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Abstract: This paper presents an observer based nonlinear control for a flexible beam clamped
on a rotating inertia. The considered model is composed by a set of Partial Differential Equations
(PDEs) interconnected with an Ordinary Differential Equation (ODE), with control input in the
ODE. The control problem consists in orienting the beam at the desired position, maintaining
the flexible vibrations as low as possible. To this end, it is presented a nonlinear controller that
depends on the beam’s state. An Observer is designed to reconstruct the infinite dimensional
state, and the estimated state is used in the nonlinear controller instead of the real one.
Assuming well-posedness of the closed loop system, it is shown the exponential convergence
of the estimated state, and the asymptotic stability of the closed loop system. Numerical
simulations are presented to characterize the closed loop behaviour with different choices of
observer’s parameters.
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1. INTRODUCTION

Control of flexible robots has been an highly investigated
topic over the last 30 years. The needs of precise controllers
and stability requirements made necessary to take into
consideration distributed flexible phenomena. These pro-
cesses are modelled using Partial Differential Equations
(PDEs), where the state variables are space and time
dependent. In the specific case of a rotating flexible beam,
the inertia of the hub to which the beam is connected (i.e.
the rotor of a motor) cannot be neglected. This scenario
brings to a system modelled by an interconnection between
a set of PDEs and an ODE, with control input on the ODE.
In the literature, the control of a coupled set of PDEs
and ODEs is often referred as control of Hybrid systems
(Luo et al., 1999). The design of stabilizing controllers for
rotating flexible beams can been addressed with the use
of a PD controller (Luo and Feng, 1999), but different
control methods have been employed to have a faster
vibration suppression. In (Morgul, 1991) is shown the
asymptotic stability of a rotating Euler-Bernoulli beam
with a PD + strain feedback control, while in (Wang
et al., 2017) is used a feed-forward control law obtained by
model inversion to minimize the flexible vibrations during
motion. Another possible strategy is to include in the
controller the information about the deformation of the
beam. To do so in a passive preserving way, it is necessary
to design a nonlinear dynamic controller (Luo and Feng,
1999). This control law have been rewritten as a passively
interconnected port-Hamiltonian system in (Aoues et al.,
2019), where Lyapunov stability has been proved.
Functional analysis is a powerful tool for studying the
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asymptotic behaviour of dynamical system described by
PDEs or Hybrid systems (Curtain and Zwart, 1995). In
the last decades, the port-Hamiltonian framework has
been extended from finite to infinite dimensional systems
(van der Schaft and Maschke, 2002), making possible the
use of functional analysis theory for studying the stabil-
ity of port-Hamiltonain systems (Jacob and Zwart, 2012;
Villegas, 2007; Le Gorrec et al., 2005). In a more general
fashion, the control problem of nonlinear feedback for a
class of infinite dimensional port-Hamiltonian systems has
been presented in (Ramirez et al., 2017), where condi-
tions for asymptotic and exponential stability are given.
In (Mileti et al., 2016), pre-compactness of trajectories
combined with the existence of a limit set is used to prove
asymptotic stability for a Euler-Bernoulli beam subject to
a class of nonlinear feedbacks.

In this manuscript we propose a similar control law as
proposed in (Luo and Feng, 1999) where, since in practical
applications the state of the beam may not be directly
available, the controller makes use of an observed state
instead of the original one. The beam is modelled using
the Timoshenko’s beam assumptions, and the closed loop
system results composed by two linear sets of PDEs
interconnected with a nonlinear set of ODEs, with the
nonlinearity depending on the infinite dimensional state.

The paper is organized as follows. In Section 2 the port-
Hamiltonian model of a flexible beam clamped on a
rotating inertia and the observer based control design are
given. In section 3, assuming the well-posedness of the
closed loop system, is proven the exponential convergence
of the observer and the asymptotic stability of the closed-
loop system. In Section 4 are shown numerical simulations,
while some concluding remarks and comments on future
works are given in Section 5.



2. MODELLING AND CONTROL DESIGN

In the following we propose the equations of a rotating
flexible beam using Timoshenko’s assumptions in the port-
Hamiltonian framework.

2.1 Modelling

For sake of clarity, we define the variables and the param-
eters that will be used afterwards. The rotor angle θ(t) is a
real function of time defined as θ : R→ R : θ → θ(t). With
ξ ∈ [0, L] we identify the spatial coordinate of the beam.
We identify the deflection of the beam with respect to his
axis z with w(t, ξ) ∈ L2(0, L), while with φ(t, ξ) ∈ L2(0, L)
we identify the relative rotation of the beam cross section.
All the physical parameters are positive real. Ih repre-
sents the rotary inertia of the hub to which the beam is
connected. E, I are respectively the Young’s modulus and
the moment of inertia of the beam’s cross section. The
beam’s cross section is assumed to be rectangular, hence

his inertia is defined to be I =
L3

wLt

12 , where Lw and Lt
are respectively the width and the thickness of the beam.
ρ, Iρ are respectively the density and the mass moment
of inertia of the beam’s cross section. The mass moment
of inertia of the cross section is defined as Iρ = Iρ. K is
defined as K = kGA, where k is a constant depending on
the shape of the cross section (k = 5/6 for rectangular
cross sections), G is the Shear modulus and A is the cross
sectional area.

Fig. 1. Rotating flexible beam.

From now on we will not explicit the dependency from
time and space of the variables when it is clear from the
context. The kinetic energy and the potential energy, using
Timoshenko’s assumptions, write

Hk =
1

2
Iθ̇2 +

1

2

∫ L

0

[
ρ1

(
ξθ̇ + ẇ

)2
+ Iρ

(
θ̇ + φ̇

)2]
dξ,

Hp =
1

2

∫ L

0

[
K

(
∂w

∂ξ
− φ

)2

+ EI1

(
∂φ

∂ξ

)2
]
dξ.

To obtain the dynamic equations we use the Hamilton’s
principle. We denote with L = Hk − Hp the Lagrangian,
while Wnc = u(t)θ denotes the work of non-conservative
forces. The Hamilton principle writes∫ t2

t1

(δL− δWnc) dt = 0,

from which we can derive the following set of mixed partial
and ordinal differential equations
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))
=

∂

∂ξ
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∂ξ
− φ

))
∂
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(
Iρ

(
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))
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∂

∂ξ
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∂φ

∂ξ

)
+K

(
∂w

∂ξ
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)
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Iθ̈ = +EI
∂φ(0, t)

∂ξ
+ u(t).

(1)
With boundary conditions

w(0, t) = 0, φ(0, t) = 0,
∂w

∂ξ
(L, t)− φ(L, t) = 0,

∂φ

∂ξ
(L, t) = 0.

The system will be presented as the interconnection of an
infinite dimensional system with a finite dimensional one.
Hence, the two subsystems will be presented separately
and eventually interconnected, such to be equivalent to
(1). The energy states of the infinite dimensional part of
the system are defined as:

εt =
∂w

∂ξ
− φ, pt = ρ

(
∂w

∂t
+ zθ̇

)
,

εr =
∂φ

∂ξ
, pr = Iρ

(
∂φ

∂t
+ θ̇

)
,

while the state related to the finite dimensional part writes
p = Iθ̇. The equations describing the infinite dimensional
system can be written as a port-Hamiltonian system

ẋb = J xb =
∂

∂ξ
P1(Hbxb) + P0(Hbxb), (2)

with xb = [pt pr εt εr]
T ∈ Xb ⊂ L2([0, L],R4) representing

the system’s state. The matrices in equation (2) are defined
as

P1 =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , P0 =

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , Hb =


1

ρ
0 0 0

0
1

Iρ
0 0

0 0 K 0
0 0 0 EI


We equip the state space Xb with the L2 inner product
〈xb, xb〉Xb

= 〈xb,Hbxb〉L2
, such to express the energy re-

lated to the flexible part of the system asHb = 1
2 〈xb, xb〉Xb

.
The boundary variables are defined as[

f∂
e∂

]
=

1√
2
U

[
P1 −P1

I I

] [
(Hbxb)(t, 0)
(Hbxb)(t, L)

]
with U unitary matrix such that UT

[
0 I
I 0

]
U =

[
0 I
I 0

]
. The

boundary input and output operators can be defined as:

ub,1 = B1(Hbxb) = W1

[
f∂
e∂

]
= − 1

Iρ
pr(0, t)

ub,2 = B2(Hbxb) = W2

[
f∂
e∂

]
=

−
1

ρ
pt(0, t)

Kεt(L, t)
EIεr(L, t)


yb,1 = C1(Hbxb) = W̃1

[
f∂
e∂

]
= +EIεr(0, t)

yb,2 = C2(Hbxb) = W̃2

[
f∂
e∂

]
=


Kεt(0, t)
1

ρ
pt(L, t)

1

Iρ
pr(L, t)



(3)



where W =

[
W1

W2

]
and W̃ =

[
W̃1

W̃2

]
are matrices such that[

W

W̃

]
is a non-singular matrix. The total boundary input-

output operators are defined as

B(Hbxb) =

[
B1(Hbxb)
B2(Hbxb)

]
=

[
W1

W2

] [
f∂
e∂

]
C(Hbxb) =

[
C1(Hbxb)
C2(Hbxb)

]
=

[
W̃1

W̃2

] [
f∂
e∂

] (4)

The finite dimensional part of the system is composed of
only one state, and his dynamics can be represented by a
single integral equation{

ṗ = +ur(t),

yr(t) =
1

I
p.

Finally, the interconnection relations between the infinite
and finite dimensional parts write

ub,1 = −yr, ur = +yb,1 + u, (5)

where u is the control input that have to be designed. The
remaining boundary conditions of (2) are ub,2 = [0 0 0]T .

2.2 Observer based Control design

The aim of the proposed control law is firstly to orient
the beam in the desired configuration, and secondly to use
the state of the infinite dimensional part of the system
to change the elastic behaviour of the closed loop system.
The nonlinear control law makes use of an observed state
instead of the original one. The control law writes{

ẋc = −rcxc + g(x̂b)θ̇(t)

u(t) = −k1(θ(t)− θ∗)− g(x̂b)k2xc − k3θ̇(t)
(6)

The first term is responsible of the orientation in the
desired angular configuration. Without loss of generality,
we consider the stabilization problem to the origin θ∗ = 0.
If we want to stabilize to a different desired configuration,
a change of coordinate can cast the problem to origin stabi-
lization. The second term is the nonlinear term depending
on the linear function of the observed state g(x̂b) and on
the controller variable xc. The xc dynamics is again non-
linear in the input entrance. This controller construction
makes possible the dependence of the controller dynamics
on observed infinite dimensional state. The last term is the
derivative term corresponding to a damping injection.
For the infinite dimensional state reconstruction we pro-
pose the “Simple observer”: starting from the boundary
observation of the infinite dimensional system, it asymp-
totically reconstructs the original state. The controller
design and the stability proof are carried out with an
observer described by a set of partial differential equa-
tions. It is assumed that all the physical parameters of
the infinite dimensional system are known. The observer
equations have the same form of the original system

˙̂xb =
∂

∂ξ
P1(Hbx̂b) + P0(Hbx̂b), (7)

with x̂b ∈ X̂b ⊂ L2([0, L],R4), and boundary inputs and
observations:

B(Hbx̂b) =

[
W1

W2

] [
f∂
e∂

]
= ûb(t) = ub(t)− L(ŷb(t)− yb(t)),

C(Hbx̂b) =

[
W̃1

W̃2

] [
f∂
e∂

]
= ŷb(t),

where, L = diag([l1 l2 l3 l4]) ≥ 0 since l1, l2, l3, l4 ≥ 0.
For analysis purposes, we perform a change of coordinate
defining the error state x̃b = x̂b − xb and his dynamics

˙̃xb = ˙̂xb − ẋb
=

∂

∂ξ
P1(Hbx̂b) + P0(Hbx̂b)−

∂

∂ξ
P1(Hbxb)− P0(Hbxb)

=
∂

∂ξ
P1(Hb(x̂b − xb)) + P0(Hb(x̂b − xb))

=
∂

∂ξ
P1(Hbx̃b) + P0(Hbx̃b),

(8)
where the operators linearity has been used, and the state
space defined as x̃b ∈ X̃b ⊂ L2([0, L],R4). As input and
output boundary operators we use the same as for the
original infinite dimensional system and for his observer

C(Hbx̃b) = C(Hb(x̃b − xb))
= C(Hbx̂b)− C(Hbxb)
= ŷb − yb = ỹb,

and,

ũb = B(Hbx̃b) = B(Hbx̂b)− B(Hbxb)
= ub(t)− L(ŷb − y(t))− ub(t)
= −Lỹb.

(9)

The control law (6) can be rewritten as a dynamic port-
Hamiltonian system of the form:

q̇ = uc,

ẋc = −rck2xc + g(x̂b)uc,

yc = +k1q + k2g(x̂b)xc + k3uc

To connect the controller to the system we make use of a
power preserving interconnection:

uc = yr, u = −yc. (10)

To make the analysis more clear, we maintain the xc
dynamics separated from the rest of the system. Hence,
we define the closed loop semilinear equation

ẋ = Ax+ f(x)

=


∂

∂ξ
P1(Hbxb) + P0(Hbxb)

∂

∂ξ
P1(Hbx̃b) + P0(Hbx̃b)

(Jr −Rr)Qrxr + grC1(Hbxb)
−rck2xc

+

 0
0

−grg(x̃b + xb)k2xc
+g(x̃b + xb)g

T
r Qrxr


(11)

where x = [xb x̃b xr xc]
T ∈ X ⊂ L2([0, L],R4) ×

L2([0, L],R4)×R2×R, and xr = [p q]T . We define g : Xb×
X̃b → R and we assume that is linear. The new matrices
are defined as

Jr =

[
0 −1
1 0

]
Rr =

[
k3 0
0 0

]
Qr =

[
1

I
0

0 k1

]
with Jr = −JTr , Rr = RTr ≥ 0, Qr = QTr > 0. The linear
operator domain is defined as

D(A) = {x ∈ X|xb, x̃b ∈ H1([0, L],R4),Wxx = 0} (12)

where,

Wxx =

Bb,1(Hbxb) + gTr Qrxr
Bb,2(Hbxb)

Bb(Hbx̃b) + Cb(Hbx̃b)

 .
We equip the state space with the inner product 〈x, x〉X =
〈xb,Hbxb〉L2 + 〈x̃b,Hbx̃b〉L2 + xTr Qrxr + k2x

2
c . The energy

of the closed loop system can be thought as half of the



previously defined inner product. In this new closed-loop
energy appears also the square of the controller state xc
that in turns has his dynamics depending on the function
g(x̂). Hence, we added to the energy a term depending
on the the estimation of the flexible state. Choosing the
function g(x̂), we are able to change the elastic behaviour
of the beam in the direction on which we are more
interested. In this control scenario there are two problems
to address: convergence of the observed state x̂b to the
original infinite dimensional state and asymptotic stability
of the infinite dimensional system. The use of the error
state in the closed loop equation allow to study both of
them as a stabilization to the origin problem.

3. ASYMPTOTIC STABILITY OF THE
CLOSED-LOOP SYSTEM

Theorem 1. The linear operator A with domain (12) gen-
erates a contraction semigroup on X. Moreover, A has a
compact resolvent.

Proof. The contraction C0-semigroup generation is proved
applying the Lummer-Phillips Theorem. To use this theo-
rem we have to verify two properties: that the operatorA is
dissipative and that ran(λ−A) = X. To show dissipativity
we have that

<〈Ax, x〉X = 〈Ax, x〉X + 〈x,Ax〉X
= 〈J xb,Hbxb〉L2

+ 〈Hbxb,J xb〉L2

+2(Qrxr)
T (Jr −Rr)Qrxr

+2Cb,1(Hbxb)gTr Qrxr − 2rck
2
2x

2
c

+〈J x̃b,Hbx̃b〉L2 + 〈Hbx̃b,J x̃b〉L2

Thanks to the port variable selection we have

〈J xb,Hbxb〉L2
+ 〈Hbxb,J xb〉L2

= 2u1,by1,b
〈J x̃b,Hbx̃b〉L2

+ 〈Hbx̃b,J x̃b〉L2
= 2〈ũb, ỹb〉R4

(13)

hence,

<〈Ax, x〉X = −(Qrxr)
TRrQrxr − rck22x2c − 〈Lỹ, ỹ〉 ≤ 0

Since Rc ≥ 0, rc > 0, k2 > 0, L ≥ 0. The range condition
consists in finding (xb, x̃b, xr, xc) ∈ D(A) \ {0} such that

λ

xbx̃bxr
xc

−A
xbx̃bxr
xc

 =

fbf̃b
fr
fc


for all [fb, f̃b, fr, fc]

T ∈ X. We note that this problem
is actually divided in two different parts because the error
system is not affected from the rest of the system. The
range condition for the part of the system related to the
error system follows from Theorem 2.26 of (Villegas, 2007).
For the remaining equations, the range condition relies
on the existence of the right inverse of the operator Bb
subjected to a perturbation of the form (Bb +KCb), with
B, C operators defined in equation (4), and K singular
matrix. The existence of this right inverse follows from

the non-singularity of

[
W

W̃

]
.

To prove the compactness of the resolvent we define the
sequence

{zn} = (λI −A)−1{xn} (14)

where, without loss of generality, we assume {xn} bounded
∀n ∈ N. For the compact operator definition, we have
to show that {zn} has a converging subsequence. We
define {zn} = [{zn,1} {zn,2} {zn,3}]T ∈ H1([0, L],R4) ×

H1([0, L],R4)× R3 and {xn} = [{xn,1} {xn,2} {xn,3}]T ∈
L2([0, L],R4)×L2([0, L],R4)×R3. We already shown that
the operator A generates a contraction C0−Semigroup,
hence by the Hille-Yoshida theorem (Curtain and Zwart,
1995) (Theorem 2.1.12, pag 26) we know that ||(λI −
A)−1|| < 1

λ . This implies that also {zn} is bounded. Since
{zn,3} belongs to a finite dimensional space, it follows that
has a convergent subsequence. For both {zn,1} and {zn,2}
we have

||zn,i||2H1 = || ∂
∂z
zn,i||L2 + ||zn,i||2L2

i = {1, 2} (15)

Using the J definition and equation (14), it holds

|| ∂
∂z
zn,i||2L2

= ||P−11 J zn,i + P−11 P0zn,i||2L2

≤ ||P−11 (xn,i + λzn,i)||2L2
+ ||P−11 P0zn,i||2L2

< ∞
(16)

Then, {zn,i} is bounded in H1 and from the Sobolev
embedding theorem it implies that {zn,i} has a converging
subsequence in L2 for i = {1, 2}. Therefore,A has compact
resolvent.

Theorem 2. The solution of system (11) is bounded in
every interval [0, t], t > 0. Moreover, p, xc ∈ L2([0, t]) ∀t >
0.

Proof. Boundedness of solutions follows from the exis-
tence of a Lyapunov function. This means that we have
to show that exists a function V : X → R+ such that
V (0) = 0 and with time derivative V̇ (x0) ≤ 0, ∀x0 ∈
D(A). To this end we take as candidate Lyapunov func-
tion half of the defined inner product on the State space
V (x0) = 1

2 〈x0, x0〉X . The time derivative is defined as

V̇ (x0) = lim
t→0

V (x(t, x0))− V (x0)

t

and it can be proved that V̇ (x0) = dV (x0)Anlx, where
dV (x0) is the Fréchet derivative of the candidate Lyapunov
function in x0. Then,

dV (x0)Anlx = +
1

2
〈J xb,Hbxb〉L2

+
1

2
〈Hbxb,J xb〉L2

+
1

2
ẋTr Qrxr +

1

2
xrQrẋ

T
r + kcxcẋc

+
1

2
〈J x̃b,Hbx̃b〉L2 +

1

2
〈Hbx̃b,J x̃b〉L2

Similarly to proof of Theorem 1, and substituting xr and
xc dynamics we obtain

V̇ (x0) = ub,1yb,1 +
1

2
((Jr −Rr)Qrxr + grCb,1(Hbxb)

−grg(x̂)k2xc)Qrxr +
1

2
(Qrxr)

T ((Jr −Rr)Qrxr
+grCb,1(Hbxb)− grg(x̂)k2xc) + k2xc(−rck2xc
+g(x̂)gTr Qrxr) + 〈ũb, ỹb〉R4

= ub,1yb,1 + yryb,1 − (Qrxr)
TRrQrxr − rck22x2c

+〈ũb, ỹb〉R4

thanks to the skew symmetry of Jr = −JTr and using the
boundary input-output definitions (3).Using the intercon-
nection law definition (10), and the error system input
definition (9), we obtain

V̇ (x0) = −(Qrxr)
TRr(Qrxr)− rck22x2c − 〈Lỹb, ỹb〉R4 ≤ 0

(17)
From this it follows that V (x) is a Lyapunov function and
then that trajectories are bounded. To obtain the second



part of the statement we integrate both members of (17)
and we note that (Qrxr)

TRr(Qrxr) = k3
I2 p

2 to obtain

V (x(t, x0)) = V (x0)−
∫ t

0

k3
I2
p2ds−

∫ t

0

rck
2
2x

2
cds

−
∫ t

0

〈Lỹb, ỹb〉R4ds

Since the Lyapunov function V (x) is bounded from below,
the statement follows.

Theorem 3. The error system defined by equation (8) and
boundary conditions (9) is exponentially stable if l1, l2 >
0, l3, l4 ≥ 0 or l3, l4 > 0, l1, l2 ≥ 0.

Proof. Assume that l1, l2 > 0, l3, l4 ≥ 0 and define the
function Ẽ = 1

2 〈x̃,Hbx̃〉L2
. Take its time derivative to

obtain
1

2
Ė(x(t, x̃0)) =

1

2
〈J x̃,Hbx̃〉L2 +

1

2
〈Hbx̃,J x̃〉L2

= 〈ũb, ỹb〉R4 = −〈Lỹb, ỹb〉R4 ,

Where equations (9) and (13) have been used. Then,

defining k = max{ 1+l
2
1

l21
,
1+l22
l22
} and using equation (9),

||(Hbx̃)(0)||2R4 =

(
1

ρ
p̃t(0)

)2

+

(
1

Iρ
p̃r(0)

)2

+ (Kε̃t(0))2

+(EIε̃r(0))2

= (l1Kε̃t(0))
2

+ (l2EIε̃r(0))
2

+ (Kε̃t(0))2

+(EIε̃r(0))2

=
1 + l21
l21

(l1Kε̃t(0))2 +
1 + l22
l22

(l2EIε̃r(0))2

≤ k((l1Kε̃t(0))2 + (l2EIε̃r(0))2)
≤ k((l1Kε̃t(0))2 + (l2EIε̃r(0))2

+

(
l3

1

ρ
p̃t(L)

)2

+

(
l4

1

Iρ
p̃r(L)

)2

)

= k〈Lỹb, ỹb〉R4

The statement follows from Theorem 5.19 of (Villegas,
2007). Exponential stability assuming l3, l4 > 0, l1, l2 ≥ 0
follows from very similar arguments computing ||(Hbx̃)(L)||2R4

instead of ||(Hbx̃)(0)||2R4 .

Remark 4. The previous theorem states that we have an
exponentially converging observer state also in case we
have boundary observation only at one side of the beam.

Theorem 5. Consider the closed loop system (11), and
assume that the system

ż = Ãz +Bu(t)

=


∂

∂ξ
P1(Hbxb) + P0(Hbxb)

(Jr −Rr)Qrxr + grC(Hbxb)
−rckcxc

+

[
0 0
gr 0
0 1

]
u(t)

(18)

with z = [xb xr xc]
T ∈ Z ⊂ L2([0, L],R4)× R2 × R and

D(Ã) = {z ∈ Z|xb ∈ H1([0, L],R4),
B1(Hbxb) + grQrxr = 0,B2(Hbxb) = 0}

is weakly controllable on infinite time, and that the func-
tion g : Xb × X̃b → R is linear. Then, the closed loop
system is asymptotically stable.

Proof. We first notice that we don’t have any control on
the error system, but with Theorem 3 we already proven
that the error state x̃ is exponentially stable. Hence, it re-
mains to show that the other part of the system described

by (18) with u(t) = [g(x̃b + xb)k2xc g(x̃b + xb)Qrxr]
T ,

is asymptotically stable. With very similar arguments as
in Theorem 1, it is possible to show that Ã generates a
contraction C0-semigroup and it has compact resolvent.
To show asymptotic stability of (18) we apply Lemma 2.1.3
and Lemma 2.2.6 of (Oostveen, 2000). Firstly, we define

B =

[
0 0
gr 0
0 1

]
, B∗ = BT

[Hb 0 0
0 Qr 0
0 0 k2

]
=

[
0 gTr Qr 0
0 0 k2

]
K =

[
k3 0
0 rc

]
. (19)

Hence, we can define the weighted input-output matrices
as B̃ = B

√
K and B̃∗ =

√
KB∗. Then, the system

dynamic can be rewritten as ż = (Ã′ − B̃B̃∗)z + B̃ũ(t),

with ũ(t) =
√
K
−1
u(t). With very similar arguments as

in the proof of Theorem 1, it is possible to show that
the operator Ã′ generates a contraction C0−semigroup.
From this, we conclude that Ã is strongly stable. Then,
it remains to show that the considered nonlinearity ũ(t)
is square integrable in infinite time. By definition of ũ(t),
proving its square integrability is the same as proving the
square integrability of u(t), hence∫ ∞

0

(g(x̂)k2xc)
2dt =

∫ ∞
0

(g(xb + x̃b)k2xc)
2dt

≤ M2
g k

2
2

∫ ∞
0

x2cdt <∞

where for the first inequality it has been used the bounded-
ness of xb, x̃ and the linearity of g(·), while for the second
it has been used the square integrability of xc shown in
Theorem 2. In a similar manner, the square integrability
of g(x̂b)g

T
r Qrxr follows from the square integrability of p.

Remark 6. The weak controllability of the rotating Timo-
shenko beam connected to a hub has been proven in (Krabs
and Sklyar, 1999).

4. NUMERICAL SIMULATIONS

To perform the numerical simulations, it has been consid-
ered a finite dimensional approximation of the system. In
particular, it has been used the finite element discretiza-
tion for infinite dimensional port-Hamiltonian system pre-
sented in (Golo et al., 2004). This allows to spatially
approximate the resulting linear PDEs with linear systems
of dimensions depending on the number of discretizing el-
ements. Simulations were made in the Simulink R© environ-
ment using the ”ode23t” time integration algorithm. The
set of parameters used for simulation are listed in Table 1,
where a Polyethilene HDPE material has been considered
for the beam. For isotropic materials, the Shear modulus
is related to the Young’s modulus G = E

2(1+ν) , where

ν = 1
2 −

E
6K is the Poisson’s ratio. To show the observer

action, we initialize the flexible beam to the zero initial
state, while we set the observer initial condition different
from the origin x̂0 = [0.01 · 1(z) 0 0.01 · 1(z) 0]T , where
1(z) is the characteristic function on the interval [0, L]. As
weighting function for the nonlinear controller we select
the Beam’s tip deformation, that can be reconstructed
from the system’s state

g(x̂b) = ŵ(L, t) =

∫ L

0

ε̂t(z, t) +

(∫ z

0

ε̂r(ξ, t)dξ

)
dz (20)



Table 1. Simulation Parameters

Name Variable Value

Beam’s Length L 1 m
Beam’s Width Lw 0.1 m

Beam’s Thickness Lt 0.02 m

Density ρ 950 kg
m3

Young’s modulus E 8× 108 N
m2

Bulk’s modulus K 1.7× 109 N
m2

Hub’s inertia I 1 kg ·m2

Beam’s discretizing elements nb 20
Observer’s discretizing elements ñb 20
Proportional control constant k1 5× 102

Nonlinear control constant k2 1× 102

Damping injection constant k3 5× 104

Controller dissipation rc 0.001

The results are compared with a PD controller. Since

0 0.2 0.4 0.6 0.8 1
Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

B
ea

m
 T

ip
 o

bs
er

ve
r 

er
ro

r

Observer based Nonlinear control  = 0.5
Observer based Nonlinear control  = 0.2
Observer based Nonlinear control  = 0.07

Fig. 2. Beam’s tip Observation error w̃(L, t).

the converging to the ”real” values of all the observer’s
state variables is too dispersive in a single picture, we
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Fig. 3. Tip’s deformation w(L, t).
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Fig. 4. Hub’s angle q(t).

choose to show the error between the real and observed
tip’s deformation

w̃b(L, t) = ŵ(L, t)− w(L, t)

=

∫ L

0

ε̂t(z, t)− εt(z, t) +

(∫ z

0

ε̂r(ξ, t)− εr(ξ, t)dξ
)

=

∫ L

0

ε̃t(z, t) +

(∫ z

0

ε̃r(ξ, t)dξ

)
dz.

(21)
Figure 4 shows that the Beam’s tip deformation error
converges to zero, and dependently on the value of the
diagonal terms of the Observer matrix L we can obtain a
faster convergence. This confirm that the Observer’s error
response has been bounded by an exponential that de-
pends on the Observer matrix’s parameters. The set of val-
ues used in the simulation are li = α, i = {1, 2, 3, 4} α ∈
{0.07, 0.2, 0.5}. From Figure 4 we note that as far as the
observer converges faster to the original state, the control
action is more effective in damping the beam’s tip vibra-
tions. In case the observer is not converging fast enough,
it is shown that the oscillation are kept smaller and the
system asymptotically converge to the origin, but with a
rate similar to the PD controller. Finally, Figure 4 shows
that the hub’s angular displacement has a similar rate of
convergence in all the different control law applications.

5. CONCLUSIONS

It has been considered a model of the rotating flexible
beam composed by a set of PDEs interconnected with
an ODE, with actuation in the ODE. Since the control
input is not on the PDEs’ boundaries, a passive preserving
way of using the deformation information in the controller
is through the use of a nonlinear dynamic control law.
In this paper, the nonlinear controller makes use of an
extimated state instead of the original one. Firstly, it has
been proven the exponential stability of the observer’s
state assured that we have at least the complete obser-
vation in one side of the beam. Secondly, the nonlinear
closed loop system has been analysed using the opera-
tor formalism and asymptotic stability has been formally
proved. The observer parameters can be selected to set the



convergence speed of the estimated state, while the beam’s
state function can be chosen to obtain different closed loop
deformation behaviours. Numerical simulations have been
used to show the closed loop behaviour with the use of
different observer’s parameters: in case the observer is not
converging fast enough, even though the closed loop sys-
tem is still asymptotically stable, the rate of convergence
can became slower than the one of the PD controller. An
experimental set-up where it will be possible to test the
proposed control law is currently under construction. The
future work will deal with the generalization of this type
of controller for a class of PDEs-ODE system, that can be
frequently encountered in mechanical applications.
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