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Abstract: In this paper we consider general port-Hamiltonian formulations of multi-
dimensional Maxwell’s viscoelastic fluids. Two different cases are considered to describe the
energy fluxes in isentropic compressible and incompressible fluids. In the compressible case, the
viscoelastic effects of shear and dilatational strains on the stress tensor are described individually
through the corresponding constitutive equations. In the incompressible case, an approach based
on the bulk modulus definition is proposed in order to obtain an appropriate characterization,
from the port-Hamiltonian point of view, of the pressure and nonlinear terms in the momentum
equation, associated with both dynamic pressure and vorticity of the flow.
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1. INTRODUCTION

Port-Hamiltonian (PH) formulations are particularly well
adapted for the description of energy fluxes in mutiphysical
systems, highlighting useful properties for control theory,
such as passivity, for stability analysis in the Lyapunov
sense and for power-preserving connectivity by ports (van
der Schaft and Jeltsema, 2014). This is particularly useful
for energy-based control methods, such as energy-shaping
(Macchelli et al., 2017), IDA-PBC (Vu et al., 2015), among
others, that require models describing the energy fluxes in
the system to derive a physically meaningful controller. PH
formulations have been extended to distributed parameter
systems in the conservative case in Le Gorrec et al. (2005)
and for systems with dissipative effects in Villegas et al.
(2006).

Different energy-based approaches have been proposed in
the literature to describe Newtonian fluids considering
several assumptions. One can cite for example (van der
Schaft and Maschke, 2002) for inviscid fluids, (Matignon
and Hélie, 2013) for irrotational flows, (Kotyczka, 2013)
for pipeline networks, and (Altmann and Schulze, 2017) for
reactive 1D fluids. Similarly, in (Mora et al., 2020), a gen-
eral formulation is presented for non-reactive Newtonian
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compressible fluids under isentropic and non-isentropic
assumptions.

Another category of fluids, that is of interest for industrial
applications, are the so-called viscoelastic fluids. These
fluids, when undergoing deformation, exhibit both viscous
and elastic characteristics. This is the case for example
of shampoo, blood, polymeric solutions, liquid crystals,
and glass-forming liquids (Huo and Yong, 2016). Several
approaches, like Maxwell’s, Boltzmann’s and Jeffrey’s type
models (Joseph, 1990), can be used to describe the de-
formation effects on the fluid stress tensor directly (Bol-
lada and Phillips, 2012) or through structural variables

(Öttinger, 2002; Mackay and Phillips, 2019; Hütter et al.,
2020).

In this work we present an energy-based formulation for
3D compressible and incompressible Maxwell’s viscoelastic
fluids under an isentropic assumption. We consider a sim-
ple linear constitutive equation to describe the changes of
the fluid stress tensor according to the deformation tensor
variations. For the compressible case, the stress tensor is
divided into two parts with the corresponding constitutive
equations. One part describes the shear stress associated
with the deformation tensor and the other describes the di-
latational stress associated with fluid compressibility. For
incompressible fluids, we propose an approach based on the
bulk modulus definition to obtain an energy coherent char-
acterization of the pressure (without the use of Lagrangian
multipliers), focused on an appropriate description of the
nonlinear terms in the velocity field.



In what follows we denote by Ω the spatial domain of the
fluid, enclosed by the boundary ∂Ω. The set of spatial
variables is denoted by z and the time by t. ∂t = ∂

∂t
is the temporal partial derivative, div is the divergence
operator that applies to vector functions and return a
scalar function, div denotes the divergence of a second
order tensor functions and return a vector. grad denotes
the gradient of a scalar function, returning a vector. curl
is the rotational operator and Grad is the symmetric part
of the gradient of a vector function, returning a symmetric
second order tensor.

2. MAXWELL’S VISCOELASTIC COMPRESSIBLE
FLUIDS

The governing equations for compressible fluids are given
by the following mass and momentum balances:

∂tρ = −div ρv (1)

∂tv = − (v · grad )v − 1

ρ
grad p− 1

ρ
div τ (2)

where ρ = ρ(z, t), v = v(z, t), p = p(z, t) and τ = τ (z, t),
with z ∈ Ω, denote the density, velocity, pressure and
stress tensor of the fluid, respectively. In viscoelastic fluids,
contrary to the Newtonian case, the stress τ exhibits an
explicit time dependency with respect to the gradient of
v (Bird et al., 2015), combining the properties of viscous
fluids and elastic materials (Joseph, 1990).

In order to define the constitutive equations to describe
the stress dynamics, we first analyze the different parts
of the stress tensor in Newtonian fluids and their effect
on the fluid velocity. In Newtonian compressible fluids the
viscous stress tensor is given by:

τN = −2µGrad v︸ ︷︷ ︸
shear part

+

(
2

3
µ− κ

)
(div v) I︸ ︷︷ ︸

dilatational part

where I is the identity matrix of proper dimensions, µ and
κ are the shear and dilatational viscosities, respectively.
Noticing that div [(div v) I] = grad (div v), the con-
tribution of τN to the momentum equation (2) is given
by:

−1

ρ
div τN =

1

ρ
div

[
2µGrad v

]︸ ︷︷ ︸
shear part

+
1

ρ
grad (µBdiv v)︸ ︷︷ ︸
dilatational part

where µB = κ − 2
3µ. In this work, in order to obtain

a port-Hamiltonian formulation of Maxwell’s viscoelastic
fluids, we propose to describe separately the shear and
dilatational (compressible part) effects of the stress ten-
sor through the corresponding constitutive equations. We
assume from now that µB ≥ 0.

In the literature one can find several formulations of the
Maxwell’s constitutive equation to describe the changes of
the stress tensor according to the strain of the fluid, such
as the upper convected, lower convected and co-rotational
invariant derivatives (Joseph, 1990). In this work, we
use the basic formulation of the Maxwell’s constitutive
equation, i.e., the stress tensor τ is described by

λ∂tτ + τ = η∂tγ (3)

where ∂tγ denotes the time variations of the fluid strain γ,
η is the zero-rate viscosity, and λ = η/G is the relaxation

time, with G the elastic modulus of the fluid, such that,
τ → η∂tγ when λ→ 0, which describes a Newtonian fluid,
and τ → Gγ when λ → ∞, which describes an elastic
material (Joseph, 1990).

We denote by τ 1 ∈ L2(Ω,R3×3) the symmetric tensor that
describes shear stress effects on the fluid velocity, whose
constitutive equation, from (3), is given by:

τ 1 + λ1∂tτ 1 = 2µGrad v (4)

where λ1 = µ/G1 with G1 the shear elastic modulus, and
where the corresponding density of potential elastic energy
is given by λ1

4µτ 1 : τ 1 = λ1

4µ tr(τ
2
1).

Similarly, we use the scalar function τ2 ∈ L2(Ω,R) to
describe the dilatational stress effects trough the following
constitutive equation:

τ2 + λ2∂tτ2 = µBdiv v (5)

where λ2 = µB/G2 with G2 the dilatational elastic
modulus. The associated density of elastic potential energy
is given by 1

2
λ2

µb
τ2
2 . Then, when λ1 = λ2 → 0 we have that

1
ρdiv τ 1 + 1

ρgrad τ2 converges to − 1
ρdiv τN , obtaining

the effects of pure viscous fluids on the the velocity field
dynamics.

This implies that a Maxwell viscoelastic compressible fluid
can be described by the following governing equations:

∂tρ = −div ρv (6a)

∂tv = − (v · grad )v − 1

ρ
grad p+

1

ρ
div τ 1

+
1

ρ
grad τ2 (6b)

∂tτ 1 = − 1

λ1
τ 1 +

2µ

λ1
Grad v (6c)

∂tτ2 = − 1

λ2
τ2 +

µB
λ2
div v (6d)

with a total energy on the spatial domain Ω given by:

H =

∫
Ω

(
1

2
ρv · v + ρu(ρ) +

λ1

4µ
tr(τ 2

1) +
λ2

2µB
τ2
2

)
dΩ (7)

where u(ρ) denotes the specific internal energy of the
fluid, such that, p = ρ2∂ρu(ρ). According to the port-
Hamiltonian framework (van der Schaft and Jeltsema,
2014), the efforts associated with the state variables x =[
ρ v> τ 1 τ2

]>
are given by:

δxH =

 δρHδvHδτ1H
δτ2H

 =


1

2
v · v + h

ρv
λ1τ 1/2µ
λ2τ2/µB

 (8)

where h = u + p/ρ = u + ρ∂ρu is the specific enthalpy.

Remark 1. One can notice that Grad v and the strain
tensor γ of an elastic material are related by Grad v =
∂tγ (Bird et al., 2015, p.239). Since div v = tr(Grad v) =
tr (∂tγ) we have that τ 1 = 2G1γ when λ1 → ∞, and
τ2 = G2tr(γ) when λ2 → ∞. This implies that when
{λ1, λ2} → ∞ the viscoelastic energy density converges to
G1tr(γ

2) + G2tr(γ)2/2, that is equivalent to the energy
density of the Saint Venant-Kirchhoff model of elastic
materials (Bodnár et al., 2014, p.103), i.e., G1 and G2 are
equivalent to the Lamé coefficients of elastic materials.



In order to propose a port-Hamiltonian representation of
the considered viscoelastic compressible fluids, we first
define some skew-symmetric operators and their formal
adjoints used to split the symmetric part of (6) in the
product of two formally skew symmetric operators. In this
sense, we introduce H0 = L2(Ω,R) as the space of square
integrable scalar functions with inner product 〈e1, e2〉H0

=∫
Ω
e1e2dΩ; H1 = L2(Ω,Rn) denotes the Hilbert space of

square integrable vectors of size n satisfying that f/ρ ∈ H1,
∀f ∈ H1 and inner product 〈f1, f2〉H1

=
∫

Ω
(f1 · f2) dΩ,

∀f1, f2 ∈ L2(Ω,Rn); and H2 = L2(Ω,Rn×nsym ) denotes
the Hilbert space of the square integrable symmetric
tensors of size n × n with inner product 〈σ1,σ2〉H2

=∫
Ω
tr
(
σ>1 σ2

)
dΩ, ∀σ1,σ2 ∈ L2(Ω,Rn×nsym ).

Lemma 1. Let Dτ1
: H2 → H1 ans D∗τ1

: H1 → H2 be the

operators defined as Dτ1
σ = 1

ρdiv
[

2µ
λ1
σ
]
, ∀σ ∈ H2 and

D∗τ1
f = − 2µ

λ1
Grad (f/ρ), ∀f ∈ H1, respectively. Then,

D∗τ1
is the formal adjoint of Dτ1

, satisfying the following
relationship:

〈f ,Dτ1σ〉H1
−
〈
σ,D∗τ1

f
〉
H2

=

∫
∂Ω

(
f̃ · [σ̃ · n]

)
∂Ω (9)

where f̃ = f/ρ, σ̃ = 2µσ/λ1 and n is the unitary outward
vector normal to the boundary ∂Ω.

Proof. Consider f ∈ H1 and σ ∈ H2, Then,

〈f ,Dτ1σ〉H1
=

∫
Ω

f · 1

ρ
div

[
2µ

λ1
σ

]
dΩ =

〈
f̃ ,div σ̃

〉
H1

where f̃ = f/ρ and σ̃ = 2µσ/λ1. According to (Brugnoli
et al., 2019, Theorem 4) the formal adjoint of div is
−Grad , and following the Theorem 7 in Mora et al.
(2020), we obtain〈
f̃ ,div σ̃

〉
H1

=
〈
σ̃,−Grad (f̃)

〉
H2

+

∫
∂Ω

(
f̃ · [σ̃ · n]

)
∂Ω

where n is the unitary outward vector normal to the
boundary ∂Ω. Additionally, notice that〈

σ̃,−Grad (f̃)
〉
H2

=
〈
2µσ/λ1,−Grad (f/ρ)

〉
H2

=
〈
σ,D∗τ1

f
〉
H2

Then, we obtain that

〈f ,Dτ1
σ〉H1

=
〈
σ,D∗τ1

f
〉
H2

+

∫
∂Ω

(
f̃ · [σ̃ · n]

)
∂Ω

Rewriting this equation we obtain the relationship (9), and
considering boundary conditions equal to 0, we have that
〈f ,Dτ1

σ〉H1
=
〈
σ,D∗τ1

f
〉
H2

, i.e., D∗τ1
is the formal adjoint

of Dτ1
. �

Lemma 2. Let D∗τ2 : H1 → H0 and Dτ2 : H0 → H1 be the
operators defined by D∗τ2f = −µB

λ2
div [f/ρ] , ∀f ∈ H1 and

Dτ2e = 1
ρgrad (µB

λ2
e), ∀e ∈ H0, respectively. The operator

D∗τ2 is the formal adjoint of Dτ2 , satisfying the following
relationship:

〈f ,Dτ2e〉H1
−
〈
e,D∗τ2f

〉
H0

=

∫
∂Ω

ẽ
(
f̃ · n

)
∂Ω (10)

where f̃ = f/ρ, ẽ = µBe/λ2 and n is the unitary outward
vector normal to the boundary ∂Ω.

Proof. Let e ∈ H0 and f ∈ H1 be a square integrable
scalar and vector functions, respectively. Considering that

−grad is the formal adjoint of the operator div , it is easy

to prove that D∗τ2 = −µB

λ2
div

[
·
ρ

]
is the formal adjoint of

Dτ2 = 1
ρgrad (µB

λ2
·) following the same procedure used in

Lemma 1, obtaining the relationship (10). �

Using these Lemmas we can describe the energy fluxes
between the velocity field of the fluid and the stresses
τ 1 and τ2, leading to the port-Hamiltonian formulation
described in the following proposition.

Proposition 1. Let x =
[
ρ v> τ 1 τ2

]>
be the state vari-

ables of system (6). Considering the total energy H and
efforts δxH defined in (7) and (8), respectively, the dy-
namics of an isentropic Maxwell’s viscoelastic compressible
fluid can be described by the following dissipative port-
Hamiltonian system:[

∂tx
fr1
fr2

]
= J (x)

[
δxH
er1
er2

]
(11)

where fr1 = δτ1H, fr2 = δτ2H, er1 = 2µ
λ2
1
fr1 and er2 =

µB

λ2
2
fr2 are the dissipative flows and efforts associated

with the incompressible and compressible stresses, τ 1 and
τ2, respectively, and J (x) is a formal skew-symmetric
operator defined as:

J (x) =



0 −div 0 0 0 0

−grad −1

ρ
Gω Dτ1

Dτ2 0 0

0 −D∗τ1
0 0 −I 0

0 −D∗τ2 0 0 0 −1
0 0 I 0 0 0
0 0 0 1 0 0


(12)

and satisfying the balance Ḣ ≤ 〈f∂ , e∂〉∂Ω where the
boundary port variables are given by

f∂ =

[−ρv · n|∂Ω

v|∂Ω

v · n|∂Ω

]
and e∂ =


(

1

2
v · v + h

)
|∂Ω

[τ 1 · n] |∂Ω

τ2|∂Ω

 (13)

Proof. Consider the system (6). As shown in Mora et al.
(2020), we have that (v ·grad )v = grad

(
1
2v · v

)
+Gωv

where Gω is a skew-symmetric matrix called Gyroscope.
Similarly, considering an isentropic assumption, the Gibbs
equation is reduced to du = −pd 1

ρ , leading to the relation-

ship 1
ρgrad p = grad h. Then, using the efforts (8) the

governing equations can be written as:

∂tρ =− div δvH

∂tv =− grad δρH−
1

ρ
GωδvH+

1

ρ
div

[
2µ

λ1
δτ1H

]
+

1

ρ
grad

(
µB
λ2
δτ2H

)
∂tτ 1 =− 2µ

λ2
1

δτ1H+
2µ

λ1
Grad

(
δvH
ρ

)
∂tτ2 =− µB

λ2
2

δτ2H+
µB
λ2
div

[
δvH
ρ

]
Defining fr1 = δτ1H, fr2 = δτ2H and er1 = 2µ

λ2
1
fr1,

er2 = µB

λ2
2
fr2 as the corresponding dissipative flows and



efforts, and using the operator J (x) defined in (12), we
obtain the port-Hamiltonian formulation (11).

On the other hand, the rate of change of the total energy
is given by Ḣ = 〈δxH, ∂tx〉Ω. From (11) and the definition
of J (x) we have

〈δxH, ∂tx〉Ω =− 〈δρH, div δvH〉H0
− 〈δvH,grad δρH〉H1

+ 〈δvH,Dτ1
δτ1
H〉H1

−
〈
δτ1
H,D∗τ1

δvH
〉
H2

+ 〈δvH,Dτ2δτ2H〉H1
−
〈
δτ2H,D∗τ2δvH

〉
H0

− 〈δτ1H, er1〉H2
− 〈δτ2H, er2〉H0

−
〈
δvH,

1

ρ
GωδvH

〉
H1

Given the skew-symmetrical property of the Gyroscope

matrix Gω we obtain that
〈
δvH, 1

ρGωδvH
〉
H1

= 0, and

using Lemmas 1 and 2, we have

〈δxH, ∂tx〉Ω =−
∫
∂Ω

δρH (δvH · n) ∂Ω

+

∫
∂Ω

(
δvH
ρ
·
[

2µ

λ1
δτ1H · n

])
∂Ω

+

∫
∂Ω

µB
λ2
δτ2H

(
δvH
ρ
· n
)
∂Ω

− 〈δτ1H, α1δτ1H〉H2
− 〈δτ2H, α2δτ2H〉H0

where α1 = 2µ/λ2
1 > 0 and α2 = µB/λ

2
2 > 0. Using (8)

and defining the boundary flows f∂ and efforts e∂ as shown
in (13), we have 〈f∂ , e∂〉∂Ω = −

∫
∂Ω
δρH (δvH · n) ∂Ω +∫

∂Ω

(
δvH
ρ ·

[
2µ
λ1
δτ1
H · n

]
+ µB

λ2
δτ2H

(
δvH
ρ · n

))
∂Ω. Then,

the rate of change of the total energy is given by

Ḣ =− 〈δτ1
H, α1δτ1

H〉H2
− 〈δτ2H, α2δτ2H〉H0

+ 〈f∂ , e∂〉∂Ω

≤〈f∂ , e∂〉∂Ω

�

3. MAXWELL’S VISCOELASTIC INCOMPRESSIBLE
FLUIDS

Consider the governing equations of Maxwell’s viscoelastic
incompressible fluids:

div v =0 (14a)

ρ0∂tv =− ρ0 (v · grad )v − grad p+ div τ (14b)

∂tτ =− 1

λ
τ +

2µ

λ
Grad v (14c)

where τ denotes the stress tensor and ρ0 the refer-
ence density of the fluid. The stored energy is given by

H =
∫

Ω

(
1
2ρ0v · v + λ

4µ tr(τ
2)
)
dΩ, where 1

2ρ0v · v and
λ
4µ tr(τ

2)dΩ denote the kinetic and potential (elastic) en-

ergy densities, respectively.

From the port-Hamiltonian point view, it is necessary to
find an appropriate description of the pressure in (14). Ac-
cording to John (2016), there are several methods to obtain
the pressure for incompressible fluids in computational
models. One can cite the so-called pseudo-compressibility
methods, as for example the Pressure Stabilization Petrov-
Galerkin method, −div v+ξdiv (grad p) = 0, the penalty
method, −div v−ξp = 0, and the artificial compressibility
method, −div v−ξ∂tp = 0, where ξ is a tuning parameter.

In this work we focus on an approach based on the arti-
ficial compressibility method. In this sense, the continuity
equation (14a) is an approximation of the general mass
balance ∂tρ+ div ρv = 0, with ρ = ρ̂+ ρ0, when |ρ̂| � ρ0

(Gresho and Sani, 1998).

Considering the Bulk modulus definition βS = ρ0

(
∂p
∂ρ

)
S

(Massey and Smith, 2012; Murdock, 1993), we have

p̂ = p− p0 =
βS
ρ0

(ρ− ρ0) (15)

where p0 is the reference pressure at ρ0. From (15) we have

that ∂tp̂ = βS

ρ0
∂tρ and ρ

ρ0
= α(p̂) with α(p̂) = p̂

βS
+1. Then,

the mass balance can be rewritten as

∂tp̂ = −βSdiv α(p̂)v (16)

Assuming |ρ̂| � ρ, from (15), we have that |p̂|βS
� 1, i.e.,

α(p̂) ≈ 1, obtaining the following approximation: α(p̂)v ≈
v, i.e., (16) is equivalent to the artificial compressibility
method described by John (2016). Similarly, (16) can be
rewritten as ∂tp̂+v ·grad p = −βSα(p̂)div v, as discussed

in Bollada and Phillips (2012). Neglecting the therm p̂
βS

in α(p̂) we obtain the pressure description used in the
weak compressible model proposed by Edwards and Beris
(1990).

Defining π = ρ0v as the fluid momentum, considering that
grad p = grad p̂ and substituting the continuity equation
(14a) by (16), we obtain the following governing equations:

∂tp̂ =− βSdiv α(p̂)
π

ρ0
(17a)

∂tπ =− (π · grad )
π

ρ0
− grad p̂+ div τ (17b)

∂tτ =− 1

λ
τ +

2µ

λ
Grad

π

ρ0
(17c)

Noticing that (17a) is equivalent to the pressure propaga-
tion of sound waves in fluid media (Landau and Lifshitz,
1987, Ch.8), and according to Trenchant et al. (2018, 2015)
the density of potential energy associated with the the
pressure propagation of sound waves can be expressed as
1
2 p̂

2/βS . Similarly, including the small perturbations of the
fluid density, the kinetic energy density can be expressed as
1
2 (ρ̂+ ρ0)v ·v = 1

2α(p̂)π·πρ0 . Then, the total energy stored

by the system (17), in a domain Ω, is given by:

H =
1

2

∫
Ω

(
α(p̂)

π · π
ρ0

+
p̂2

βS
+

λ

2µ
tr(τ 2)

)
dΩ (18)

such that

[
δp̂H
δπH
δτH

]
=


1

βS

(
1

2

π · π
ρ0

+ p̂

)
α(p̂)

π

ρ0
λ

2µ
τ

 (19)

Lemma 3. Let Dβ : H1 → H0 and D∗β : H0 → H1 be
the operators defined as Dβf = −βSdiv f , ∀f ∈ H1 and
D∗βe = grad (βSe) , ∀e ∈ H0, respectively. The operator
D∗β is the formal adjoint of Dβ , satisfying the relationship

〈e,Dβf〉H0
−
〈
D∗βe, f

〉
H1

= −
∫
∂Ω

βSe (f · n) ∂Ω (20)



Proof. Consider e ∈ H0 and f ∈ H1, then, the inner
product 〈e,Dβf〉H0

is given by:

〈e,Dβf〉H0
=

∫
Ω

−eβSdiv fdΩ

=

∫
Ω

f · grad (βSe)βSdΩ−
∫

Ω

div (βSef) dΩ

Using the Gauss Divergence Theorem (Bird et al., 2015,
Appendix A) we obtain:

〈e,Dβf〉H0
=
〈
D∗βe, f

〉
H1
−
∫
∂Ω

βSe (f · n) ∂Ω

Rearranging this result we obtain the relationship (20),
and considering boundary conditions equal to 0 we have

that 〈e,Dβf〉H0
=
〈
D∗βe, f

〉
H1

, i.e., D∗β is the formal

adjoint of Dβ . �
Lemma 4. Let Dτ : H2 → H1 and D∗τ : H1 → H2 be the
operators defined as Dτσ = div

[
2µ
λ σ
]
, ∀σ ∈ H2 and

D∗τ f = − 2µ
λ Grad f , ∀f ∈ H1, respectively. The operator

D∗τ is the formal adjoint of Dτ , satisfying the relationship

〈f ,Dτσ〉H1
− 〈D∗τ f ,σ〉H2

=

∫
∂Ω

f ·
[

2µ

λ
σ · n

]
∂Ω (21)

Proof. Considering that Grad is formal adjoint of −div
(Brugnoli et al., 2019, Theorem 4), it is easy to verify that
D∗τ is the formal adjoint of Dτ and the relationship (21),
following the same procedure of Lemma 3. �

Proposition 2. Let x =
[
p̂ π> τ

]>
be the state variables

of system (17). Considering the total energy (18) and
efforts (19), the dynamics of an incompressible Maxwell’s
viscoelastic fluid can be expressed as the following dissi-
pative port-Hamiltonian system[

∂tx
fr

]
=J (x)

[
δxH
er

]
(22)

where fr = δτH and er = 2µ
λ2 fr are the dissipative flow

and effort tensors, and the skew-symmetric operator J (x)
is defined as

J (x) =


0 Dβ 0 0

−D∗β −
1

α(p̂)
Gπ Dτ 0

0 −D∗τ 0 −I
0 0 I 0

 (23)

satisfying the following energy balance Ḣ ≤ 〈e∂ , f∂〉∂Ω
where

f∂ =

[
−α(p̂) (v · n) |∂Ω

α(p̂)v|Ω

]
e∂ =

(1

2
v · v + p̂

)∣∣∣∣
∂Ω

(τ · n) |∂Ω

 (24)

are the boundary flows and efforts, respectively.

Proof. Consider the dynamic system (17). Using the
differential relation described in (Bird et al., 2015, eq.
(A.4-23)), the term (π · grad ) πρ0 can be rewritten as

(π · grad )
π

ρ0
=grad

(
1

2

π · π
ρ0

)
+ [curl π]× π

ρ0

where the term [curl π] × π
ρ0

describes the energy flux

between the velocity field components due to the fluid
vorticity. Using the Gyroscope matrix Gω defined by Mora
et al. (2020) we obtain that [curl π] × π

ρ0
= Gπ

π
ρ0

where

Gπ = ρ0Gω is a skew-symmetric matrix dependent on the
vorticity vector ω = curl v.

On the other hand, assuming |p̂|βS
� 1, i.e., α(p̂) ≈ 1, we

have that Grad π
ρ0
≈ Grad δπH. Then, the governing

equations can be expressed as:

∂tp̂ =− βSdiv δπH

∂tπ =− grad δp̂H−
Gπ
α(p̂)

δπH+ div

[
2µ

λ
δτH

]
∂tτ =− 2µ

λ2
δτH+

2µ

λ
Grad δπH

Defining fr = δτH and er = 2µ
λ2 fr as the dissipative flow

and effort tensors, and using the skew-symmetric operator
J (x) defined in (23) we obtain the port-Hamiltonian
formulation (22).

Finally, the rate of change of the total energy (18) is given

by Ḣ = 〈δxH,J (x)δxH〉Ω. Using (23) we obtain

Ḣ = 〈δp̂H,DβδπH〉H0
−
〈
D∗βδp̂H, δπH

〉
H1

+ 〈δπH,Dτ δτH〉H1
− 〈D∗τ δπH, δτH〉H2

−
〈
δπH,

Gπ
α(p̂)

δτH
〉

H1

− 〈δτH, er〉H2

We have that
〈
δπH, Gπ

α(p̂)δτH
〉
H1

= 0 given the skew-

symmetry of Gπ. Then, using Lemmas 3 and 4, we obtain

Ḣ =−
∫
∂Ω

(
βSδp̂H (δπH · n)− δπH ·

[
2µ

λ
δτH · n

])
∂Ω

−
〈
δτH,

2µ

λ2
δτH

〉
H2

Defining the boundary flows and efforts as

f∂ =

[
− (δπH · n) |∂Ω

δπH|∂Ω

]
=

[
−α(p̂) (v · n) |∂Ω

α(p̂)v|Ω

]
and

e∂ =

 βSδp̂H|∂Ω[
2µ

λ
δτH · n

]∣∣∣∣
∂Ω

 =

(1

2
v · v + p̂

)∣∣∣∣
∂Ω

(τ · n) |∂Ω

 ,
respectively, and considering that

〈
δτH, 2µ

λ2 δτH
〉
H2
≥ 0,

the time derivative of H can be rewritten as

Ḣ = 〈e∂ , f∂〉∂Ω −
〈
δτH,

2µ

λ2
δτH

〉
H2

≤ 〈e∂ , f∂〉∂Ω

�

4. CONCLUSION

In this work port-Hamiltonian formulations of compress-
ible and incompressible Maxwell’s viscoelastic fluids have
been presented. For the compressible case, we divide the
stress tensor to consider the shear and dilatational (com-
pressibility) effects separately, proposing a constitutive
equation to describe viscoelasticity associated with each
of these effects. Unlike other models in the literature, in
this formulation, terms G1 and G2 on relaxation time λ1

and λ2, respectively, are related with the Lamé parameters
of elastic materials, as shown in Remark 1. For the incom-
pressible case, in order to obtain an energetically coherent



description of the pressure, without the use of Lagrangian
multipliers, a weak-compressible approach based on the
bulk modulus definition has been proposed. This approach
allows us to obtain an appropriate characterization of the
nonlinear terms in the velocity field associated with the

dynamic pressure, grad
(

1
2
π·π
ρ0

)
, and the fluid vorticity,

[curl π] × π
ρ0

. It is important to notice that we have

used a simple Maxwell’s constitutive equation to describe
the stress tensors dynamics. In case of descriptions with
invariant derivatives, such as upper and lower converted
formulations, the additional terms in the stress tensor
constitutive equation increase the complexity of the skew-
symmetric operator that describes the energy flux in port-
Hamiltonian systems. As a future work, we consider ad-
dressing this issue in order to obtain a port-Hamiltonian
formulation of invariant derivative Maxwell’s models of
viscoelastic fluids.
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Matignon, D. and Hélie, T. (2013). A class of damping
models preserving eigenspaces for linear conservative
port-Hamiltonian systems. European Journal of Con-
trol, 19(6), 486–494.

Mora, L.A., Le Gorrec, Y., Matignon, D., Ramı́rez, H.,
and Yuz, J. (2020). About dissipative and pseudo
Port-Hamiltonian Formulations of irreversible Newto-
nian Compressible Flows. In 21st IFAC World Congress
in Berlin, Germany, 11692–11697.

Murdock, J.W. (1993). Fundamental Fluid Mechanics
for the Practicing Engineer, volume 82 of Mechanical
Engineering. CRC Press, USA.
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