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Abstract— In this paper we consider the stabilization problem
of a clamped beam with torque and force actuation on a mass in
the other side of the beam. We show how to derive the model
starting from the Principle of Least Action and we rewrite
it as the interconnection between a 1 dimensional distributed
parameter port-Hamiltonian system and a finite dimensional
port-Hamiltonian system. Therefore, we propose a control law
that allow to exponentially stabilise the origin of the closed-
loop system. In this preliminary paper we only sketch the
theoretical proofs, but we give the procedure to compute the
exponential bound of the system’s state. Finally, we provide
some numerical simulations testing the closed-loop behaviour
with different choices of the control parameters.

I. INTRODUCTION

Systems modelled by a mixed set of Partial Differential
Equations (PDE) and Ordinary Differential Equations (ODE)
have a wide range of applications, ranging from spatial
manipulators [1] to micro-grippers [2]. This is because
distributed parameters systems modelled by a set of PDE
are frequently controlled by actuators that have lumped
dynamics, which are modelled by a set of ODE. This model
structure can for example be encountered in flexible robots
[3] as well as in electrical power systems [4].

In this paper, we analyse the stabilisation problem of
a clamped flexible beam with actuation on a tip mass
connected at the free side using a 1 dimensional (1-D) mixed
PDE-ODE (m-PDE-ODE) model. This control problem has
already been investigated in several research works. To cite
some, in [5] this system has been studied for the force control
in contact problem, and in [6] for the stabilisation of wind
turbine towers with the use of disturbance observer. Further,
in [7] the authors studied the problem with a nonlinear
boundary controller, concluding about asymptotic stability of
the closed-loop system. The exponential stabilisation of this
type of system, modelled by the Euler-Bernoulli equations,
has been obtained in [8] thanks to a strong dissipation term
in the boundary. From a physical point of view, the strong
dissipation feedback consists on the time derivative of the
strain measured at the controlled side of the beam. It has
been shown in [9], that a Timoshenko beam with a tip load
controlled with translational and angular velocity feedback is
exponentially stable in closed-loop for a time large enough.
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To study this control problem we make use of the port-
Hamiltonian (pH) operator framework. The pH framework
is dedicated to the modelling, analysis and control design
of multi-physical dynamical systems [10]. In the last two
decades, the pH system theory has been extended from
lumped parameter (ODE dynamical equations) systems to
distributed parameter (PDE dynamical equations) systems,
starting with the theory developed in [11]. Between the
different distributed pH formulations, we decided to use the
functional analytic pH approach that has its roots in the
seminal work [12] and that has been extended in the PhD
thesis [13], [14] and in the monograph [15].

In this paper, we propose a control law making use of
the strong dissipation feedback, that allows obtaining the
exponential stability of the closed-loop system. For proving
exponential stability, we use Lyapunov arguments similar to
the one used in [16]. Moreover, we explicitly compute the
coefficients of the exponential bounds such that to facilitate
the evaluation of the performances. Finally, with the help of
numerical simulations, we show that the chosen Lyapunov
function is conservative, in the sense that the parameters
chosen to obtain a faster exponential bound also allow to
obtain a faster decrease of the system’s state norm.

II. MODELLING

We consider a clamped flexible beam controlled at a load
connected at the free side, as depicted in Fig. 1. We denote
by ml the mass and with Il the moment of inertia of the load.
The term ξ ∈ [0,L] represents the beam’s spatial coordinate.
w(ξ , t) and φ(ξ , t) represent the deflection and the rotation
of a beam’s cross section at a point ξ and time t. The
beam’s mass density ρ(ξ ), the inertia mass density Iρ(ξ ), the
Young’s modulus E(ξ ), the inertia density I(ξ ) and the Shear
modulus G(ξ ) describe the space dependent characteristic
parameters of the Timoshenko beam. The kinetic energy Ek
and potential energy Ep of the system, using the Timoshenko

ml , Il

w(ξ , t)

φ(ξ , t)

Fig. 1. Clamped flexible beam with a tip load.
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where K(ξ ) = kG(ξ )A(ξ ), k is a positive parameter depend-
ing on the beam’s shape and A(ξ ) is the cross sectional
area. In the remainder of the paper we shall not explicit
the time and space dependency of the variables, unless it is
not clear from the context. Considering the work of non-
conservative forces as only composed by the external inputs
δWnc = τδφ(L, t) + f δw(L, t) and using the Principle of
Least Action, it is possible to derive following dynamic
equations
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with the additional clamping boundary conditions

w(0, t) = 0 φ(0, t) = 0. (3)

According to [17], we define the infinite dimensional energy
variables

pt = ρ
∂w
∂ t pr = Iρ

∂φ

∂ t (ξ , t)
εt =

∂w
∂ξ
−φ εr =

∂φ

∂ξ

(4)

such to rewrite the PDE in (2) as a 1-D pH system

ż = P1
∂

∂ξ
(H z)+P0(H z) = J z (5)

where z = [pt pr εt εr]
T ∈ Z = L2([0,L],R4) and matrices

defined as

P1 =

[0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
P0 =

[0 0 0 0
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0 −1 0 0
0 0 0 0

]
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.
(6)

We equip the state space Z with the weighted inner-product
〈z1,z2〉Z = 〈z1,H z2〉L2 . Therefore, the energy related to the
distributed parameter part of the system can be written as
H = 1

2 ||z||
2
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Next, we define the boundary operators of the 1-D pH system
as a selection of the previously defined boundary flow and

effort
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The inputs uz,1 and uz,2 represent the beam’s boundary
velocities at the ξ = 0 and ξ = L side, respectively. The
outputs yz,1 and yz,2 describe the restoring force and torque
at the ξ = 0 and ξ = L side of the beam, respectively, and
are power conjugated1 to uz,1 and uz,2. According to the
boundary clamping conditions (3) and the system’s variable
definition (4), we directly obtain that uz,2 = 0. We merge
the boundary operators (8) to define the complete input and
output operators
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Since the matrix WB has full rank, equation (5) together
with boundary conditions (10) defines a boundary control
system (see [15] page 148). Furthermore, it is possible to
prove that the time derivative along trajectories of the defined
distributed parameter energy equals

Ḣ = uT
z yz = uT

z,1yz,1, (11)

where to compute the time derivative we rely on the Dini
derivative concept (see Definition A.5.43 in [18]) and its
calculation method (see Lemma 11.2.5 in [18]). In the
following lemma we show that we have control on enough
inputs of the infinite dimensional system. In the remainder
of the paper we will see that this will be a key property to
show the exponential stability of the closed-loop system.

Lemma 2.1: The input/output of system (5) are selected
such that

||H z(L, t)||2 = ||uz,1(t)||2 + ||yz,1(t)||2. (12)
Proof: We compute
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1
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2

= ||uz,1(t)||2 + ||yz,1(t)||2
(13)

that indeed prove the statement.

1A vector u ∈ Rn is power conjugated to a vector y ∈ Rn if the scalar
product 〈u,y〉Rn defines a power.



The energy variables related to the finite dimensional
part of the system are defined as p1 = mlẇ(L, t) and p2 =

Il φ̇(L, t), while up = [−EI ∂φ(L)
∂ξ
−K

(
∂w
∂ z (L)−φ(L)

)
]T de-

picts the restoring forces of the infinite dimensional system.
Therefore we define the pH finite dimensional system as{

ṗ = up +u
yp = M−1 p

(14)

where p = [p1 p2]
T , M = diag([ml Il ]) is the mass matrix,

yp represent the vector composed by the linear and angular
velocity at the ξ = L side of the beam and u = [τ f ]T is
the input vector. The infinite dimensional system is power
preserving interconnected with the finite dimensional system
through the relations

uz,1 = yp up =−yz,1 (15)

that follows from the finite and infinite energy variables
definitions.

III. CONTROL DESIGN AND EXPONENTIAL
STABILITY

The control objective consists on exponentially stabilise
the origin of the system obtained by the interconnection of
(5) and (14). To do so, we propose the following control law

u =−RcM−1(p+KpC1z)−Kp
d
dt
(C1z) (16)

where Rc = diag([r1 r2]) and Kp = diag([kp,1 kp,2]). The first
term of the control law (16) is composed by the sum of a
classical dissipation feedback and a restoring forces feed-
back, while the second term is known as strong dissipation
feedback. Both the restoring force feedback and the strong
dissipation feedback can be computed starting from strain
measurements [19]. We substitute the control law (16), and
the output operator yz,1 = C1z in the first equation of (14) to
obtain

ṗ =−C1z−RcM−1(p+KpC1z)−Kp
d
dt
(C1z) (17)

that defining the new variable η = p + KpC1z, can be
rewritten as

η̇ =−C1z−RcM−1
η . (18)

Defining the extended state as x =

[
z
η

]
∈ X =

L2([0,L],R4 ×R2, we can define the closed-loop operator
equation

ẋ = Ax =
[

J 0
−C1z −RcM−1

]
x (19)

with domain

D(A) = {x ∈ X | (H z) ∈ H1([0,L],R4),B2z = 0,
B1z = M−1(η−KpC1z)}. (20)

The closed-loop system in the new states is made by the
power preserving interconnection between a infinite dimen-
sional pH system with a finite dimensional pH system.

Since the change of variables is bounded and invertible,
the equilibrium exponential stability of the system in the new

coordinates (19) is equivalent to the equilibrium exponential
stability of the system in the old coordinates. Moreover, the
zero equilibrium in the new variables, correspond to the zero
equilibrium in the old variables. In fact,

peq = ηeq−KpC1zeq (21)

and if ηeq = 0 and zeq = 0 we obtain peq = 0. Therefore,
the exponential stability of the origin in the new coordinates
implies the exponential stability of the origin in the original
coordinates. Using similar arguments as in Theorem 5.8 of
[13], it is possible to prove the following lemma.

Lemma 3.1: The closed-loop operator A with domain (20)
generates a C0-semigroup of contractions in X . Moreover, A
has compact resolvent.
Because of the previous lemma, the operator equation (19)
has an unique solution that depends continuously on the
initial conditions (see the C0-semigroup Definition 5.1.2 in
[15]).

In the remainder of this section we show the exponential
stability of the origin of the closed-loop system (19). The
proofs procedure is entirely based on the work [16]. There-
fore, we skip all the proof details and we focus on the com-
putation procedure of the exponential bound parameters for
our system. To show the exponential stability, two technical
lemmas giving two different estimates are needed.

Lemma 3.2: Let x(ξ , t) be a solution generated by the
operator A with domain (20), then there exists a constant
α > 0 such that the state trajectories satisfy

α
(
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)
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+(M−1η)T Rp(M−1η)
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Proof: Use Lemma 2.1, the domain definition (20) and
the norm’s definition of the space X to write

||H z(L, t)||2 + ||η ||2 ≤ ||uz,1||2 + ||yz,1||2 + ||η ||2
= ||M−1(η−Kpyz,1)||2

+yT
z,1yz,1 +ηT M−1η .

(23)

Then, after some computations it is possible to find
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z,1Kp(2KpM−1 +K−1

p M)M−1yz,1

+(M−1η)T RpR−1
p (2I +M)(M−1η)

(24)
that defining γ1 and γ2 as the biggest eigenvalues of
2KpM−1 +K−1

p M and R−1
p (2I +M), respectively, we obtain

||H z(L, t)||2 + ||η ||2 ≤ γ1yT
z,1KpM−1yz,1

+γ2(M−1η)T Rp(M−1η).
(25)

Finally, defining α = 1/(max(γ1,γ2)) we obtain the inequal-
ity (22).

We give the second estimate in the following lemma.
Lemma 3.3: Let x(ξ , t) be a solution generated by the

operator A with domain (20), then the function

E(t) =
1
2

∫ L

0
z(ξ , t)T H z(ξ , t)dξ +η

T M−1
η (26)

is a Lyapunov function and satisfies for t large enough

c(t)E(x(t))≤
∫ t

0
||H z(L,τ)||2dτ +

∫ t

0
||η(τ)||2dτ (27)



where c(t) is a positive function such that c(t)→∞ for t→∞.
Proof: It is firstly necessary to remark that

Ė = 〈x,Ax〉X
= −yT

z,1KpM−1yz,1− (M−1η)T Rp(M−1η)≤ 0 (28)

that proves that E is a Lypaunov functional. It has been
proven (see the Lemma 9.1.2 proof in [15]) that for a 1-D
pH system and γ,κ > 0 and t > 2γL, the following inequality
holds

F(L)≥ F(ξ )e−κL f or ξ ∈ [0,L], (29)

where,

F(ξ ) =
∫

τ−γ(L−ξ )

γ(L−ξ )
z(ξ , t)T H z(ξ , t)dt. (30)

Using the inequality (29) together with the fact that E is a
Lyapunov function, in a very similar way as did in the proof
of Lemma 4.1 in [16], it is possible to prove that

2(t−2γL)E(x(t))≤ β

(∫ t

0
||H z(0,τ)||2dτ

+
∫ t

0
||η(τ)||2dτ

) (31)

where β = max{m−1LeκL,1} and m = min( 1
ρ
, 1

Iρ
,K,EI).

Therefore, we can conclude the prove defining c(t)= 2(t−2γL)
β

in the last inequality.
Remark 1: According to proof of Lemma 9.1.2 in [15], γ

should be large enough to render P−1
1 +γH and−P−1

1 +γH
positive definite, while κ must be such that

H (ξ )PT
0 P−1

1 +P−1
1 P0H (ξ )+

dH

dξ
(ξ )≤ κH (ξ ). (32)

Using the matrices definition (6), the two parameters should
be selected such that

γ ≥ max
ξ∈[0,L]

(√
ρ

K ,

√
Iρ
EI

)
κ ≥ max

ξ∈[0,L]

(√
K
EI ,
√

ρ

Iρ

)
.

(33)

Now, we are in position to state the theorem on exponential
stability of the origin of the closed-loop operator.

Theorem 3.4: The origin of the closed-loop system (19)-
(20) is exponentially stable for t large enough.

Proof: We use equations (28) to obtain

Ė(x) =−yT
z,1KpM−1yz,1− (M−1

η)T R(M−1
η) (34)

and then Lemma 3.2 to write

Ė(x)≤−α
(
||H z(0, t)||2 + ||η ||2

)
. (35)

Integrating in time between 0 and t both sides of the above
equation and using Lemma (3.3), we obtain

E(x(t))−E(x(0))≤ −α

(∫ t

0
||H z(0,τ)||2dτ

+
∫ t

0
||η(τ)||dτ

)
≤ −αc(t)E(x(t))

(36)

which implies,

E(x(t))≤ 1
1+αc(t)

E(x(0)). (37)

Let T (t) the C0-semigroup generated by the operator A. The
former inequality implies

||T (t)||2 ≤ 1
1+αc(t)

. (38)

Since c(t) is a positive function such that c(t) → ∞ for
t → ∞, there exists a t∗ > 0 such that ||T (t)|| < 1 for all
t > t∗. Consequently w0 = inft>0

( 1
t log ||T (t)||

)
< 0 and by

Theorem 5.1.5 of [15] we can conclude that there exist
constants Mw > 0 and w < 0 such that ||T (t)|| ≤Mwewt .

Remark 2: In the following we compute the control law
parameters Kp and Rp such to obtain the faster decrease of
the exponential bound found in Theorem 3.4. Let T (t) be
the C0-semigroup generated by the closed-loop operator A
in (19), we recall that the exponential parameter w0 such
that ||T (t)|| ≤Mwewt is defined as

w0 = inf
t>0

(
1
t

log ||T (t)||
)
, (39)

from which we understand that to obtain a small value of
w0, ||T (t)|| should be as small as possible. From inequality
(38), we know that the bound of the C0-semigroup norm
||T (t)|| decreases when the α parameter increases. Since the
function c(t) does not depend on the control parameters, Kp
and Rp should be chosen such to render α as big as possible.
From Lemma 3.2 we know that α = 1/(max(γ1,γ2)) and γ1
and γ2 are the biggest eigenvalues of 2KpM−1 +K−1

p M and
R−1

p (2I +M), respectively. Since Kp,M,Rp are all diagonal
matrices, after some computations it is possible to obtain that
the bigger value of α is reached when

kp,i =
mi√

2
, ri ≥

2+mi

2
√

2
, i = {1,2}. (40)

IV. NUMERICAL SIMULATIONS

To perform numerical simulations we derive a finite ele-
ment approximation of the infinite dimensional pH system.
In particular we use the mixed finite-element discretization
procedure that has been presented in [20], approximating the
infinite dimensional system with 50 discretizing elements.
Simulations are made in the Matlab R© environment using
the “ode23tb” time integration algorithm. The considered
physical parameters of the clamped Timoshenko beam with
tip mass are listed in Table I.

According to Remark 1 and the system’s parameters,
we can compute that γ ≥ 0.3192 and κ ≥ 1 and therefore
β = 2.7183. We perform different numerical simulations to
highlight the system’s behaviour with the choice of different
control parameters. The choices are as following:

1) Kp and Rp are selected according to Remark 2. There-
fore, kp,1 = kp,2 =

√
2/2 and r1 = r2 = 1.5.

2) Kp is selected with bigger values with respect to the
ones computed accordingly to Remark 2. Rp selected



TABLE I
SIMULATION PARAMETERS; PD CONTROLLER EXAMPLE

Name Variable Value
Beam’s Length L 1 m
Mass density ρ 1 kg/m3

Inertia density Iρ 1 kg/m
Shear parameter K 10 N/m2

Young’s modulus E 10 N/m2

Cross section inertia I 1 1/m
Tip load’s mass Il 1 kg ·m2

Tip load’s inertia Il 1 kg ·m2
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Exponential bound

kp,i = 1.5 ri = 1.5
kp,i =

√
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Fig. 2. Detail for t ∈ [0,1] of the state’s norm evolution along time with
exponential bound.

to obtain the biggest value for α:

ri ≥
2+mi

2 kp,i
mi

+ mi
kp,i

i = {1,2}. (41)

Therefore we select kp,1 = kp,2 = 1.5 and r1 = r2 = 1.5.
3) Kp is selected with smaller values with respect to

the ones computed accordingly to Remark 2 and Rp
selected as in (41). Therefore, kp,1 = kp,2 = 0.3 and
r1 = r2 = 1.5.

We select the initial conditions as εt(ξ ,0) = 0.5(1 −
cos( 2πξ

L )), εr(ξ ,0) = (1−cos( 2πξ

L )), pt(ξ ,0) = pr(ξ ,0) = 0
and p1 = p2 = 0. We compute the exponential bound w0
in (39) using a minimum search algorithm implemented in
Matlab R©. In Fig. 3 is shown the state’s norm ||x(ξ , t)|| evolu-
tion along time with the three different choice of controller
parameters. We can see that choosing the parameters in a
way that they minimize the exponential bound leads to a
controller that makes the state converge faster to the origin.

Theorem 3.4 states that the norm of the state ||x(t)||
can be bounded by an exponential only for t > 2γL. From
the contraction C0-semigroup generation of the closed-loop
operator we have that ||x(t)|| ≤ ||x(0)|| for all t ≥ 0. This
means that the state’s norm is bounded by its initial condition
||x(t)|| ≤ ||x(0)|| for t ∈ [0,2γL], and by an exponential
||x(t)|| ≤ ||x(0)||ewt for t > 2γL. In Fig. 2 we plot the expo-
nential bound detail for t ∈ [0,1] with parameters of point 1).
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Fig. 3. State’s norm evolution along time with exponential bound.
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Fig. 4. Beam’s deformation along time.

We can appreciate that especially for t close to zero, it would
be impossible to bound the state norm with an exponential.
A physical explanation is that, since we are performing
boundary control, we have to wait the propagation time along
the whole beam length to start dissipating all the vibrations
caused by the initial conditions.

In Fig. 4 is shown the beam deformation along time, where
we can appreciate that the overall state converge to the origin.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, an exponential stabilising control law has
been proposed for a clamped flexible beam with actuation on
a tip load connected at its free side. The control law contains
a term proportional to the time derivative of the restoring
forces of the flexible beam, known as strong dissipation
or strain rate feedback. This term allows to “artificially”
add dissipation on the boundary of the PDE modelling the
flexible beam, allowing to obtain the exponential stability



of the closed-loop system. Moreover, the parameters of the
exponential bound of the state norm are explicitly given. The
control parameters are computed such to obtain the faster
possible exponential decrease, according to the founded
parameters. Finally, numerical simulations are shown to
demonstrate that the choice of parameters having a faster
exponential bound allows to obtain a faster convergence of
the state to the origin. The future work will focus on the
generalisation on a general class of system of the proposed
control law.
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