.
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