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Abstract: In this paper, an irreversible port-Hamiltonian formulation for 1D compressible
Newtonian fluids is presented. We separate the fluid dynamics into reversible and irreversible
parts. Given the compressibility assumption, we define a state-dependent matrix that modulates
the skew-symmetric operators that describe the irreversible part of the fluid dynamics. As a
result we obtain an energy-based formulation that reflects appropriately the first and second of
principles of Thermodynamics.

1. INTRODUCTION

The energy based formulation of compressible Newto-
nian fluids, in particular using the port-Hamiltonian (PH)
framework, have raised a major attention in the last
decade. The PH formulation and control of inviscid fluids
are analyzed by van der Schaft and Maschke (2002) and
Macchelli et al. (2017), respectively. Kotyczka (2013) and
Macchelli et al. (2017) propose dissipative PH models of
viscous fluids with an irrotational flow, considering differ-
ent formulations for the dissipative term. Similarly, pseudo
port-Hamiltonian formulations are proposed by Altmann
and Schulze (2017) for 1D reactive fluids and by Mora
et al. (2020) for 3D non-isentropic fluids.

An alternative formulation for irreversible processes is
the irreversible port-Hamiltonian systems (IPHS) formu-
lation. Initially proposed in Ramı́rez et al. (2013) for
finite-dimensional systems, this approach allows to rep-
resent through the IPHS structure both the first and
second principles of Thermodynamics. Unlike dissipa-
tive port-Hamiltonian representations, where the irre-
versible phenomena are described through dissipative el-
ements, neglecting the thermal domain, irreversible port-
Hamiltonian representations account for the thermal do-
main through the entropy balance. In this case the port-
Hamiltonian structure includes a non linear element re-
lated to the thermodynamic driving force that allows to
describe the second law of Thermodynamics (see Ramı́rez
et al. (2013) for details). The extension of this frame-
work to 1D infinite-dimensional systems has been proposed
initially by Ramirez and Le Gorrec (2016) for diffusion
processes and generalized in Ramı́rez et al. (2021) for a
class of distributed systems.

In this work, an irreversible port-Hamiltonian formula-
tion of 1D compressible Newtonian fluids is presented,
including the thermal domain. The fluid dynamics is split
into a reversible and an irreversible part. The thermody-
namic driving forces are described through locally defined
pseudo-brackets, that allow us to relate the conversion
of mechanical energy into heat, due to the dissipative
phenomena, with the internal entropy production of the
fluid, obtaining an appropriated description of the second
principle of Thermodynamics.

This paper is organized as follows. In Section 3 the dy-
namics of inviscid and viscous compressible fluids is con-
sidered, under an isentropic assumption, describing the
conservative and dissipative PH models, respectively, an-
alyzing the internal energy characterization of the fluid
for these PH formulations. In Section 4, we consider a
viscous non-isentropic and non-reactive compressible fluid,
deriving its irreversible port-Hamiltonian formulation. The
thermodynamic effects of the heat generation by internal
phenomena and heat flux are included in the model. The
entropy production is described considering the thermody-
namic driving forces characterized through locally defined
pseudo-brackets. Finally, in Section 4 we present the con-
clusion and future works.

2. NOTATION

We consider infinite dimensional systems described on a
one dimensional (1D) spatial domain, where ζ ∈ [a, b] and
t ∈ [0,+∞) stand for the spatial and temporal variables.
For the sake of simplicity in what follows ∂ζ stands for
the partial derivative with respect to ζ, i.e. ∂ζx(ζ, t) =
∂
∂ζx(ζ, t) and ∂t stands for the partial derivative with

respect to t, i.e. ∂tx(ζ, t) = ∂
∂tx(ζ, t).



The variational derivative of a functional U(x) such that

U(x) =

∫ b

a

u(ζ, x)dζ

for any smooth real vector function x(ζ, t) is defined by

δxU(x) = ∂xu(ζ, x)

3. ISENTROPIC COMPRESSIBLE FLUIDS

We consider in this section isentropic compressible fluids
defined on a one dimensional domain. We denote by ρ =
ρ(ζ, t), v = v(ζ, t) and p = p(ζ, t) the fluid density per unit
length, velocity and pressure, respectively, where ζ ∈ [a, b]
and t ∈ [0,+∞) stand for the spatial and temporal
variables. As the fluid is compressible, we consider the
mass balance

Dtρ = −ρ∂ζv,
where Dt = ∂t + v∂ζ denotes the material derivative.
Considering the isentropic assumption the variation of the
specific internal energy u is only due to the changes on ρ,
i.e., u = u(ρ) and the Gibbs equation reads

du = −pd1

ρ
(1)

As a consequence, using the local equilibrium assumption,
from (1) Dtu = p

ρ2Dtρ and the balance on u reads:

∂tu = −v∂ζu −
p

ρ
∂ζv (2)

where the thermal domain in the production of internal
energy has been neglected.

3.1 Inviscid fluid

The governing equations of an isentropic and inviscid
compressible fluid defined on the 1D domain Ω = {ζ ∈
[a, b] ⊂ R} are given by :

∂tρ = −∂ζρv (3a)

∂tv = −∂ζ
(

1

2
v2
)
− 1

ρ
∂ζp (3b)

The total energy is given by the sum of the kinetic and
internal energy:

H =

∫ b

a

(
1

2
ρv2 + ρu(ρ)

)
dζ. (4)

As shown in van der Schaft and Maschke (2002), using the
Gibbs equation (1) we have

1

ρ
∂ζp = ∂ζ

(
p

ρ

)
− ∂ζ

(
1

ρ

)
p (5)

= ∂ζ

(
p

ρ
+ u

)
= ∂ζh (6)

where h = u + p/ρ is the specific enthalpy. Furthermore

∂ρ (ρu(ρ)) = u(ρ) + ρ∂ρ (u(ρ)) (7)

= u(ρ)− p∂ρ
(

1

ρ

)
(8)

= u(ρ) +
p

ρ
= h (9)

Then, system (3) is expressed as the following port-
Hamiltonian formulation:

∂tx = P1∂ζδxH, ∀ζ ∈ Ω (10a)

u = WBRext

[
δxH|b
δxH|a

]
(10b)

y = WCRext

[
δxH|b
δxH|a

]
(10c)

where x = [ρ v]
>

is the state vector, u and y are
the boundary input and outputs, respectively, P1 =

−
[
0 1
1 0

]
, δxH =

[1
2
v2 + h

ρv

]
and Rext = 1√

2

[
P1 −P1

I I

]
, with

WB ,WC ∈ R(2,4),
[
WB

WC

]
invertible (Le Gorrec et al., 2005)

such that[
WB

WC

]
Σ
[
WT
B WT

C

]
= Σ, with Σ =

[
0 I
I 0

]
(11)

In this case the total energy balance is given by

Ḣ = u>y (12)

Balance (12) means that system (10) is conservative (Duin-
dam et al., 2009). However, governing equations (3) de-
scribe a highly idealized fluid where any internal friction
occur. For a more realistic description of compressible flu-
ids, it is necessary to consider the viscous frictions during
the fluid movement.

3.2 Viscous fluid

Governing equations of viscous compressible fluids are
given by

∂tρ = −∂ζρv (13a)

∂tv = −∂ζ
(

1

2
v2
)
− 1

ρ
∂ζp−

1

ρ
∂ζτ (13b)

where τ = −µ∂ζv describes the viscous stress, with µ as
the fluid viscosity.

The conversion of kinetic energy into heat due to the
viscous friction is described through the term − 1

ρ∂ζτ in

(13b). Due to the isentropic assumption in the fluid, form
a port-Hamiltonian point of view the term − 1

ρ∂ζτ =

1
ρ∂ζ

(
µ∂ζ

δvH
ρ

)
is a dissipative term representing the heat

losses (Matignon and Hélie, 2013).

Then, according to (Mora, 2020, Remark 5.5), system
(13) can be expressed as the following dissipative port-
Hamiltonian formulation:[

∂tx
fr

]
=

[
P1∂ζ G1∂ζ

∂ζ
(
G>1 ·

)
0

] [
δxH
er

]
(14)

where fr = ∂ζv and er = µfr are the dissipative flow and

effort, G1 = [0 1/ρ]
>

. The boundary inputs and outputs
of (14) are given by

u = WBRext

 δxH|ber|b
δxH|a
er|a

 and y = WCRext

 δxH|ber|b
δxH|a
er|a

 ,
respectively, where Rext =

1√
2

[
Q̃1 −Q̃1

I I

] [
MQ 0

0 MQ

]
,

where Q̃1 = MT P̃1M , MQ =
(
MTM

)−1
MT with P̃1 =



[
P1 G1

G>1 0

]
and M spanning the columns of P̃1. WB ,WC ∈

R(2,4) are such that

[
WB

WC

]
is invertible and satisfy (11)

(Villegas et al., 2006). Satisfying the energy balance

Ḣ = u>y −
∫ b

a

µ (∂ζv)
2
dζ ≤ u>y (15)

where µ (∂ζv)
2

is the power dissipated into heat per unit
length.

Remark 1. In some references, e.g. in Hauge et al. (2007)
where fluids flowing in pipes are considered, the friction is
described as − λ

2D |v|v, where λ is the friction coefficient.

This alternative formula stands in for the term − 1
ρ∂ζτ in

the right hand side of (13b). However, as − λ
2D |v|v is a

zero-order dissipative term (Kotyczka, 2013) it does not
contribute in the boundary conditions (Villegas et al.,
2006). The inputs and outputs are in this case the same
as for the inviscid port-Hamiltonian model and the power
dissipated per unit length is given by 1

2
λρ
D |v|v

2.

The port-Hamiltonian formulation (14) provides a nice
framework reflecting the macroscopic properties of fluids,
such as passivity. Yet it does not allow to characterize
precisely what occurs within the matter, and the un-
derlying structure does not reflect the first principle of
Thermodynamics. It makes it difficult to use for control
design purposes, leading to what is known as the dissipa-
tion obstacle (Macchelli et al., 2015). This motivates the
use of an alternative representation, the irreversible port
Hamiltonian formulation, in which the entropy balance
and the effect of the temperature are explicitly taken into
account, that reflects both the first and second principles
of Thermodynamics. This representation is formulated in
the most general case of non isentropic compressing fluids.

4. NON-ISENTROPIC COMPRESSIBLE FLUIDS

4.1 Governing equations

For non-isentropic fluids, the thermal domain is added to
the dynamics of specific internal energy (2), i.e.,

∂tu = −v∂ζu −
p

ρ
∂ζv +

1

ρ
Q− 1

ρ
∂ζq (16)

where q = −k∂ζT is the heat flux, with k the heat
conduction coefficient. T = T (ζ, t) denotes the fluid
temperature, and Q the internal heat production per unit
length. From (15), the internal heat production is defined

as Q = µ (∂ζv)
2

= −τ∂ζv. In this case, the Gibbs equation
reads:

du = −pd1

ρ
+ Tds (17)

where s = s(ζ, t) is the specific entropy. Considering ρ
and s as independent variables, from (17) we obtain the
relationships

p =ρ2∂ρu, (18)

T =∂su, (19)

TDts =Dtu −
(
p/ρ2

)
Dtρ (20)

−1

ρ
∂ζp =− ∂ζh + T∂ζs (21)

Tacking into account the relations (18) to (21) in (13) we
exhibit the following governing equations:

∂tρ = −∂ζρv (22a)

∂tv = −∂ζ
(

1

2
v2 + h

)
+ T∂ζs−

1

ρ
∂ζτ (22b)

∂ts = −v∂ζs−
τ

ρT
∂ζv −

1

ρT
∂ζq (22c)

In what follows we denote by x = [ρ v]> the state variables
that describe the fluid dynamics and by s the state variable
used to describe the thermal domain. The total energy
H = H(x, s) of the fluid is defined as:

H =

∫ b

a

1

2
ρv2 + ρu(ρ, s)dζ (23)

and the co-energy variables are given by:[
δρH
δvH
δsH

]
=

1

2
v2 + h

ρv
ρT

 (24)

4.2 IPHS formulation of compressible fluids

The IPHS formulation consists in choosing the energy
and entropy density variables as state variables and in
expressing the dynamics with respect to the total energy
(including the internal energy). In order to derive the irre-
versible port-Hamiltonian formulation of the system (22),
it is necessary to identify the reversible and irreversible
parts of the system dynamics, Wr and Wi, respectively,
such that ∂tx = Wr + Wi. In the considered case, the
irreversible part of the governing equations is given by the
terms associated with entropy creation by heat flux and
conversion of kinetic energy into heat by viscous friction,
i.e.,

Wr =


−∂ζ (δvH)

δsH
ρ
∂ζs− ∂ζ (δρH)

−δvH
ρ
∂ζs

 ,Wi =


0

−1

ρ
∂ζτ

− τ

ρT

δvH
ρ
− 1

ρT
∂ζq


The reversible part Wr can be described by a skew-
symmetric operator Jr, i.e.,

Wr =

[
P1∂ζ L(x, s)

−L>(x, s) 0

]
︸ ︷︷ ︸

Jr

[
δxH
δsH

]
(25)

with P1 =

[
0 −1
−1 0

]
, and L(x, s) =

[
0
∂ζs

ρ

]>
.

Regarding the irreversible part Wi, we shall use the follow-
ing instrumental Lemma.

Lemma 1. Let H1
n ((a, b),Rn) be the Sobolev space of

differentiable vector functions of size n ∈ N on the in-
terval (a, b). Consider α(x) ∈ L2 ((a, b),R) and F (x) ∈
L2
(
(a, b),RN

)
as two state-dependent continuous func-

tions, such that α(x)f ∈ H1
n,∀f ∈ H1

N and F (x)e ∈
H1
n,∀e ∈ H1

1 . Then, the operator D∗ : L2 ((a, b),R) →
L2 ((a, b),Rn) defined as D∗e = −α(x)∂ζ (F (x)e) is the
formal adjoint of D : L2

(
(a, b),RN

)
→ L2 ((a, b),R) de-

fined as Df = F>(x)∂ζ (α(x)f).



Proof. Let H0 = L2 ((a, b),R) and H1 = L2 ((a, b),Rn)
be the Hilbert spaces of continuous scalar and vector
functions on the interval (a, b), respectively. Considering
that α(x)f and F (x)e are differentiable, the inner product
〈e,Df〉H0

reads:

〈e,Df〉H0
=

∫ b

a

eF>(x)∂ζ (α(x)f) dζ

=−
∫ b

a

f>α(x)∂ζ (F (x)e) dζ

+ [α(x)f ]
>

[F (x)e]
∣∣∣b
a

= 〈D∗e, f〉H1
+ [α(x)f ]

>
[F (x)e]

∣∣∣b
a

(26)

Considering boundary conditions equal to 0, from (26) we
have that 〈e,Df〉H0

= 〈D∗e, f〉H1
, i.e., D∗ is the formal

adjoint of D. �

Defining G1 = [0 1/ρ]
>

, gs = 1/ρ, and considering the
relationship 1

ρT ∂ζq = q
ρT 2 ∂ζT + 1

ρ∂ζ
q
T , Wi is expressed as:

Wi =

[
−G1∂ζ [τ ]

− τ

ρT
∂ζG

>
1 δxH−

q

ρT 2
∂ζ (gsδsH)− gs∂ζ

q

T

]

In order to describe the IPHS, the following pseudo (locally
defined) brackets will be used to define the thermodynamic
driving forces of the system

{E|G|F} =

[
δxE
δsE

] [
0 G
−G∗ 0

] [
δxF
δsF

]
(27)

{E|gs(x)|F} = δsE∂ζ (gs(x)δsF) (28)

for some smooth function E and F, operator G and
its corresponding formal adjoint G∗, and real continuous
scalar function gs(x).

Considering that the total entropy of system (22), and
the corresponding variational derivative δxS and δsS, are
given by

S =

∫ b

a

ρsdζ, δxS =

[
s
0

]
and δsS = ρ (29)

respectively, we have that

{S|G1∂ζ |H} = ρ∂ζv and {S|gs(x)|H} = ρ∂ζT

Then, defining

α1(x) = γ1{S|G1∂ζ |H} = −τ/ρT (30)

αs(x) = γs{S|gs(x)|H} = −q/ρT 2 (31)

where γ1 = µ/ρ2T > 0 and γs = k/ (ρT )
2
> 0 the

irreversible part of the non-isentropic compressible fluid
is rewritten as:

Wi =

[
0 Dτ
−D∗τ DT −D∗T

]
︸ ︷︷ ︸

Ji

[
δxH
δsH

]
(32)

where, according to Lemma 1, D∗τ (.) = −α1(x)∂ζ
(
G>1 .

)
is the formal adjoint of Dτ (.) = G1∂ζ (α1(x).), and
D∗T (.) = −αs(x)∂ζ (gs(x).) is the formal adjoint of DT (.) =
gs(x)∂ζ (αs(x).), i.e., the operator Ji in (32) is formally
skew-symmetric.

Note that the operator D∗τ is associated with the entropy
production per unit mass due to the conversion of kinetic
energy into heat by viscous friction, i.e.,

−D∗τδxH = α1(x)∂ζ
(
G>1 δxH

)
=

µ

ρT
(∂ζv)

2 ≥ 0

Similarly, the operator D∗T describes the entropy produc-
tion per unit mass due to the heat flux, i.e.,

−D∗T δsH = αs(x)∂ζ (gs(x)δsH) =
k

ρT 2
(∂ζT )

2 ≥ 0

Then, the dynamics of a non-isentropic and non-reactive
compressible fluid can be formulated through the irre-
versible port-Hamiltonian formulation given in Proposi-
tion 1.

Proposition 1. Let H be the total energy defined in (23).
Using the skew-symmetric operators Jr, and Ji defined in
(25) and (32), respectively, the governing equations (22)
of a non-reactive compressible fluid can be formulated as
the following irreversible port-Hamiltonian system[

∂tx
∂ts

]
=

[
P1∂ζ L(x) +Dτ

−L>(x)−D∗τ DT −D∗T

]
︸ ︷︷ ︸

Jiphs

[
δxH
δsH

]
(33)

with boundary inputs and outputs given by

u(t) =



(
1

2
ρv2 + ρh + τ

)
(b)

−fs(b)(
1

2
ρv2 + ρh + τ

)
(a)

−fs(a)

 ,y(t) =

−v(b)
T (b)
v(a)
−T (a)

 (34)

where x = [ρ v]>, and fs = q/T is the entropy flux. This
IPHS formulation allows to represent both the first and
second principles of Thermodynamics, the conservation of
energy

Ḣ = u>y (35)

(36)

and the irreversible entropy creation

Ṡ =

∫ b

a

σsdζ − (sρv + fs) |ba ≥ usys (37)

where σs = µ
T (∂ζv)

2
+ κ

T 2 (∂ζT )
2 ≥ 0 and usys =

− (sρv + fs) |ba.

Proof. Using (25) and (32) the PDE (33) is obtained.

On the other hand, the energy balance is given by Ḣ =
b∫
a

(
δxH>∂tx + δsH>∂ts

)
dζ. Then, using (33) the energy

balance can be expressed as:

Ḣ =

∫ b

a

[δxH]
>
P1∂ζδxHdζ

+

∫ b

a

[δxH]
>

[α(x)L(s)δsH+DτδsH] dζ

+

∫ b

a

δsH
(
−α(x)L>(s)δxH−D∗τδxH

)
dζ

+

∫ b

a

δsH (DT δsH−D∗T δsH) dζ

=

∫ b

a

[δxH]
>
P1∂ζδxHdζ

+ 〈δxH,DτδsH〉H1
− 〈δsH,D∗τδxH〉H0

+ 〈δsH,DT δsH〉H0
− 〈δsH,D∗T δsH〉H0



From (26), and considering that [δxH]
>
P1∂ζδxH =

−δρH∂ζδvH− δvH∂ζH = −∂ζ (δρHδvH) we obtain

Ḣ =− (δρHδvH)|ba + [α(x)δxH]
>
G1R1(x)δsH

∣∣∣b
a

+ (α(x)δsH) r1(x)δsH|ba

=− (δρHδvH)|ba −
δvH
ρ
τ

∣∣∣∣b
a

− δsH
ρ

fs

∣∣∣∣b
a

Regrouping terms we obtain

Ḣ =−
(
δvH
ρ

(ρδρH+ τ)

)∣∣∣∣b
a

− δsH
ρ

fs

∣∣∣∣b
a

=−
(
v

(
1

2
ρv2 + ρh + τ

))∣∣∣∣b
a

− (T fs)|ba

and defining the boundary inputs and outputs as shown
in (34), the relationship (35) is obtained.

Regarding the entropy balance, notice that

S =

∫ b

a

ρsdζ, δxS =

[
s
0

]
and δsS = ρ (38)

Then, the entropy rate of change is given by:

Ṡ =

∫ b

a

[δxS]
>
∂txdζ +

∫ b

a

[δsS]
>
∂tsdζ

=

∫ b

a

[δxS]
>
P1∂ζδxHdζ

+

∫ b

a

[δxS]
>

[α(x)L(s)δsH+DτδsH] dζ

−
∫ b

a

δsH [α(x)L(s)δxH+D∗τδxH] dζ

+

∫ b

a

δsH (DT δsH−D∗T δsH) dζ

Considering that [δxS]
>

[L(x)δsH+DτδsH] = 0 and

[δxS]
>
P1∂ζδxH = −s∂ζδvH, we have that

Ṡ =−
∫ b

a

(s∂ζδvH+ δvH∂ζs + ∂ζfs) dζ

+

∫ b

a

(
µ

T

(
∂ζ
δvH
ρ

)2

+
κ

T 2

(
∂ζ
δsH
ρ

)2
)
dζ

=

∫ b

a

σsdζ −
∫ b

a

∂ζ (sδvH+ fs) dζ

=

∫ b

a

σsdζ − (sρv + fs) |ba

where σs = µ
T (∂ζv)

2
+ κ

T 2 (∂ζT )
2 ≥ 0. �

Note that the irreversible port-Hamiltonian formulation of
compressible Newtonian fluids described in Proposition 1
is conservative, i.e., if the system is isolated, with boundary
conditions (B.C.) equal to 0, the energy stored by the fluid

is constant in time, Ḣ = 0. Similarly, with B.C.=0 the
entropy balance (37) is reduced to the inequality Ṡ ≥ 0,
i.e., system (33) provides an appropriated description of
the first and second laws of Thermodynamics.

On the other hand, operator Jiphs in (33) is skew-
symmetric. However, scalar functions α1(x) and αs(x)

depend explicitly of the entropy effort δsH = ρT , as shown
in (30) and (31). This implies that Jiphs does not satisfy
the identity of Jacobi and, as a consequence, a Dirac
structure is not generated.

5. CONCLUSION

In this paper an irreversible port-Hamiltonian formula-
tion of compressible Newtonian fluids has been proposed.
The thermodynamic driving forces associated with the
entropy production due to viscous friction and heat flux
are described through locally defined pseudo-brackets. The
model obtained is conservative with a non-decreasing en-
tropy under boundary conditions equal to 0, satisfying the
fist and second laws of Thermodynamics. As future work
we shall first consider the irreversible port-Hamiltonian
formulation of reactive processes and systems defined on
n-dimensional domains. We will then generalize the control
by interconnection method to the control of irreversible
thermodynamic processes using IPHS formulations.
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