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Abstract7

This paper presents the degradation prognosis of Proton Exchange Mem-8

brane Fuel Cell (PEMFC) operated under several conditions based on the9

combination of two types of data: data from postal fuel cell hybrid elec-10

tric vehicles equipped with PEMFC and carrying out their postal delivery11

missions and PEMFC degradation data from laboratory. The prognosis is12

based on wavelet analysis and Nonlinear Autoregressive Exogenous Neural13

Network (NARX). The influences of historical state, operating conditions14

(load current, relative humidity, temperature, and hydrogen pressure), global15

degradation trend, and recovery phenomena on the degradation prognosis16

of PEMFC are considered. Firstly, the raw voltage degraded waveform of17

PEMFC is decomposed into multiple sub-waveforms by the wavelet analysis.18

Then, the degradation prognosis of each sub-waveform is made by NARX.19

Finally, the overall degradation prognosis of PEMFC is gotten by combing20

the degradation prognosis of each sub-waveform. Experimental results have21

shown that the novel prognosis method which exploits the two types of data22

results in a reliable model that covers PEMFC degradation over a wide range23

of operating conditions. The proposed prognosis method not only can make24

an accurate degradation prognosis of PEMFC with less learning data but25

also can use directly the raw experimental data with large fluctuation.26
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1. Introduction30

With environmental protection and increasing energy demand, sustain-31

able green energy is regarded as the main direction of future energy devel-32

opment [1]. The fuel cell directly converts the chemical energy of the fuel33

into electricity without being restricted by the Carnot cycle [2]. The fuel cell34

has the advantages of high specific energy, high energy conversion efficiency,35

no pollution, low noise, many types of fuel, etc [3]. The fuel cell is widely36

used in cogeneration, power plants, fuel cell electric vehicles, portable power37

systems, distributed generation, and other fields [4]. Due to the fact that38

its distinguishing features include low operating temperature, lower pressure39

ranges, small size, and no chemical hazards to the human body, Proton Ex-40

change Membrane Fuel Cell (PEMFC) has received high attention from the41

government, industry, and academia [5]. Currently, PEMFC is regarded as42

the most likely candidate for transportation and other mobile applications [6].43

PEMFC can avoid some battery problems, such as the use of pollutant mate-44

rials and long charging time [7]. However, durability and cost seriously affect45

the large-scale commercial application of PEMFC [8]. The degradation of46

carbon support and Platinum (Pt) nanoparticles will cause the reduction in47

the performance of PEMFC [9]. The maximum service life of PEMFC un-48

der transportation conditions is around 3000 h, while the expected life of49

PEMFC is at least 5000 h for commercial transportation applications [10].50

Prognostics and health management can predict the degradation of PEMFC51

and provide an appropriate maintenance plan to reduce the cost and improve52

the durability of PEMFC [11]. Therefore, the degradation prognosis is very53

important for the operation and maintenance of PEMFC [12].54

The degradation of PEMFC is caused by the degradation of its main com-55

ponents [13]. The main components of PEMFC are bipolar plates, Gas Dif-56

fusion Layers (GDL), electrodes, catalysts, and proton exchange membranes.57

In the long-term operation of PEMFC, these components will experience dif-58

ferent degradations [14]. The bipolar plates undergo corrosion, fractures,59

and deformation. The GDL undergoes structural changes, porosity loss, and60

hydrophobicity loss. The electrodes and catalysts undergo Pt dissolution,61

Pt agglomeration, Pt oxidation, and carbon corrosion. The proton exchange62

membranes undergo decomposition, creep, fatigue, and hot-dot. The degra-63

dation of PEMFC usually causes the output voltage to drop, the output64

power to decrease, the internal resistance to increase, etc [15]. Therefore, the65

output voltage, output power, and internal resistance are often selected to66
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represent the degradation state of PEMFC [16]. In this paper, the output67

voltage is selected as a degradation indicator of PEMFC because it has been68

measured to monitor the PEMFC performance.69

The prognosis methods of PEMFC are usually divided into 3 categories:70

model-driven methods, data-driven methods, and hybrid methods [17]. The71

model-driven methods make the degradation prognosis of PEMFC based on72

the empirical or semi-empirical degradation model of PEMFC [18]. The73

degradation trends are simulated through the empirical or semi-empirical74

degradation model of PEMFC. Three empirical degradation models com-75

bined with particle filter are proposed to forecast the degradation and Re-76

maining Useful Life (RUL) of PEMFC [19]. The semi-empirical degradation77

model combined with the extended Kalman filter is presented to make the78

degradation prognosis of PEMFC [20]. The Gaussian degradation model79

combined with an unscented particle filter is developed to make the state of80

health estimation and RUL prognosis for PEMFC [21].81

The PEMFC is a complex, multivariable, and strongly coupled dynamic82

nonlinear system. The degradation of PEMFC involves the multi-scale (nanome-83

ter scale, cell scale, and system scale) and multi-material (carbon fibers,84

metal, Pt, and Nafion membrane). It is difficult to build the accurate math-85

ematical degradation model of PEMFC because its degradation mechanism86

is not fully known [22].87

The data-driven methods make the degradation prognosis of PEMFC by88

learning the degradation trend from recorded aging data based on artificial89

neural network and fuzzy system [23]. The echo state network is proposed90

to estimate the performance degradation and RUL for PEMFC [24]. The91

long short-term memory recurrent neural network is applied to predict the92

degradation and remaining life of PEMFC [25]. The self-adaptive relevance93

vector machine method is developed to predict the performance degrada-94

tion of PEMFC [26]. The adaptive neuro-fuzzy inference system method is95

proposed to forecast degradation in PEMFC [27].96

The hybrid methods integrate the advantages of model-driven methods97

and data-driven methods to make the degradation prognosis of PEMFC [28].98

The hybrid method based on three empirical degradation models and the99

least square support vector machine method is presented to make the degra-100

dation and RUL prognosis for PEMFC [29]. The autoregressive and moving101

average model integrated the time delay neural network is developed to pre-102

dict the performance degradation of PEMFC [30]. A semi-empirical degrada-103

tion model integrated the automatic machine learning algorithm is proposed104
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to estimate the degradation trend and forecast the RUL for PEMFC [31].105

Compared with model-driven methods and data-driven methods, the hybrid106

methods require the most computation.107

The degradation prognosis of PEMFC in most literature studies consider108

the influence of the historical state, and rarely consider the impact of operat-109

ing conditions on degradation prognosis. However, the operating conditions110

have a great influence on the performance of PEMFC [32]. Water flooding111

in the bipolar plates and membrane electrode assembly can cause gas starva-112

tion and may accelerate the corrosion of bipolar plates, electrodes, catalysts,113

GDL, and membrane [33]. Dehydration of membrane causes high membrane114

resistance, tearing, and cracking [34]. When gas starvation occurs at the115

cathode, it will cause the coalescence of the catalyst [35]. When gas starva-116

tion occurs at the anode, it will cause carbon support corrosion [35]. Gas117

starvation may cause the change of electrode thickness, uneven current and118

voltage distribution, porous structure collapse, and reverse polarity [36]. The119

temperature has a certain effect on water saturation pressure and membrane120

hydration [37]. The temperature will affect the water distribution, gas dis-121

tribution, and chemical reactions, which cause hot spots in the membrane122

and accelerate the decay of the catalyst [38]. Frequently changing load brings123

the challenges for water management, thermal management, and gas manage-124

ment, which may cause gas starvation, water flooding, dehydration, hot spot,125

etc [39]. The start-stop process causes the increase of resistance, high-load126

operating conditions may accelerate the dissolution of Pt, and rated operat-127

ing condition leads to a decrease in the electrochemically active area [40]. The128

historical state and operating conditions including the load current, relative129

humidity, temperature, and hydrogen pressure are considered by Nonlinear130

Autoregressive Exogenous Neural Network (NARX) in this paper. NARX131

is a recurrent dynamic neural network, which has good dynamic character-132

istics and anti-interference ability in the nonlinear problems of time series133

prediction.134

The degradation of PEMFC includes global degradation trend (irreversible135

degradation phenomena) and recovery phenomena [41]. The global degra-136

dation trend refers to the irreversible loss of PEMFC performance as the137

PEMFC runs for a long time [42]. The global degradation trend is caused by138

the degradation of bipolar plates, electrodes, catalysts, gas diffusion layers,139

and membranes. Recovery phenomena refer to a certain degree recovery per-140

formance of PEMFC, when the PEMFC undergoes stop/start, characteristic141

test, or large changes in operating conditions [43]. For example, when the142
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gas supply is sufficient, the PEMFC performance recovers after gas starva-143

tion is improved [44]. Recovery phenomena are the transient process during144

the degradation of PEMFC. Most of the previous prognosis methods only fo-145

cused on the global degradation trend, while both global degradation trend146

and recovery phenomena are considered by wavelet analysis in this paper.147

Wavelet analysis is an effective time-frequency analysis method. It has148

the ability to characterize signal local information in time-frequency domain,149

and is widely used in image compression, signal processing, and information150

extraction.151

The existing prognosis methods rarely use directly raw experimental data152

to predict the degradation of PEMFC. Because the raw experimental data153

of PEMFC includes complex fluctuations and recovery phenomena. The raw154

experimental data of PEMFC in different applications is directly used to155

predict the degradation in this paper.156

Considering the historical state, operating conditions, and different degra-157

dation phenomena, this paper presents the degradation prognosis method158

based on wavelet analysis and NARX for PEMFC operated under different159

applications. The main contributions are summarized as follows:160

1. The proposed prognosis method makes degradation prediction of PEMFC161

based on the raw experimental data.162

2. The NARX, which considers the historical state and exogenous inputs163

(load current, relative humidity, temperature, and hydrogen pressure), is164

applied to the degradation prognosis of PEMFC operated under different165

applications.166

3. The global degradation trend and recovery phenomena of PEMFC are167

analyzed by wavelet analysis, which can effectively improve the accuracy168

of the degradation prognosis of PEMFC.169

4. Experimental results show that this presented method is robust and can be170

applied to the degradation prognosis of PEMFC in different applications.171

In Section 2, the durability tests of PEMFC operated under different172

applications are presented. Section 3 proposes the degradation prognosis of173

PEMFC based on NARX and W-NARX. Section 4 presents the validation174

of the method on the basis of experimental results. Moreover, these results175

are compared with NARX and different learning data. Section 5 provides176

Conclusions.177
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2. Durability tests of PEMFC operated under different applica-178

tions179

2.1. Durability test of PEMFC in FCHEV operated under real conditions180

The durability test of PEMFC is made in Fuel Cell Hybrid Electric Vehicle181

(FCHEV) operated under real conditions. The MOBYPOST project has de-182

veloped ten FCHEVs (Fig. 1) to complete commercial mail delivery tasks on183

the real road [45]. PEMFC and lithium batteries provide power for FCHEV.184

Integrating lithium batteries into FCHEV can prevent PEMFC from fre-185

quently starting and shutting down, which reduces the PEMFC degradation186

and increases its lifetime [46]. The main parameter of PEMFC in FCHEV187

operated under real conditions is shown in Table 1. In order to control and188

monitor the PEMFC in FCHEV, the operating conditions including load cur-189

rent, voltage, relative humidity, temperature, hydrogen pressure, and state of190

charge of the hydrogen tank and battery are measured by FCHEV electronic191

control unit every second. PEMFC adopts the open cathode type with nat-192

ural humidification. In order to avoid flooding, regular purge is conducted193

in the hydrogen circuit. The stop/start of PEMFC that greatly changes the194

distribution of water, gas, and heat in the PEMFC stack causes the recovery195

phenomena.196

Figure 1: MOBYPOST fuel cell hybrid electric vehicle

2.2. Durability test of PEMFC operated under quasi-dynamic load current197

The durability test of PEMFC operated under a quasi-dynamic load cur-198

rent is made on the power test platform of FCLAB, as shown in Fig. 2. The199
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Table 1: The operating conditions of PEMFC in FCHEV operated under real conditions

Parameter Value
PEMFC weight 2.7 kg
Number of cells 40

Active area 100 cm2

PEMFC maximum power 1 kW
PEMFC rated current 34 A
PEMFC rated voltage 31 V

Relative humidity 35%-78%
Temperature 50 ◦C

Hydrogen pressure 0.6 bar

quasi-dynamic load current is a constant current of 70 A plus a ripple current200

of 7 A. The main parameter of PEMFC operated under the quasi-dynamic201

load current is shown in Table 2, more detailed descriptions of the PEMFC202

can be found in [47]. In order to control and monitor the PEMFC per-203

formance, operating conditions including load current, single cell and stack204

voltage, relative humidity, temperature, gas flow, air pressure, and hydro-205

gen pressure are measured every half minute. In order to characterize the206

health status of the PEMFC, the Electrochemical Impedance Spectroscopy207

(EIS) and polarization curve tests are made approximately weekly (0 h, 35208

h, 182 h, 343 h, and 515 h). The characteristic test that greatly changes the209

distribution of water, gas and heat in the PEMFC stack causes the recovery210

phenomena.211

2.3. Durability test of PEMFC operated under constant load current212

The durability test of PEMFC operated under constant load current is213

made on the test platform of FCLAB (Fig. 2). The constant load current is214

a constant current of 70A. The main parameter of PEMFC operated under215

constant load current is shown in Table 3. The operating conditions including216

load current, single cell and stack voltage, relative humidity, temperature, gas217

flow, air pressure, and hydrogen pressure are also measured every half minute.218

the EIS and polarization curve tests are also made approximately weekly (0219

h, 48 h, 185 h, 348 h, 515 h, 658 h, and 823 h). After each characteristic220

test, the recovery phenomena of PEMFC are found.221
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Figure 2: The durability test of PEMFC in power test platform of FCLAB

Table 2: The main parameter of PEMFC operated under the quasi-dynamic load current

Parameter Value
Number of cells 5

Membrane thickness 25 µm
GDL thickness 415 µm

Active area 100 cm2

PEMFC current 70 A with 7 A ripple
Relative humidity 52 %

Temperature 54 ◦C
Hydrogen pressure 1.3 bar
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Table 3: The main parameter of PEMFC operated under constant load current

Parameter Value
Number of cells 5

Membrane thickness 25 µm
GDL thickness 415 µm

Active area 100 cm2

PEMFC current 70 A
Relative humidity 50 %

Temperature 54 ◦C
Hydrogen pressure 1.3 bar

3. PEMFC prognosis method222

3.1. Prognosis of PEMFC based on NARX223

NARX combines the nonlinear mapping ability of the artificial neural224

network and the time series concept of the dynamic autoregressive model225

to solve the problem of time series prognosis [48]. NARX, which takes into226

account the historical state and exogenous input (operating conditions), is227

very suitable for the prognosis of PEMFC. The basic structure of NARX is228

shown in Figure 3.229

As shown in Fig. 3, the NARX consists of an input layer, a hidden layer,230

and an output layer. X represents operating conditions that include load231

current, relative humidity, temperature, and hydrogen pressure. Y represents232

the output voltage of the PEMFC. Y (t) is the historical state of PEMFC,233

Y (t+ 1) is the prognosis state. d is the maximum delay, w is the weight, b is234

the threshold. f1 and f2 are activation functions of hidden layer and output235

layer, respectively.236

The prognosis of PEMFC based on NARX is defined as the following237

equation.238

Y (t+ 1) = f [Y (t), · · · , Y (t− d+ 1), X(t), · · · , X(t− d+ 1)] (1)

The hidden layer output is obtained by equation 2.239
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Input layer Output layerHidden layer

Y(t) 1:d +W12

X(t) 1:d W11

b1

f1 +W2 f2 Y(t+1)

b2

Figure 3: Basic structure of nonlinear autoregressive exogenous neural network

hi = f1[
d∑
1

W11X(t) +
d∑
1

W12Y (t) + b1], i = 1, · · · , L (2)

where hi is the output of the i-th neuron in the hidden layer, and L is the240

number of neurons in the hidden layer.241

The output layer output is obtained by equation 3.242

oj = f2[
L∑
1

W2h(i) + b2], j = 1, · · · ,m (3)

where oj is the output of the j-th neuron in the output layer, and m is the243

number of neurons in the output layer.244

The biggest difference between the NARX and the general BP neural245

network is that state delay is added in the NARX. The historical state of246

PEMFC is considered by the state delay [49]. The parameters of weight and247

threshold for NARX are trained and adjusted in consideration of operating248

conditions and the historical state. Therefore, the NARX is considered to ap-249

ply in the prognosis of PEMFC that greatly affected by operating conditions250

and the historical state.251
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3.2. Prognosis of PEMFC based on NARX and wavelet analysis252

Wavelet analysis decomposes time series signals through muti-resolution253

analysis. The multi-resolution analysis is the theoretical basis for signal254

decomposition and reconstruction under wavelet basis [50]. For any mea-255

surement signal, the muti-resolution analysis can decompose it into detail256

part and low frequency part, and then further decompose the low frequency257

part, which can be repeated to any scale. The decomposition process can be258

expressed by equation 4.259

V = D1
⊕

A1 = D1
⊕

A2
⊕

A1 = · · · = D1
⊕

An
⊕
· · ·

⊕
A1 (4)

Based on the muti-resolution analysis theory, the Mallat algorithm of260

wavelet decomposition is proposed. The decomposition algorithm can be261

expressed as the following equation [50].262 
a0 = V
aj =

∑
k

h(t− 2k)aj−1

dj =
∑
k

g(t− 2k)aj−1

(5)

where the low frequency part/approximation part Aj = [a1, a2, · · · , aj] is263

called the j-th layer approximation coefficient, and the high frequency part/264

detail part Dj = [d1, d2, · · · , dj] is called the j-th layer detail coefficient. H =265

{hj}j∈Z and G = {gj}j∈Z are low-pass filter and high-pass filter respectively.266

The signal decomposition process is shown in Figure 4. A1, A2, and A3267

are low frequency part, and D1, D2, and D3 are high frequency part.268

The wavelet coefficients of each layer can be restored to the original se-269

quence length by single reconstruction [50]. The reconstruction algorithm of270

wavelet coefficients is expressed as follows:271

aj−1 =
∑
k

h(t− 2k)aj +
∑
k

g(t− 2k)dj (6)

Decompose the time series signal into multiple sub-waveforms, and then272

the prognosis of multiple sub-waveforms can greatly increase the accuracy of273

signal prediction. The raw voltage waveform of PEMFC is decomposed by274

wavelet analysis. The low frequency part reflects the overview of the volt-275

age degraded waveform (global degradation trend), and the high frequency276

part reflects the detail of the voltage degraded waveform (fluctuations and277
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D2
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D3
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Figure 4: The voltage signal decomposition process based on wavelet basis

recovery phenomena of PEMFC). The prognosis of PEMFC using NARX278

and wavelet analysis is presented in Fig. 5.279

Wavelet analysis for muti-

resolution decomposition

Prognosis of PEMFC 

Raw voltage data of PEMFC 

Prognosis by NARX

Approximated part An

Prognosis by NARX

Detail part D1Detail part Dn

Prognosis by NARX

Figure 5: The degradation prognosis of PEMFC based on NARX and wavelet analysis

As shown in Fig. 5, the wavelet analysis is firstly adopted to decompose280

the raw voltage degraded waveform of PEMFC into multiple sub-waveforms.281

Then, the prognosis of each sub-waveform is made separately by NARX.282

Finally, the prognosis of W-NARX is obtained by adding the prognosis of283

each sub-waveform.284
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4. Results and validation285

4.1. Setting of the prognosis method286

For NARX, the historical status, load current, relative humidity, tem-287

perature, and hydrogen pressure are selected as the input variables. The288

output voltage of PEMFC is selected as the output variable. The number of289

maximum delay is selected as 3. The number of neurons in the hidden layer290

of NARX is chosen as 10. The activation function in hidden layer is set to291

sigmoid, and the activation function in output layer is set to linear.292

For wavelet analysis, the wavelet function type and decomposition scale293

have a great influence on the prognosis of PEMFC. The order 6 Daubechies294

wavelet is selected as the wavelet function. The decomposition scale is deter-295

mined to ensure that the extracted voltage degradation signal is smooth [51].296

Considering the accuracy and calculation amount, the number of decompo-297

sition scale is selected as 3 for the prognosis of PEMFC in this paper.298

In order to evaluate the calculation complexity of different methods, the299

calculation time is adopted. The commercial computer with an i5-6300 Intel300

CPU (2.3 GHz clock and 12GB RAM) is used to execute proposed methods.301

In order to evaluate the accuracy of different methods, Absolute Error (AE),302

Relative Error (RE), and Mean Square Error (MSE) are used in this paper.303

Smaller values of AE, RE, and MSE means higher accuracy for the prognosis304

of PEMFC.305

4.2. The prognosis of PEMFC based on the W-NARX and different methods306

In order to analyze the impact of wavelet analysis on degradation prog-307

nosis, the prognosis of PEMFC in FCHEV operated under real conditions is308

made by W-NARX and NARX. 70% of datasets for PEMFC in FCHEV are309

applied to learn the degradation trend of PEMFC, and remained datasets310

are applied to verify the prognosis of PEMFC in FCHEV. The sub-waveform311

prognosis of PEMFC in FCHEV based on the W-NARX is shown in Fig.312

6. The comparison of the prognosis of PEMFC based on the W-NARX and313

NARX is shown in Fig. 7. The AE of the two methods is shown in Fig. 8.314

As shown in Fig. 6, the degradation trend of each wavelet can be accu-315

rately learned and forecasted by W-NARX for PEMFC in FCHEV. As shown316

in Fig. 7, the prognosis of PEMFC based on the W-NARX is better than317

that of NARX. It shows that W-NARX can accurately learn and forecast318

PEMFC fluctuations and recovery phenomena. As shown in Fig. 8, the AE319

of NARX is greater than the AE of W-NARX. The MSE of prognosis of320
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Figure 6: The sub-waveform prognosis of PEMFC in FCHEV under real conditions based
on W-NARX
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Figure 7: The degradation prognosis of PEMFC in FCHEV under real conditions based
on W-NARX and NARX
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Figure 8: The AE for degradation prognosis of PEMFC in FCHEV under real conditions
based on W-NARX and NARX

PEMFC based on the W-NARX is about 0.0059, and the MSE of prognosis321

of PEMFC based on the NARX is about 0.0923. The mean RE of prognosis322

of PEMFC based on the W-NARX is about 0.1359%, and the mean RE of323

prognosis of PEMFC based on the NARX is about 0.3277%. Compared with324

the W-NARX, the mean RE of NARX increases by 2.4 times. The reason325

why the error of W-NARX is lower than the error of NARX is that the fluc-326

tuations and recovery phenomena are decomposed into multiple wavelets by327

wavelet analysis to learn and forecast the degradation of PEMFC. The cal-328

culation time of W-NARX is about 918s, and that of NARX is about 232s.329

Wavelet analysis causes an increase in calculation time. However, compared330

with the degraded time of the PEMFC, the calculation time of W-NARX is331

very small. Therefore, W-NARX can be regarded as an appropriate prognosis332

method to deal with fluctuation and recovery phenomena for PEMFC.333

In order to verify the advantages of the proposed method, the prognosis of334

PEMFC in FCHEV is also made by W-NARX, k-Nearest Neighbors (KNN)335

algorithm, Decision Tree (DT), and Support Vector Machine (SVM). The336

comparison of the prognosis of PEMFC based on different methods is shown337

in Fig. 9. The AE of the prognosis of PEMFC based on the different methods338

is shown in Fig. 10. The comparison of the accuracy and calculation time of339

the different methods is shown in Table 4.340
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Figure 9: The degradation prognosis of PEMFC in FCHEV under real conditions using
different methods
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Figure 10: The AE for degradation prognosis of PEMFC in FCHEV under real conditions
using different methods
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Table 4: The comparison of the accuracy and calculation time of the different methods

Method MSE mean RE (%) Time (s)
KNN 1.0749 1.3161 9
DT 0.1553 0.6587 39

SVM 0.1337 0.5049 1338
W-NARX 0.0059 0.1359 918

As shown in Fig. 9, compared with other methods, the prognosis of341

the proposed W-NARX is closest to the measured data of the PEMFC in342

FCHEV. As shown in Fig. 10, the AE of the prognosis of PEMFC based on343

the proposed W-NARX is the smallest. As shown in Table 4, the MSE and344

mean RE of the proposed W-NARX are the smallest compared with other345

methods. The proposed W-NARX has higher accuracy than KNN, DT, and346

SVM.347

4.3. The effect of maximum delay on the prognosis of PEMFC348

The maximum delay has a great influence on the prognosis of PEMFC.349

For example, the greater the maximum delay, the more historical information350

of PEMFC the NARX can remember, but it may also cause overfitting. In351

order to analyze the effect of maximum delay on the accuracy, the prognosis of352

PEMFC operated under a quasi-dynamic load current is made by W-NARX353

with different maximum delays. The maximum delay is set to 1, 2, 3, 4, 5,354

7, 10, and 15. In order to reduce measurement errors and calculations, the355

recorded data is resampled every hour. 70% of datasets for PEMFC operated356

under quasi-dynamic load current are applied to learn the degradation trend357

of PEMFC, and remained datasets are applied to verify the prognosis of358

PEMFC. The prognosis of PEMFC operated under a quasi-dynamic load359

current based on the W-NARX with different maximum delays are shown in360

Fig. 11. The AE of the W-NARX with different maximum delays are shown361

in Fig. 12. The MSE, mean RE, and calculation time of the W-NARX362

with different maximum delays are shown in Fig. 13, Fig. 14 and Fig. 15,363

respectively.364

As shown in Fig. 11, the degradation trend of PEMFC operated under a365

quasi-dynamic load current can be accurately learned and forecasted by W-366

NARX with different maximum delays. As shown in Fig. 12, the maximum367
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Figure 11: Degradation prognosis of PEMFC under quasi-dynamic load current based on
W-NARX with different maximum delays
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Figure 12: The AE for degradation prognosis of PEMFC under quasi-dynamic load current
based on W-NARX with different maximum delays
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Figure 13: The MSE for degradation prognosis of PEMFC under quasi-dynamic load
current based on W-NARX with different maximum delays
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Figure 14: The mean RE for degradation prognosis of PEMFC under quasi-dynamic load
current based on W-NARX with different maximum delays
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Figure 15: The calculation time for degradation prognosis of PEMFC under quasi-dynamic
load current based on W-NARX with different maximum delays

AE of W-NARX with different maximum delays for the prognosis of PEMFC368

is less than 0.03V. As shown in Fig. 13 and Fig. 14, when the number369

of maximum delay is less than 3, the MSE and mean RE are large. Less370

maximum delay contains less degradation information of PEMFC, which371

causes an increase in the MSE and mean RE. When the number of maximum372

delay is more than 3, the MSE and mean RE are also large. Excessive373

maximum delay may lead to overfitting for the prognosis of PEMFC, which374

leads to an increase in the MSE and mean RE. As shown in Fig. 15, the375

calculation time increases as the number of maximum delay increases. This376

indicates that increasing the maximum delay will increase the amount of377

calculation. Considering the accuracy and amount of calculation, the number378

of the maximum delay is chosen as 3 for the prognosis of PEMFC in this379

paper.380

4.4. The effect of learning data on the prognosis of PEMFC381

The prognosis of PEMFC operated under constant load current is ana-382

lyzed by W-NARX with different learning data. In order to reduce measure-383

ment errors and calculations, the recorded data is resampled every hour. The384

learning data is respectively chosen as 40%, 50%, 60%, 70%, 80%, and 90%385

of datasets for PEMFC operated under constant load current, and remained386

datasets are applied to verify the prognosis of PEMFC. The prognosis of387

PEMFC operated under constant load current based on the W-NARX with388
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40% of datasets is shown in Fig. 16. The AE of the W-NARX with 40% of389

datasets is shown in Fig. 17. The MSE, mean RE, and calculation time of390

the W-NARX with different learning data are shown in Fig. 18, Fig. 19 and391

Fig. 20, respectively.392
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Figure 16: Degradation prognosis of PEMFC under constant load current based on W-
NARX with 40% of datasets

As shown in Fig. 16, the degradation trend of PEMFC operated under393

constant load current can be accurately learned and forecasted by W-NARX394

with 40% of datasets. As shown in Fig. 17, the maximum AE of W-NARX395

with 40% of datasets for the prognosis of PEMFC is less than 0.01V. The396

MSE and mean RE of W-NARX with 40% of datasets for the prognosis of397

PEMFC are 0.000006 and 0.055%, respectively. It shows that W-NARX can398

accurately make the prognosis of PEMFC under the condition of less learning399

data. As shown in Fig. 18 and Fig. 19, the MSE and mean RE decreases400

as the learning data increases. As more recorded datasets are used to learn401

degradation trends of PEMFC, the prognosis of PEMFC based on W-NARX402

is more accurate, the MSE and mean RE are reduced. This indicates that403

more learning data can improve the accuracy of the degradation prognosis404

of PEMFC operated under constant load current. As shown in Fig. 20, the405

calculation time increases as the learning data increases. The reason for the406

increased calculation time is that more degradation trends of PEMFC need407

to be learned in more learning data.408
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Figure 17: The AE for degradation prognosis of PEMFC under constant load current
based on W-NARX with 40% of datasets
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Figure 18: The MSE for degradation prognosis of PEMFC under constant load current
based on W-NARX with different learning data
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Figure 19: The mean RE for degradation prognosis of PEMFC under constant load current
based on W-NARX with different learning data
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Figure 20: The calculation time for degradation prognosis of PEMFC under constant load
current based on W-NARX with different learning data
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5. Conclusions409

As a kind of renewable and environmentally friendly energy, PEMFC is410

regarded as a promising technology to solve the energy crisis and environ-411

mental crisis. However, the durability caused by degradation seriously limits412

its commercial application. Degradation prognosis, as the core of prognos-413

tics and health management, is regarded as an important tool to improve414

the durability of PEMFC. This paper presents the degradation prognosis of415

PEMFC operated under different applications based on wavelet analysis and416

NARX. The accuracy of the degradation prognosis of PEMFC is validated417

by three durability tests of PEMFC operated under different applications.418

The main conclusions of this paper are as follows:419

1. Compared with the NARX, the accuracy of W-NARX increases by 2.4420

times. The wavelet analysis greatly increases the accuracy of the degra-421

dation prognosis of PEMFC based on NARX.422

2. Compared with KNN, DT, and SVM, the proposed W-NARX has higher423

accuracy for the degradation prognosis of PEMFC.424

3. The MSE and mean RE are minimal when the maximum delay is 3. Con-425

sidering the accuracy and amount of calculation, the number of the max-426

imum delay is 3, which is best for the degradation prognosis of PEMFC.427

4. The mean RE of W-NARX with 40% of datasets for the prognosis of428

PEMFC is less than 0.06%. The W-NARX has a high accuracy of the429

prognosis of PEMFC under the condition of less learning data. What is430

more, more learning data helps to improve the accuracy of the degradation431

prognosis of PEMFC.432

The degradation of PEMFC has a great impact on the output perfor-433

mance of PEMFC. The future research work will consider the presented434

degradation prognosis method combining with energy management theory435

to improve the output performance and economy for PEMFC in different436

applications.437
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D., Péra, M.C.. Decision process to manage useful life of multi-stacks452

fuel cell systems under service constraint. Renew Energy 2017;105:590–453

600.454

[4] Becherif, M., Hissel, D., Gaagat, S., Wack, M.. Electrical equiva-455

lent model of a proton exchange membrane fuel cell with experimental456

validation. Renew Energy 2011;36(10):2582–2588.457

[5] Matraji, I., Laghrouche, S., Wack, M.. Cascade control of the moto-458

compressor of a PEM fuel cell via second order sliding mode. In: 2011459

50th IEEE Conf. Decis. Control Eur. Control Conf. 2011, p. 633–638.460

[6] Laghrouche, S., Harmouche, M., Ahmed, F.S., Chitour, Y.. Control461

of PEMFC air-feed system using Lyapunov-based robust and adaptive462

higher order sliding mode control. IEEE Trans Control Syst Technol463

2014;23(4):1594–1601.464

[7] Boulon, L., Agbossou, K., Hissel, D., Sicard, P., Bouscayrol, A., Péra,465
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