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Abstract
In this paper, an a posteriori residual error estimator is proposed for the A/¢ magnetodynamic Maxwell
system given in its potential and space/time formulation and solved by a Finite Element method. The reliability
as well as the efficiency of the estimator are established for several norms. Then, numerical tests are performed,
allowing to illustrate the obtained theoretical results.
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1 Introduction

Let 7> 0 and Q C R? be an open connected bounded polyhedral domain, with a lipschitz boundary I that is also
connected. In this paper, we consider the Maxwell system given in Q x [0,7] by :

curl E = —0;B, (1)
curl H=9,D +J, (2)

with initial and boundary conditions to be specified. Here, E stands for the electrical field, H for the magnetic field,
B for the magnetic flux density, J for the current flux density (or eddy current) and D for the displacement flux
density. In the low frequency regime, the quasistatic approximation can be applied, which consists in neglecting the
temporal variation of the displacement flux density with respect to the current density [1], so that the propagation
phenomena are not taken into account. Consequently, equation (2) becomes :

curl H=J. (3)

The current density J can be decomposed in two terms such that J = Jg + J., where J; is a known distribution
current density, generally generated by a coil, while J. represents the unknown eddy current. Both equations (1)
and (3) are linked by the material constitutive laws :

B=uH, (4)
J. =0 E, (5)

where p stands for the magnetic permeability and o for the electrical conductivity of the material. Figure 1 displays
two possible domain configurations we are interested in. The domain configuration is composed of an open connected
conductor domain Q. C Q which boundary B = 0. is supposed to be lipschitz and also connected and such that
BNT = (. In £, the electrical conductivity ¢ is not equal to zero so that eddy currents can be created. The domain
Qe = Q\Q, is defined as the part of Q where the electrical conductivity ¢ is identically equal to zero. Boundary
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Figure 1: Domains configuration: with respectively supp Js C Q. and supp Js N Q. = 0.

conditions associated with the previous system are given by B-n =0 on I' and Jo - n = 0 on B, where n denotes
the unit outward normal to Q and €. respectively. In the conductor domain €., the electromagnetic equations can
be solved by only considering the electrical field, leading to the classical E formulation :

curl g tcurl E 40 0,E = 0.

The same approach can be carried out with the magnetic field H. In that case, we obtain the so-called H formula-
tion :
curl o~ teurl H + p ,H = 0.

Unfortunately, these two formulations can only be considered in the conductor domain €2, since the electrical
conductivity ¢ and the eddy current only exist in £2.. Consequently, in order to solve a problem with the quasistatic
approximation, a formulation which is able to take into account the eddy current in €2, and which verifies in €2,
Maxwell’s equations must be developed. That can be obtained by using the potential formulations often used for
electromagnetic problems [20]. From the fact that div B = 0 in © and that its boundary is connected, by Theorem
3.12 of [2], a magnetic vector potential A can be introduced such that:

B =curl Ain Q, (6)

with the boundary condition A x n = 0 on I allowing to guarantee B -n = 0 on I'. Like B, the vector potential
A exists in the whole domain 2. To ensure the uniqueness of the solution, it is then necessary to impose a gauge
condition. The most popular one is div A = 0 (so-called the Coulomb gauge). Moreover, from equations (1) and
(6), an electrical scalar potential ¢ can be introduced in Q. so that the electrical field takes the form :

E=-0,A—-Vypin Q.. (7)

Like the vector potential, it must be gauged so the averaged value of the potential ¢ on €. is taken equal to zero to
obtain uniqueness of the solution. From (4),(5),(6) and (7), equation (3) leads to the so-called A — ¢ formulation :

curl (g~ teurl A) + G(BtA n w) =71, (8)

The great interest of this formulation relies in its effectivity in both domain €. and Q.. Indeed, in ., where
o is zero, the second term vanishes and the A — ¢ formulation becomes the classical A formulation used in the
magnetostatic case.

We are here interested in the numerical resolution of (8) by the Finite Element Method in the context of electro-
magnetic problems [7, 8, 21]. More particularly, we have in mind to derive an a posteriori residual error estimator,
in order to determine the numerical parameters (namely, the space mesh refinement and the time step) to be used
in a space-time adaptivity context.

Concerning the harmonic formulation of some Maxwell problems, several contributions have been proposed for
the last decade. In that case, since there are no more time derivatives to be considered, one only has to deal with
the spatial variable.

Some explicit residual error estimators have been successively derived. In [3], the eddy current formulation was
considered in a smooth context, generalized to piecewise constant coefficients in [24] or to lipschitz domains in [28].



The robustness of the estimates was addressed in [14], and the dependance of the constants arising in the upper
and lower bounds with respect to the polynomial degree of the ansatz space was investigated in [10]. An adaptive
algorithm was proposed in [11], which was proven to converge in the sense of the reduction of the energy norm of
the error. In the low-frequency framework, an adaptive algorithm was also proposed in [12] which was proven to be
efficient for singular solutions. Some works devoted to the potential formulations were also performed in [15, 33].
An estimator for a coupling of the Boundary and Finite element methods was introduced in [18], as well as in [27]
in the context of a Discontinuous Galerkin Method. Very recently, an adaptive h — p finite element algorithm was
proposed for time-harmonic Maxwell’s equations [17].

Other kinds of estimators have also been developed for Maxwell problems such as implicit [16] or reconstructed
[19] estimators for harmonic problems, equilibrated [9] or reconstructed [22] estimators for the E-formulation, as
well as hierarchical one for the magnetoquasistatic approximation [13].

This paper is devoted to a space-time explicit residual a posteriori estimator derivation for the A/ formulation
given by (8). Here the goal is to start from the work developed for other parabolic-type equations [4, 5, 6, 25, 26, 31],
and to adapt it to the case of a magnetodynamic problem. We follow the same philosophy as the one in [4, 25], which
consists in splitting the error in a ”time” one and in a ”spatial” one, allowing to obtain some corresponding ”time”
and ”spatial” error indicators. Our contribution can also be compared to [32], devoted to the H/¥ formulation. In
our work, both potentials (vector and scalar) are kept during all the analysis, and the support of J, can intersect €Q..
Moreover, the upper bound (reliability) as well as the lower bound (efficiency) are obtained for the same space/time
error.

Let us finish this introduction by some notation used in the whole paper. On a given domain D, the L?(D)
norm is denoted by || - || p, and the corresponding L?(D) inner product by (+,-)p. The usual norm and semi-norm
on H!(D) are respectively denoted by || - ||1,p and |- |1, p. In the case D = €2, the index €2 is dropped. Recall that
H}(D) is the subspace of H'(D) with vanishing trace on dD. The notation a < b and a ~ b means the existence
of positive constants C; and C5, which are independent of the quantities a and b under consideration, as well as
of the coefficients u, o and the discrete parameters h and 7 (see below) such that a < Cob and C1b < a < Ca b,
respectively. When needed, C' denotes a generic constant which is not necessarily the same throughout the paper.

The paper is organized as follows. In section 2, different formulations of the problem are presented : the
continuous one, the semi-discrete one and the fully-discrete one. Then, section 3 is devoted to the different errors
and estimators definition. The reliability of the proposed a posteriori estimator is proved in section 4, and its
efficiency in section 5. Finally, section 6 presents some numerical tests to underline the theoretical predictions.

2 Formulations of the problem

In this section, the three formulations we are going to deal with are introduced : the continuous formulation, the
semi-discrete formulation in time, and the fully discrete formulation in time and space. For each of them, the
question of their well-posedness is addressed, and some properties on the corresponding solutions are underlined.

2.1 Continuous formulation

Assuming that divJs = 0, the A — ¢ formulation of the magnetodynamic problem can be written

curl (p~teurl A) + a(&tA n w) — J.inQ, 9)
div (o— (atA + w)) ~ 0inQ., (10)

Axn = 0Oonl, (11)

c(0tA+Vy) -n = 0on B, (12)

At=0,) = 0in .. (13)

We suppose that p € L>°(€2) and that there exists po € R’ such that p > g in Q. We also assume that o € L>(Q2),
oo, = 0, and that there exists g € R’ such that o > 0p in Q.. At last, we recall the Gauge conditions. Like
mentioned in section 1, we choose the Coulomb one div A = 0 in €2, and we ask for the averaged value of ¢ in €,
to be equal to zero.



We now define :
X(Q) = Ho(cur,Q) = {AcL*Q);curl AcL*Q)and Axn=0on F},

XQ)

AcX(Q Avg)_ovgeHo(Q)}

{
{

H(div =0,Q) = {AeL2 Avg)_ovgeHo(Q)}
{

goEHl ;/(pdx:O},
QC

where X (Q) is equipped with its usual norm :

HY(Q) =

A% ) = I[P + [leurl A2

We finally denote V = X°(Q) x H(€,), and X°(Q) stands for the dual space associated with X°(€).

The variational formulation associated with (9)-(13) is consequently given by : Find A € L?(0,7;X°(Q)) and
@ € L%(0,T; HX(.)) such that ;A € L*(0,T; X°(Q)"), A(0,-) = 0 in Q. and such that for all A’ € X°(Q) and
¢ € H'(9Q,), we have :

(pteurl A, curl A') + (0 (A + V), A+ V¢ g, = (Js, A). (14)

Using the theory of Showalter on degenerated parabolic problem [29, Theorem V4.B], and appropriated energy
estimates, the following existence result for problem (14) is proved in Theorem 2.1 of [23].

Theorem 2.1. Let us assume that J; € H'(0,T; H(div = 0,Q)) and set Js o = Js(t = 0). Assume that
Jso-n=0on B,

and that there exists Ag € X%(Q) satisfying
AQ =0 in Qca

and
(p=t curl Ag, curl A’) = (Jg0, A')q,, YA’ € X(Q) such that div A’ € L*(Q).

Then problem (14) has a unique solution (A, ) in H*(0,7T; X°(Q)) x L(0,T; }Tl(ﬂc)) with A(t = 0) = Ay.

Due to the divergence free property of Jg, we further notice that the test functions in (14) can be ungauged.

P

Lemma 2.2. Under the assumptions of Theorem 2.1, the unique solution (A, ) € H(0,7; X°(Q))xL?(0,T; H*(£.))
of (14) also satisfies

(pcurl A, curl A') + (0 (BA + Vo), A+ V¢ )o, = (Js, A'), V(A @) € X(Q) x H'(,). (15)
Proof: In (14), we first take A’ = 0 to deduce that
(o (O A+ Vo), V¢')a, =0,V € H'(Q).
In a second step taking any 1 € Hg(£2), as Jg is divergence free we get
(0 (OA+ V), Vi)a, = (Js, VO).

We conclude by using the Helmholtz decomposition of A’ € X(Q2) into A" = B’ + V¢ with ¢ € H(Q) and
B € X9(). n



2.2 Semi-discrete formulation in time

In order to discretize in time equations (9)-(13), a partition of the interval [0,7] into subintervals [ty,—1,tm[ is
introduced, 1 < m < N, such that 0 =ty < t; < ... <ty =7T. We denote by 7, the length t,, — t,,_1, we set
T= Max Tm, and we define the time regularity parameter o by :

_m_

Tm

(16)

0, = max .
2<m<N Tp—1

Assuming that Jg is continuous in time, we denote JI* the value of J4(t,,), and 7 .Js the piecewise constant
interpolation in time of Jy given by 7, Js(t) = J* for t €]tm—1,tm], 1 < m < N. We denote by A™ and ¢™ the
approximations of A(t,,) and ¢(t,,) respectively. The semi-discrete problem in time issued from Euler’s implicit
scheme is then given by :

curl (p~ " curlA™) +0<Nn:_—7:“n_l +vwm> = J™inQ,
div <U<Nn_7_—7?m_l+V<pm>> = 0 in 9,
A" xn = 0OonT,
U(M;—F—FV@’”) n = 0Oon B,
A = 0in Q.. (17)

The corresponding weak formulation consists in looking for (A™, ™) € V,0 < m < N such that A° = A(0.-) =0
in Q. and such that for all m, 1 < m < N, we have :

am((A™, ™). (A", ¢") = Im((A".¢") V(A" ¢) €V, (18)

with a,, and [, the bilinear and linear forms respectively defined by :

am((A,p), (A", ¢") = (0 'curl A, curl A') + ( 7 (A+7,Vp), A"+ 71, Vgo') )
Q.

m

(&) = O )+ (A7 AT
m Q.
Now we address the question of the well-posedness of problem (18).

Theorem 2.3. Problem (18) has a unique solution (A™,¢™) € V,1 <m < N.

Proof: The proof is in any point similar to the one of [15], Lemma 2.1. With a recurrence argument, it is mainly
based on the fact that the bilinear form a.,, is coercive on V', allowing the use of the Lax-Milgram lemma. ]

As before, due to the divergence free property of Js, we can show that the test functions in (18) can be ungauged.

Lemma 2.4. Let (A™,¢™) € V,1 <m < N be the solution of problem (18) with A’ = A(0,-) = 0 in Q.. Then
we have for allm, 1 < m < N :

am((A™, ™), (A, ¢) = In((A'¢)), ¥ (A,¢)) € X(Q) x H'(Q).

Proof: This result is proved in the same manner than in Lemma 2.2 (see also [15, Lemma 2.2]). ]



2.3 Fully discrete formulation

At each computational time ¢,,, 0 < m < N, is associated a conforming mesh .7, made of tetrahedra, each element
T of T, belonging either to Q. or to Q.. We denote hr the diameter of the element T and pr the diameter of
its largest inscribed ball. We suppose that for any element T, the ratio hr/pr is bounded by a constant o > 0
independent of T and of the mesh size h = Jax hr. Moreover, Thm, Nim, Ni" . Epm, EME . Frm and Fint

respectively denote the set of tetraedra, nodes, internal nodes, edges, internal edges, faces and internal faces of
Thm. We denote hp the diameter of the face F. Finally, the conductivity o and the permeability p are supposed
to be constant on each tetrahedron :

or = 0|1 VT € ﬁzm, Omin = Teﬂnil,%GQC 0T, Omax = Teﬁn,lf)%eﬂc ar,
pr =p VT € Thm, Hmin = pn s Hamax = MAX i
The approximation space V}, is defined by V,, = X?(Q) x (:)h(Qc), where :
Xn(Q) = {Ah € X(Q); Apjr € NDy(T), VT € 77m},
ND(T) = {Ah:T—>R3:X—>a—|—b><x, a,bERB},

ONQ) = {&n € HH(Q:énr € PUT) VT € T |
XA = {Ane Xn(Q): (An, V&) =0V & € O4()],
On(Q) = {% € H'(Q);onr €PI(T)VT € Thm}.

The fully-discrete formulation consists in looking for (A}, o) € V4,0 < m < N such that A} = A(0,-) =0 in €,
and such that for all m, 1 < m < N, we have :

am (AR op'), ( ;190;1)) = Im(( ;1790;1)) v ( ;17 90;1) € V. (19)
Theorem 2.5. Problem (19) has a unique solution (A}", ¢}") € V3,1 <m < N.

Proof: The proof is similar to the one of Theorem 2.3 in the semi-discrete case, using this time a discrete Friedrichs
inequality instead of a continuous one (see [21] lemma 7.20 page 185). [ |

We have moreover a similar result than the one given in Lemma 2.4.

Lemma 2.6. Let (A}", &) € Vi,,1 <m < N be the solution of problem (19) with A} = A(0,-) =0 in Q.. Then
we have for allm, 1 < m < N :

am (AT, 00), (A%, 01)) = Ln((Ah b)) YV (Ah, ) € Xa(Q) x On(Qe).

Proof: The proof is similar to the one of Lemma 2.2, by using this time a discrete Helmholtz decomposition of
A} € X, into A}, = B}, + V¢, with B}, € X?(Q) and ), € ©9(Q) (see [15] page 9). |

3 Definitions of the errors and of the estimators

3.1 Errors
We first build an interpolation in time of the solution of (18) by :

t—tme1 . tm—t
AT(t):—lA + —A ! tm—1 <t <tpm,
Tm Tm (20)

pr(t) = @™ tme1 <t <ty
We proceed similarly for the solution of (19) by :

b—tme1
Ap(t) = — 2L A7 +

m m

onr(t) = o' tney <t <tp,.

tm — ¢
= Azn—l tm—l <t S tm7




The errors we are interested in are first the time one, given by :

ear(t) = Al)—A:(t), epr(t) = »)— (1),

as well as the spatial one, given by :
€A hT (f) = A, (f) —Apr (t) €p,hT (f) = ¥r (t) — $hr (f) .

3.2 Estimators

For all m, 1 < m < N, the temporal a posteriori error estimator n!* is defined by :

1/2
= () e curd (AR — A I
The spatial a posteriori error estimator is then defined by :

m = ((nga )? + (ndo )? + (N5ws )%+ (074 )? + (s )%+ (173 )2)

with

(7]67;1.)2 = Z (7]’?,1)27 i=1,2,3,

TETh m
m7)? = D F) i=1,2,3
FeFint
where, for all T € Tp, i,
Am _Am—l
nra = hr H I, — curl (p”teurl AYY) — o <h7_—h + th,’f)
Am _Am—l
o fo (S8 )|
T T
Nis = hr ||div(e (A7 +> 7 Vel ) llr,
p=1
ngy o= h}/Q H [nx g teurl A | p HF ,
Am o Am—l
NF2 = h}wm H [0' <—h . +V\Pf§n>'n} )
m Fllp
m 1/2 m
ngs = hl® o (AP +Y m Vel nlelle .
p=1

)

T

(22)
(23)
(24)

(25)

(26)

(27)

Here, n stands for the unit normal to the face F' and [u]z denotes the jump of the quantity u through the face F,

namely :

e—0+

lim w(x+en) —u(x —en) if F'e Fint
u(x)]r = | B
0 if F'€ Fom\ Fint.

Finally the oscillating term is defined by (£™)? = Z (€72, where for all T' € Ty,
TEThm

& = hr (I8 =I5 I,

J&, being the Raviart-Thomas finite element approximation of J{* on the mesh defined by

/J;’:‘h-nd’y(x):/J;”-nd’y(x) forall FCoT, withT € Tpp, .
JF F

Recall that the divergence free property of J* implies the same property for J.",.

(28)



Let us remark that in the above expressions, ¢} does not make sense in 1" C 2., and consequently we should
replace ¢} by one fixed extension, but since this extension is multiplied by ¢ which is zero on such a T, the
expression is in any case zero on such a tetrahedron and therefore we prefer to use this slight abuse of notations.

Concerning the spatial estimator, the terms (22), (23), (25) and (26) can easily be set in correspondence with our
PDE system, namely the element contributions 7 ; and 7)., represent the residual associated with the equations
(9)-(10), and the jump contributions 7n7},; and 7., are related to the regularity of the considered obtained functions.
Compared to [15], the new contributions are in fact NG5 and 075, They are related to the unstationary nature of
the problem and consist in the residual and jump terms corresponding to the time integration of (10) leading to

t
div (U(A(t,x) n v/ <p>) ~0, (29)
0
reminding that A(0,-) =0 in Q..
The global error estimator ™ at time t,, (1 <n < N) is finally given by :

n 1/2
" = (Z () + Tm (772”)2> : (30)

m=1

4 Reliability of the estimator

4.1 Reliability of the time discretization

Lemma 4.1. For any v € X(02),0 < m < N, let us define its corresponding linear interpolation v, as

el s DR

Tm Tm

v (t) v for g <t <ty,.

Then we have :

2 n 2 tn 2
% Hu_1/2curlv0H —|—mz_l(%n Hu_1/2curlva ) S/o Hu_1/2curlvTH dt

2 1+ nol 2 2 (31)
< % H,u_l/zcurl VOH + ( 207) mzzl (Tm Hu_1/2curlva > + T—2n ‘u‘l/zcurl v
where o, is the time regularity parameter defined in (16).
Proof: A simple calculation leads to :
tm 2 T
/ ,u_l/chrlvTH dt = / i (|curlvm|2 + Jeurl v™ 12 4 curl v -curlvm_l) dx
tim—1 Q 3
2 2
> %n <Hu‘1/2 curlva + Hp_1/2 curlvm_lH — Hu‘lﬂ curlva H,u_l/2 curl v 1
(32)
Since 2 | g2
a? + b —ab > %, Va,b € R,
we get :
tm 2 Tm 2 2
/ H/fl/Q curlv. || dt > 3 (H/fl/2 curlva + H,u_l/2 curlvm_lH ) . (33)
tmfl

Then, summing from m = 1 to n, the left inequality of (31) is established.
To prove the right one, we simply apply the estimate a - b < # valid for all a,b € R to the first row of (32) :

tim
/ H,u_lﬂcurl Vo,
th—l

and by summing from m = 1 to N we conclude. ]

? Tm ~1/2 ml|? “1/2 m—1]|?
dt < 5 I curlv + || curlv ,

)



Now, from (20) we remark that :
A™ Am—l
OA, = — for any ¢ in | t;m—1,tm].

Thanks to Lemma 2.4, we can write that for all A" € X(Q) and ¢’ € P/Ivl(Qc), we have :

(ptewrl A" curl A') + (0 (9 A + V™), A+ V'), = (I A). (34)

By subtracting (34) to (15) we get the temporal residual equation : for all A" € X(Q) and ¢’ € H i(Qc), we have :

(,u_lcurl ea r,curl A') + (U((?teA,T + Ve, ), A + V@')Q
(35)
= (Jg—mJ5,A") + (,u_lcurl (A™ — AT),curlA/) )
This allows to show that the error in time is controlled by the estimator in time and the error in space, up to high
order terms :
Theorem 4.2. Under the assumptions of Theorem 2.1, we have :

2

tn 2
+/ H,u_l/ZcurleAéT(s)H ds
a. Jo

[2%
ol/? (ear(tn) + V/ ep.r(s)ds)
0

n tn
< 2 Z(’?m)2+4 YV 2curley py(s) : ds + C pimax | Js — 7317
< i ; T max s TOSIL2(0,t,; X (Q2)7) 2
m=1

where C' is independent of the time steps 7,,,, 1 < m < N.

Proof: The proof is similar to the one proposed in the context of the heat equation, see e.g. Theorem 4.1 in [25]
(time upper error bound).

Step 1. For a given ¢ €] t;,—1,tm |, we choose in the residual equation (35) the test functions A" = ex ,(t) and
fo ey r(8,+) ds, so that :

t
(/flcurl ear(t),curles ,(t)) + (U(@teA,T(t) + Ve, (1)), ear(t) + V/ ep.r(S,-) ds>
0 Q.
= (Js(t) = mIs(),ear) + (el (A™ — AL (1)), curlea , (1)) .
Now, the gauge condition on A and A, allows to use the Friedrichs inequality :
| ear My S lleurles (1) Il

so that by the successive use of Cauchy-Schwarz and Young inequalities, we get :

2

—1/2 2 1d ), !
Hu CurleA,T(t)H + 5 % g (eA,T(t) + V/ €p, T(S, ) ds)
0 Qe
1 1/2 —1/2 2
< 2 (O Vi 19.0) — 7Ol gy + |52t (A~ A1)+ 5 [|Ju2ewlen (1)
2
< C fimax HJb(t) _WTJs(t)H.%((Q)/ + Hlu’_l Curl H H CurleA T(t)‘ ’

that is to say, by using the fact that e4 -(0) =0 :

% < + /Ot H,u_lmcurleA,T(t)Hi ds)

2
< O timae I136(t) = 73,0 % +2 Hu-l/%uﬂ (A™ — AT(t))H .

t
01/2(eA,,.(t) + V/ ep.r(s,-)ds
0




By integrating this last relation over [0,t,], we get :

2

tn 2
+ / Hu‘l/chrl eA"T(S)H ds
Qe 0

tn
o2 (e 1 (tn) + V / epr(s) ds)
0

n tom
2
< C pmax [[Js _7TTJs||L2(O,tn;X(Q)’) +2 E :/ I 1/2 curl (A H
m=1"/tm-1

Step 2. Now, it remains to bound the last term in (37).

From the definition (20) of A, and the triangular inequality, we have for any ¢ €]t,,—1, tm] :

tm T 2
/ H,u_l curl (A H < 3 p Y2 curl (A™ — A;")H
- tm—l
Tm || —1/2 m—1 m—14?
+ = ||H curl (A — Ay )H
Tm —-1/2 m m—1 2
+ |l curl (A" — A} )H

—1/2 2 Tm || —1/2 m m—1y|]?
w7/ 2curleg pr(8) d3+? pFeurl (AR — AT

tm
<2
t

m—1

where the last inequality follows from (33) with v; = e4 pr. By summing from m = 1 to m = n, and from definition
(21) of 5™, we easily obtain :

s

Step 3. (36) directly follows from (37) and (38). [ |

tn
curl H 2/ Hp‘l curley pr (s H ds—i—z nr)e . (38)
0

Theorem 4.3. Under the same assumptions as in Theorems 2.1 and 4.2, the following estimation holds:

2

t
01/2 at(eA,T + V/ ecp,T)
0

L2(0,tn; X (Q2))

n

tn 2
< 8 (Omin fimin) (Z(n;”)? +3 / | 2eurlenn (s)] ds>
0

m=1

_ — 2
+ 2O-miln (C p‘]ﬂﬂilln/’hﬂﬂaX + 1) ||Jb - 7TTJS||L2(O,tn;X(Sl)’)

Proof: The residual equation (35) with ¢’ = 0, joined to the fact that alln/ii <ol2 2 < u;ilf and the use of
the Cauchy-Schwarz inequality give for all A’ € X(Q) :

t
len/ii <01/2 O(ear(t) + V/ ep r(s)ds), A/)
0 Q

c

< [Js@) = IOl x () A/HX(Q) + [[pteurl (A™ — AL (1)]| [|cwl A'|| + ||~ curlear(£)]| ||curl A’)|
—1/2 — — m
< umu{ (H,u 1/26urleA,T(t)H + H,u 1/2cu1rl(A _AT(t))H> HA'HX(Q) + ||Js(t)—7TTJs(t)||X(Q), A'HX(Q) .
Since this relation holds for all A" € X(Q), by using the dual norm of X () we get :
t
o120 (en,(t) + V/ ep.r(8)ds)
0 X(Q)
< ot ual? (e 2eurten )| + | 2ewt (AT - AL 0)]|) + ol 19:(8) = IO x -

10



Squaring this last inequality and using two times the estimate (a + b)? < 2(a? + b?) valid for all a,b € R, we get :

2

t
o2 8,(en+(t) + V/ ep.r(8)ds)
0

X()
-1 1/ —1/2 m 2
< 201 put (Hu curleA,T(t)H + Hu curl (A™ — H) + 201 |1Ts(t) — Trds(O)x @)
1 1 2 1/ 2
< aoindy (o anen o] + o am - A" ) + 200 100 - 530 -
Then an integration over [t,,_1,t,;,] and summing for m =1,...,n give :

2

dt
X(Q)

tm 2 tm
/ Y 2curlen 1 (s) ‘ ds + /
tm 1 tm -1

2
O nin HJ WTJS”LQ(O,tn;X(Q)’) .

>
< Ao i Z(

m=1

UZdt (ear(t +V/ ep.r(s) ds)

Y 2curl (A™ — AL (s)

’ ds) (39)

+

The first term in (39) is estimated by inequality (36) and the second term by the relation (38), so that we can
conclude. ]

4.2 Reliability of the space discretization

For any m, 1 <m < N, we denote by ¢™ € H}() and QBZ" € Hi(Q) the extensions over 2 of ¢ € }Tl(Qc) and
et € ©,(Q,), respectively given by :

~ ™ in Q ~ | ey in Qe
= { ™ in Q, n = { e, in Qe
where ¢ € H'(Q) and ¢}, € H'(Q.) are respectively defined by :
Apg" =0 in Q, Apir = 0 in Q.,
e = ™ onB, e = ¢ onB,
et =0 on I, oy, = 0 onI'.

We also define the error €, j,(t,) = @™ — &,? € Hi(9Q), as well as the spatial error E™ defined by :
E™ = eqpr(tm) + i Tp Veu nr(tp) € Ho(curl; Q). (40)
p=1
Theorem 4.4. For any m, 1 < m < N, the spatial error E" admits the following Helmholtz decomposition :
E" = V@™ +el, (41)
where ¢™ € H}(Q) and e € X°(Q2). Moreover, €' admits the decomposition :
el = Vo" +wm
where ¢™ € HE(Q) and w™ = wie, € HY(Q.)3, wm = WG, € H(9.)3. Finally,
E"=w"+V(@"+0™), (42)
and the following inequalities hold :
el llx@) < Ilcurleqn(tm)ll, (43)

m m 1/2 m m
(W [ q, + 1w 1Ta,) "~ + 6™ e [lx @) - (44)

A

11



Proof: The proof is very similar to the one of Theorem 3.1 in [15] devoted to the harmonic formulation of the
same problem. Here, we only highlight the main difference, which lies in the estimation (43): in the harmonic case
the term || €™ || x () is bounded by the sum of the magnetic energy and the electric energy (see (3.5) of [15]). Here,
using another argument, the corresponding quantity is bounded only by the magnetic energy (this is needed in the
proof of Theorem 4.9, see below). €] is built exactly in the same way as in [15], using E™ instead of jwes + Vé,.
Consequently, we can easily obtain that (see (3.5) of [15]) :

e k@ S Ilef [1§, +|[curlel |2 (45)
Moreover, let us recall that by construction we have :

dive’ 0 in Q.
el -n = 0 onB,

so that e € H(curl,Q.) N Hy(div,Q,) where Hy(div,Q.) = {A € L*(Q,.) : divA € L*(Q.) and A -n =0 on B}.
By the compact embedding of H(curl,Q.) N Hy(div,$,.) into L*(Q.) and the fact that dive? = 0 in Q. (45)
becomes :

e [k < llcurle |5, +[[curlel ||* < |[eurle [|* = ||curlea pr(tm) |l

so that (43) holds. [ |

Now, in the same spirit than in [25], we give four technical Lemmas which will be used in the following. Our
objective is to obtain an upper bound for the spatial error (see Theorem 4.9).

Lemma 4.5. The error E™ defined in (40) satisfies the following Galerkin orthogonality relation : V (A}, ¢}) €
Xn(2) X ©,(9,), we have :

Em—l _ Em
/ﬂ pteurl e pr(tm) -curl A) dx = / o——— (AL + ™V}, ) dx. (46)

Qe Tm
Proof: Let us first remark that from Lemma 2.4 and Lemma 2.6, we have :

€A hr (tm—l)
Tm

am((eAhT(tm)ve%hv’(tm))v( ;w‘Plh)) = /Q o ) (A;L + Tm V(p%) dx,

that is to say :

tm
/ o <e‘4h;() + Veap,hr(tm)> ' (A;I T Tm V\p%) dx
Qe

Tm

€A hr (tm—l)
Tm

+/ pteurl ey (tn) - curl A} dx :/ o (A} + 7 Vey,) dx.
Q Qe

From the definition (40) of E™, we have :

E™ ! - E™ tm1) — t
_ eA,hT( m 1) eA,hT( m) o ve(p,hT(tm) in Qc ,
Tm Tm

so that (46) holds. [ |

Lemma 4.6. For all ve X(Q) we have :

/ w1 eurl eanr(tm) - curl vdx
Q

Am o Am—l
:/J;”-vdx—/ U(——i—chm).vdx (47)
Q Q. Tm
+ Z / (nx g~ ewl AJY) - v dy(x) — Z / curl (g~ 'ewrl A v dx.
TET m 7 OT TETm 7T

12



Proof: The definition of €4 pr(tn) = A™ — A} and an integration by parts give :
/ pteurl eAnr(tm) « curl vdx
Q

= / (p tcurl A™) - curlvdx + (/ (nx p teurl AP - v dy(x) — / curl (= curl A} - vdx),
Q oT T

TEThm
and, from Lemma 2.4 with ¢’ = 0), we obtain (47). [
As in [15] §3.2-3.3, we introduce now the usual Clément-like interpolants associated with a given fixed mesh
Thm at time t,,,, m =1,..., N. The standard Clément interpolation operators are defined by :
1
o HIQ) = 6(Q), v = Iov= > Tonl (/ U) Px s
xenjne x

1
I CHY Q) — O4(Q), v T - _ .
an. S HO) > 000 v e = S o ([ o)
xENINQ, x Be

where wy is the set of tetrahedra containing the node x and ¢y is the P; nodal basis function associated with the

node x € N;" . Moreover, we denote I, qv an extension of Igo,v over € such that I2) jv € ©9(€). For any

edge E € &,y we fix one of its adjacent faces Fg € Fpm; and the standard vectorial Clément-type interpolation
operator is defined by:

Phia + PH QN X(Q) > Xu(), v = Phav = Y ((vxnr)- ) we,
E€&nm
where PH'(Q) denotes the set of functions which belong to H(Q.) N H(Q.), wg € X,(Q) is the basis function
associated with the edge E € &, and defined by the condition :
wg -ty =g g VE €&im,
E/

with tg the unit vector directed along F, and, finally, the functions fg}E are determined by the condition :
/ (WE/ anE)-fg’?,:5E/)Eu VE’,E”GEhmuaFE.
Fg

These interpolant operators fullfill the following estimations (see Lemmas 3.1 and 3.2 of [15]) : for any v° € H}(Q),
ve HY Q) and ve PHY Q)3 N X(Q) we have :

ST P =10 I1F D R =100 1F S (VR (48)
T€Thm FeFjnt
S orPlo-1gvllE + Y keI ollE < IV, (49)
TETh m FeFnm
S onPlv-Phovliz + > hRllv-PlhoviE S IVevIP, (50)
T€Thm FeFjnt
where || Vpv |2 = [| Vv |3 + || VVv]3,.

Lemma 4.7. For all v € X(Q) we have :

/ w1t curl eanr(tm) - curl vdx
JQ

‘ m 0 . A;zn - A;Ln_l m 0
= J7 (v — Para v) dx — o| —=/—2— 4+ Vit |- (v— Pora v) dx
JQ Q

c Tm

+ Z / (nx p~teurl AJY) - (v — P v) dy(x) — Z / curl (p'eurl A7) - (v — Pg g v) dx
TEThm O TETm 7T

m _ pm—1
_ / - (&) v dx.
Qe Tm

13



Moreover, using the Helmholtz decomposition (42) and considering v = w™ € H'(Q.)3NH(Q.)*N X (Q), we have :

= (cE™ 1 E™)q,

2
o + Tm / pteurl e nr(tm) - curl w™dx
c 0

+ (0 (E™ —E"T), V(@™ +0™) = V(I @™ — 18100™))a.
4+ Tm / I (wh— "P&Q w™) dx
Q

- Z / curl (p'ewrl A7) - (W™ — P o w™) dx

TETh
AT Am—l
- Tm / o <h7—h —l—VchI) (W =P g w™) dx
Qe m
+ Z / nx pu~tcurl A ] (W™ =P o W™) dy(x).
Fef””

Proof: First identity. We apply Lemma 4.6 :

=t curl eqpr(tn) - curl vdx

Q
Am 1
/ I (v— PC]QV dx—/ ( +V<pm) -(V_P8]7QV)dX
+ Z / nx pteurl ARY) - (v — P v) dy(x) — Z curl (p'ewl A}) - (v — Py o V) dx
TETh m T TETym T
Am
Q
+ Z (nx p -t curlAh ) P CLO Vd’y X) — Z curl (,u_lcurlAZT) -738119 vdx
TEThm 0T ) T€Thm T )
A — AT Ay — AT
+/ g ( ™ +Vg0h ) PCIQV) dx — / g (h—h +V§0;ln> . (V_Pgl,ﬂ V) dx.
Q. Qe m

First we notice that

AT Am—l Am . Am_l
/ 0’( h - h_+V<p}I”>-(v—’P8LQV)dx—/ 0<T—+v,¢m>_(v—”P(031,QV)dx
Qe m Q. m

(tm) — €A pr(lm—
B / " (eA,h (tm) —€anr(tm-1) +Ve¢,hT(tm)> (v =P qV)dx
Qc

Tm

Em_Em—l
—/ U(—)-(V—P&QV)CZX,
Q. Tm ’

second, using Lemma 2.4 with A" = Pg v and ¢’ = 0, we have

AT Am—l
/ J;’T-P&_’dex—/ o (— —i—V(pm) .P&ﬂvdx :/ (,u_lcurlAm)-curlP&ﬂ vdx,
Q QC

Tm Q

and thirdly elementwise integrations by parts yield

Z / (nx p~teurl AJY) - PR o vdy(x Z / curl (p'cwl AJ) - PEq vdx
TEThm T€Thm

Z / teurl AJ" - curlPCIdex

TEThm

14
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Hence we get :

/ pteurl ey (ty,) - curl vdx
Q

m 0 AZL — A;ln_l m 0
= ']s . (V — PC],Q V) dx — g _— Vgﬁh . (V — PC],Q V) dx
Q Qe

m

- Z / curl (p'eurl A7) - (v — Pg g v) dx + Z
T

/ (nx pteurl ARY) - (v — Py v) dy(x)
T€Thm T€Thm 70T

Em _ Em—l
—/ o (T—> S(v—=PgV)dx + / preurl (A — ARY) - curl PG o vdx .
Qe m Q

By applying Lemma 4.5 with A}, = P¢) o v and ¢}, = 0 we have :

( Em _ Em—l
o -

Tm

/Q (0 teurl (A™ — A)) - curl P2y g vdx = —/Q ) Pa vdx,

and we conclude.

Second identity. From the first equation we have :

Tm / ,u_lcurleAJ”(tm) -curl w" dx
Q

= Tm/J;n~(Wm—’Pg])QWm)dX—Tm/
Q

Am _ Am—l
o ( Zh  Th + przl) . (Wm - P(OJI)Q Wm) dx
QC

Tm

—Tin Z / curl (g~ tewl AY) - (W™ — P&ﬁnwm) dx
T€Thm T

+Tm Z [nxp! curl A7 ] - (W™ — Peow™)dy(x) — (o(B™ — E™ Y, wm)q,.
i JF
FeFint

Nevertheless,
—(o(E" —E"7Y),w")q, = —(cE™,EM)q, + (cE"T, E")q, + (¢(E™ —E"7),E" —w™)q,.
From the Helmholtz decomposition (42), it appears that in Q.:
E™ - w" = V(" + "),
The conclusion follows by observing that :
(o (E" = E" 1), V(I 6™ ~ 101 06™))ar, =0

because of Lemma 4.5 with A} = 0. [ |

Lemma 4.8. Let o™ € H3(Q) for m € {0, ---, N} be defined in Theorem 4.4. Then we have in Q.. :

1VE™ lloe S Ormin (M + 1Fia) (58)
where ¢’ 3 and 7775 are respectively defined in (24) and (27).

Proof:
By using the Helmholtz decomposition (41) and as from Lemma 4.5 (with A}, = 0 and ¢} = ¢™) with a recurrence
argument we have :

/Q GE™ . VI, o ¢ dx =0,
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we deduce :

V™ ||3,

/ Vo™ - (E™ —e) dx
Ja,

< ar;iln/ UEm-V(gém—I/%\];gﬁm)dx—/ el - Vo™dx
Qe Qe
< ah(-) o A’”+ZTPW V"~ Ty ™) dx (59)
Qe
+ Z /diV( oAy +ZTPV<Ph))( — 10 ¢™) dx (60)
TEThm,TC " T p=1

- > [ (A7 + Zprh ] (6" — Iy ¢™) dr(x)), (61)

FE]—"”” FCQe,

where we have integrated by parts and used the fact that diveS = 0in Q. and €5 -n = 0 on B (see the construction
of € in the proof of Theorem 3.1 of [15]), so that :

J

el - Vo™dx :—/ div(e’f)a[zmdx—/ el -nVg"dy(x)=0.

. Ja. Joq,
Defining ¢’ = @™ — I@:;gbm, we remark that :
—/ U(Am—l—ZTpVgpp)-(p'dx: —Z/ o(AT— AT 4 7, V) - dx =0, (62)
Q - — Ja
c p=1 g=1 c

where the last deduction is due to the semi-discrete weak formulation (18) with A’ = 0 applied for all the discrete
time steps g =1,...,m

The use of the continuous and the discrete Cauchy-Schwarz inequalities to the reminding terms (60) and (61),
combined with the definitions (24) and (27) of some parts of the estimator, and the use of the stability result on
the standard Clément interpolate (49), lead to :

IVE™ o, < omb D, holldiv(e(AR + Y 7 Vb)) hpt [[¢™ =12 o @™ ||
TETh m,TCQe p=1

_ 1/2 m —1/2 | am 10 am
om0 b [oAR+Y ] Vel nlp [ hp @ =18 0 0™ |
FeFint FCQ, p=1

S ot (s +1073) [ VO™ o,

so that (58) holds. u

Theorem 4.9. Let n € {0, ..., N }. Then we have the following upper bound :

01/2 (eA,hT (tn) + Z Tm vetp,hT@m))

m=1

2
2

+ Z H curleA hr(tm) H

Q

Qe

n
S ma‘X mln ’ ,U/max Z Tm (£7n)2)

m=1

Proof: In the two first steps, the error (51) is estimated at time ¢, : an upper bound is proposed for the terms
in the right-hand-side of the second relation associated with Lemma 4.7. In particular, the first and the second
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steps are devoted to the estimation of the terms (53), (54), (55) (56) and (57). In the third step, the estimation is
extended to all times t,,, 0 < m < n.

Step 1. The continuous and the discrete Cauchy-Schwarz inequalities combined to the definitions (22), (25) of
some parts of the estimator and (28) of the error space approximation of the data lead to an estimation of (54),
(55), (56) and (57) :

m m 0 m AZL — AZl_l m m 0 m
JS (W —PCLQW )dX — g —+V5ﬁh . (W _PCI,QW )dX
Q Q. m
- Z / curl (™ tewrl ARY) - (W™ — Py o W) dx
TEThm T
— Z / curl (p~teurl AY) - (W™ — 7781)9 w™) dx
TET m 7T
-1 m m 0 m
+ Z / [nxp~tewl A7 ], - (W = Pe o w™) dy(x)
reFint 7 F
hm

= [ @ P W dx
T

T€Thm
m -1 m A;In — A;zn_l m m 0 m
+ Z 7 —curl (p~tewrl AYY) —o (| ———L— + Vi ) | - (W = P qw")dx
TEThm T "

+ ) [nxptewd AP g (W= P o w™) dy(x)

FeFint
< D hel| 30 = md by W = P o W [|r
TEThm
m -1 m A;zn B AZL_l m —1 m 0 m
+ Z hr ||mpd —curl (p™ curl A}') — o | —— + V! hy || w™ = Poraw™ |1
TEThm m T
1/2 _ —1/2
+ 3w Tt ewd AR e ([ hpt 2w = P g W[
FeFint
1/2 1/2 1/2
< ( > <n;z1>2) s ( 3 @)2) ( S ke —P&,ﬂwmn%)
TETh m TETh m TETh m
1/2 1/2
-1
+ Z (n#1)? Z hptllw™ = Pl w™||%
FeFjnt FeFjnt

From the stability result on the vectorial Clément interpolant (50), there exists C' > 0, which does not depend on
T, F and w™, such that the previous estimation becomes :

Z / (IT = curl (p 'eurl A7) - (W™ — P o w™) dx
T

T€7-hm
AT Am—l
— / o <h7_—h + V(p}f) (W™ — 738179 w™) dx
Q. m

+ Z / [nx ™" eurl AR, - (W — Plaw™)dvy(x)

FeFint O F
SONVew™ [ (€7 + i +n7i1) (64)
S bt || 7 Peurlen e () || (€7 + 11 + 0701

(from (44) and (43) in theorem 4.4)
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m m m 2 1 _
S /Lxlr{fx ( &+ N1 + M1 ) + 4_1 || H 1/2curleA,hT(t7n) ||2
(thanks to Young’s inequality ab < a? + %, Va,b € R)
m m m 1 —
S Hmax (€M) + (5 0)? + (071)) + 2l Y2curle nr(tm) ||

(thanks to the relation (a + b+ c)? < 3(a® + b? + ¢2), Va,b,c € R).
Step 2. Here we evaluate (53): we explicitly write the errors e n-(tm) and ey pr(tm) in order to split the

temporal and spatial contributions (A™, ™) and (A}', ¢*). Then we apply Green’s formula, so that (53) takes
the following form :

(o (E™—E™ ), V(@™ +¢™) — V(IOCI,Q o — IOCl,sz *™))e,

T tm - T tm— ~Am m 0 Am m
= Tm/Q o (eA"h( ) = e 1)+Ve¢,hf(tm)>'V(go RRCUEE T —Iocm¢ ) dx

Tm
A" — Am_l ~m m 0 am m
= 7'm/Q <U (T— + V‘Pm>) V(@™ + o™ - I?jm@ - 1001,s2¢ ) dx (65)
Am 1 m 0
+ Tm div —— + Vg, (" — Iy q ™) dx
TeTh TCQ,
Am 1 o /0_\_/ o
- Tm o| ———+ V" | n| (" 12 q¢") dy(x)
Fefmt FCQ. B
Am ! m m 0 m
+ T | ———+Vyp, (p™ — Ty ¢™)dx
TeTh TCQ,
—1
- Tm Z / {U ( + Vo' ) : ] (o™ —I%m ¢™) dy(x) .
FeFint FCQ, F

The term (65) is equal to zero thanks to the semi-discrete weak formulation (18) with A’ = 0, as shown in the
proof of the Lemma 4.8 (see the relation (62)). Using the Cauchy-Schwarz inequality and the definitions (23) and
(26) of some parts of the estimator, the right-hand side of the previous identity can be estimated as follows :

(c(E™—E™ ), V(@™ +¢™) — V(I(OJI,Q oM — 1(031,9 *™))e

m —2 am 0 am 1/2 m iy am T e 1/2
< e (0> RPN -TagemlE) T i (X AR -TR0emIR)
Te€Thm,TCQe FeFint FCQ.
1/2 3 . . 1/2
o (O APl o™ IB) T i (D A" —Taae™IE) |
T€Thm FeFint FCQ.
S Tm (77;?;2 =+ 7731;2) VO™ la, +Tm (7761;2 + 777}?2) | V™|, (66)

the last line coming from the usual stability estimates (48) and (49). Applying (58) for the first term of the
right-hand-side of this last inequality, and (44) and (43) for the second term, we get :

(03 + 0T2) IV o, S Omin (0B + 1) (n&s + 173 ) (67)
(ny + 0T) [IVe™ lla S pele (i + 7)) || Y/? curlea pr(tn) || - (68)

Then coming back to (66) and using the Young inequalities ab < a? + % for (68) and ab < % + Y for (67),
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and afterwards the relation (a + b)? < 2(a? + b?), we can conclude that :

—_—

(0 (B™ —E™ ), V(" +¢™) — V(Ig o @™ — 1810 0™))a,

< Cmim (Oin (M + 072) + 0 (1353 +072)° + fimax (6 + 072)?)
Tm —-1/2 2
+ - || curlea pr(tm) ||
i - o . Tm 1
< C maX( mgnaﬂmax) Tm((nQ;2)2 + (nJ;2)2 + (nQ;3)2 + (TIJ;S)Z) + — ||N‘ 1z CuI‘leA,hr(tm) ||2

4

Step 3. In this step, the results obtained in steps 1 and 2 are used to estimate the second equation arising in
Lemma 4.7, and the Young inequality is applied to (52) :

2 | 2 |
+ C maX( Ot s imax ) T (((0851)% + (7)) + (032)° + 072)° + (03a)® + (07)” + (€7)?)
1/2

2
o + Tm / pteurl eanr(tm) - curl wdx
c Q

IN

2
ol/2 Emfl‘ I
Q

+

Tm 5 || 2curleq pr (tm) |12
Having in mind the definition (22) of the spatial estimator 7}*, we get :
H g/2E™ Hiz + Tm ||,u_1/2cur1 €A ht (tm) ||2
m— 2 m m
< [ 2B g, 4 € max (g, i) T ()7 + (€7)%),

and summing for m =1, ..., n yields (63). ]

Theorem 4.10. Under the same assumptions than in Theorem 4.9, the following estimation holds:

|| ol/2 (at eanr + Vew,hr) ||%2(O1tn; X(Q))

S max(oph, (Omin fmin) 1) max (Lo thmax) Y T ( +(E™)%).
m=1

Proof: Thanks to the spatial error definition (see section 3.1), to Lemma 2.4 with ¢’ = 0, for any ¢t €]t;,_1, tm]
with 1 < m < n, and for any A’ € X (), the following relation holds :

ot
(0' (e n(t) +V/ e@.hT(S)dSLA')Q (69)
JO c
AT Am—l A™ Am—l
- (e e (B ) )
Tm Tm Qe
Am o Am—l
= —(p tewlA™ curlA’) + (I, A) - (o <h—h + w?) ,A’)
m Qe

— (0 tewrl A}, curl A) + (p teurl A, curl A')
= — (u‘lcurleA,hT(tm),curlA') + (I A
AT Am—l
- (;flcurl A7 curlA) — <0’ (h—h + Vga;?) ,A/> . (70)
QC

Tm
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Since A" € X(Q), we use the Helmholtz decomposition for A’ in a similar manner as made in Theorem 4.4 :
there exist w such that w, = wio, € H'(Q)?, w. = wiq, € H'(Q)?, ¢ € Hj() and ¢ € Hj () such that :

A =w+V(p+09), (71)

and such that [|[V@||a, S|[A']], ||[Ve|] < ||curl A’ || and ||V, w]|| < || curl A’ || which, using the relation || curl A’ || <
|| A"||x (), become :

IVolla, S 1A Ix@) (72)
Vol < 1A lIx@), (73)
IVowl S A [[x0) - (74)

So remembering the divergence-free property of J7* and that the curl of a gradient is equal to zero, we rewrite (70)
as follows :

AT Am—l
(I A") — (ptewrl A} curl AY) — (o’ (hT—h + V(p%”) ,A’) (75)
m QC
Am _ Am—l
= (I w)— (M—lcurlAT,Curlw) - (0‘ (h—h + V(,DZ") 7w) (76)
Tm o,
AT Am—l
m QC

Thanks to Lemma 2.6 with Aj, = P&, ow and ¢} = 0, we estimate (76) proceeding as in the Step 1 of the proof
of Theorem 4.9 (see the estimation just above inequality (64)) :

Am _ Am—l
(J;nvw) - (,Ufilcurl A;In,curlw) — (o’ <h—h 4 V@T) ,W)
QC

m

S (m’"z;l +77T;1 +§m)||va|| S (n?il +7731T21 +§m)||A/||X(Q)a (78)

where, in the last inequality, we used (74). Thanks to Lemma 2.6 with Aj = 0 and ¢}, = I/%—]\;@ + I%LQ ¢, we
proceed to the estimation of (77) as made in Step 2 of the proof of Theorem 4.9 (see the estimation just above

inequality (66)) :
m m—1
(g (M 4 V@T) 7v(¢) 4 ¢)>

Tm Q.

S (e +072) (IVella. +11V6) < (0 + 172) A [x(0), (79)
where, in the last inequality, we used (72) and (73).

Combining (78) and (79), (75) can be estimated as follows :

Am _ Am—l
(I A — (plewrl A} curl AY) — (O‘ (hT—h + V@T) ,A/)
m Q

S (naiy + 0+ 00 + 7791;2+§m)|‘A/||X(Q)7

c

and, consequently, (69) can be estimated as follows! :

it
(01/2 8t(eA,hn- +V / etp,h‘l')7 A/)
J0

o= 1/2,=1/2

—-1/2
= min Mmin

|~ 2eurleanr (t) || || curl A" || + Coil® (g + 07y + 0 + 0 +€") 1A lx@)

A

—1/2 — m m m m m -
max (Umirl/ » (Omin Hmin ) 1/2) (779; 1051 T Noe + N2+ E™ 4l p 1/2curleA$hT(tm) ||> I A’ ||X(Q) .

1Since o = 0 in Q, we can extend the domain of the integral (o d¢(ea pr(t) +V fg eg, hr(s)ds), A')q, to the whole domain €.
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Since this last relation holds for any A’ € X (Q) for any ¢ €]t,,_1, %], we obtain

t
||o1/2 d(eans + V/ epnr)llx @y
0

< max (0_1/2

Squaring this last inequality, using two times appropriately the relation (a1 + --- + a,) < n(a1? + ---

integrating over |t,,_1, t;,] and summing for m = 1,... ,n, we get :

t
|| 0'1/2 (9t (eA,h‘r +V /0 e‘P,hT)7 AI ||L2(Ovtn;X(Q)/)

< max (05, (Omin Hiin ) ™) ( D () + (70 + (1) + (072)° + (€™)?)

m=1
+ 37 Tl VPeurlea i (tn) ||2) .

m=1

Applying Theorem 4.9 to the term (80) leads to the conclusion.

4.3 Reliability of the whole error
We can state a first result for the error at time t,, n € {1, ..., N}:

2

2
+ H,u_l/chrleA(t)’
Qe

e(t)? = ||o172 (eA(tn)+v/0ne¢(f)dt)

L2(0,t,;L2(Q))

whereeq = A - A, =esr+egp-ande, =9 —Ynr =€pr +€phr

Theorem 4.11. For alln=1, ..., N, we have :

n

n m 2
e(tn)Q SJ Co'minyumax (1 + O-T) <(n )2 + Tm (5 )2 + ||Jb - 7TTJ’S||I/2(O,tn?)((9)/)) ’

m=1

where Cs_ . .. denotes a constant which only depends on the values of oyin and tmax -

min > (Tmin fmin )_1/2) (ngl; 1t 7’?1 + ngln;Q + 77?]72 +&M 4| u_1/2curleA7hT(tm) ||) .

+ an?),

(80)

(81)

Proof: Using the above definitions of e4 and e, this result is a direct consequence of Theorems 4.2 and 4.9. It
is based on some classical Cauchy-Schwarz and Young inequalities, associated to the relation (31) of Lemma 4.1 to

move from continuous to discrete integration in time.

We now define the whole error at time t,, n € {1, ..., N} by :
tn 2 tn 2
E(tn)? = ||07/2 (enr(tn) + V / eor()dt)]|  + |[0V2 (eans(tn) + V / e nr (1) dt)
0 Q. 0 Q.
1/2 (9 2 1/2 (g 2
+ HG (Orear +Vee,r) L2(0,t0;X (Q)") + HJ (Oreanr + Veonr) L2(0,60:X(Q)")
2 2

~1/2curl t H —1/2curl t ’ .

+ Hﬂ cur eA,T( ) L2(0,tn;L%(Q)) + M cur eA,hT( ) L2(0,tn:L2(Q))

Theorem 4.12. For alln =1, ..., N, we have :

n m 2
B(tn)? S Co,p Hmin st (L 07) ((77 )? + Z T (€7) + |9 — 7TTJSHL?(O,tn;X(Q)’)) ’
m=1

where C

Omin ; Mmin , bmax

denotes a constant which only depends on the values of oy , fimin and fimax -
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Proof: Using Lemma 4.1, this result is a direct consequence of Theorems 4.2, 4.3, 4.9 and 4.10. [ |

Let us remark that another definition of the global error should be considered, which will be shown to be useful

in the following.
2

tm
ol/? (eanr(tm) + V/ ep.hr(s)ds)
0

E(tn)* = E(tn)” + Zn: Tm (83)
m=1

Qe

In that case, we also have a reliability property :

Corollary 4.13. We have:

n

E(tn)? < Copin ., imin - tima ( Z ()% 4 7 ((07)% + (67)%) + s — 7TT']SH2L2(0,tn;x(ﬂ)’)) ’

m=1

where C,

Omin ; Mmin , bmax

denotes a constant defined in a similar manner as already specified in Theorem 4.12.

Proof: From the definition of E(t,), by Theorem 4.9, the new term arising in (83) can be bounded as follows :

n

tm
St 02 (eaneltn) + ¥ / eone(t) dt) |13,
0

m=1

S C max (O-r;iln numax) Z Tm ZTP ((712)2 + (51))2)

=1 p:l

S C max (O';liln,,uzmax)T Z Tm ((nlrzn)Q + (5711)2) .

m=1
|
5 Efficiency of the estimator
5.1 Efficiency of the time discretization
For the temporal estimator 7" (see definition (21)), the following result can be established :
Lemma 5.1.
T\ 1/2 3 T \ 1/2 _
s () o atenmtn]+ (5)" i tens o]
1/2 \1/2 , —1/2 -1/2
+ C max(ﬂmaxv (ﬂmax Jmln) y Mmin ) |: H:u' CurleA.T‘ L2(t 1.t sL2(92))
1/2 _
+ HU (Orear +Veg,r) L2(tm—1,tm; X(2)7) I ﬁTJS||L2(tm—1’tm?X(Q)')} :
Proof: From the definition of the temporal estimator (21) and by using the triangular inequality, we get :
1/2
7= () g |
1/2 1/2
< ()" o remean a2 o Penian |
1/2
n (%’”) Hp‘l/chrl(Am _Am—l)H . (84)

Since the first two terms in the right-hand-side of this inequality directly represent the magnetic energy norm of
the spatial error respectively e pr(tm) and €4 pr(tm—1), we have to estimate only the term (84). Reminding the
definition (20) of A, a direct calculation gives :

Tm —-1/2 m m—1 2 b —-1/2 m 2
= H“ curl (A™ — A )H = [ urema —AT(S))H ds.
m—1
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Moreover, from the temporal residual equation (35) with A’ = A™ — A and ¢’ = 0, we have :

—-1/2 mo_ 2
w=curl (A A))

< (Js — 7 ds, A™ _AT)
(85)

+ (0(0rea,r +Veyr), AT —Ar)g + (pteurlea,, , curl (A™ —A,)) .

Since the gauge condition of the vector potential A™, for m = 1,...,n, implies that div(A™ — A,;) =0, A™ — A,
belongs to X () N H(div;); and by the compact embedding of X (Q) N H(div; Q) into L*(Q2), we deduce that :
I[(A™ — AL)[| S [[curl (A™ — A7) || + [[div (A™ — Az ) || S [| curl (A™ — A7) |].

As o(Oear+ Ve, ) € X(Q), the first two terms of the right-hand-side of the inequality (85) can be estimated
as follows :

Jo—mJ, A" — Ao + (0(Brear + Ve, ,), A™ — A,),,

< (9 = 7 3ollxqy + lo(@hea s + Veor)l oy ) IA™ = Arllx (g (36)

< Cﬂxln/a?x (”Js - 7TTJSHX(Q)' + Ho'(ﬁteA,T + Vew)”x(g)/) H,u_l/zcurl (Am —A;)

An integration of (85) over the interval [t,,—1,%,], the Cauchy-Schwarz inequality and the use of (86) give :

2
dt <

tm
/ H,u_l/chrl(Am —A))

tm—1

—1/2 -
C max(ulln/ax, (Umax O'mm)l/2>/imir{ ) (HJ& - WTJS”LQ(tm,l,tm;X(Q)’) + H,U 1/2(3111‘18‘4,7.

2

L2 (tp—1,tm;L3(Q))

* H01/2 (Orear + Veg,r)

) Hu‘l/zcurl (A™—A,)

L2(tm 1,tms X (Q)) L2(ty 1,tmiL2(Q)

Using this last result to estimate (84), the conclusion follows. ]

5.2 Efficiency of the space discretization

As specified in assumption 5.4 of [25], since we consider an unstationary problem in an mesh adaptive context, in
the following, we suppose that for any m, 1 < m < N, there exists a conforming triangulation 771m such that each
element T € Ty or T € Tpp—1 is the union of elements T of 77”” such that hr ~ hz. In the following we use the
relation :
E™ — Em_l = eA,hT(tm) - eA,hT(tm—l) +Tm VE/;T};— (tm) )

which is deduced directly from the definition (40) of E™. We further use the so-called bubble functions (see e.g.
Remark 1.2 and Lemma 1.3 pages 9 and 10 of [30]) denoted by br and bp, defined respectively on the tetrahedron
T € Thm and on the patch wp = Ty U Ty where F' = T} N Ty, and the extension operator Fuy : C(F) — C(T). We
will use the well-known properties of the bubble functions :

br=0on 0T, bp=0 on dwp and ||br|lee,7 =110F |lcc,wr =1,

and the corresponding inverse inequalities, for instance we refer to inequalities (3.19)-(3.23) of Lemma 3.3 in [15].
To complete the notations introduced in subsection 2.3, we will write :

o = max oxg and pu = min ug
w7, max KEwT wr, min Kewr KK,

where
wr = U K
Nbon (T)NNp o (K)#£0

is the patch of the tetrahedron T € T, with AN, (T) and N ., (K) denoting respectively the sets of the vertices
of Tand K.
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Lemma 5.2. e For any T € Ty, and F C 0T, we have :

E" -E"! -
ity 5 e[| I | e o) -+ (57)
m T
m < 1/2 1/2Em_Em_1 : -1/2 -1/2 m
Mgy S max of” hp ||o/ + min pg | T Fcurlea wr (tn) |wp + 80, - (88)
Kewr Tm wr Kewr

Using the dual norm X (Q)’, we also get a global in space result :

m 1/2 E™ —E™! —1/2 m
< ol \0”2— + | M 2eurl e pr () |17 + €5 (89)
Tm X (Q)’
Em _ Em—l _ _ m
oo S 0 ]01/2— w2 Y 2eurlen i () [ + €2 . (90)
FCaT Tm X(Q)

e For any T' € Tppn, T C ¢, and for any I’ C 0T, we have :

Em _ Em—l
s S oxl? | P2 ||
i . .
E™ — Em—l
Npe S max 0%2 ol/?
’ Kewr Tm wp
Using the dual norm X (Q)’, we get a global in space result :
E™ — Em—l
el L e :
Tm X
Em _ E’ITL*].
Z 77?;2 S O'%:J/TQ,max ‘01/2— :
FCaT Tm X ()

Proof: The proof is based on a standard application of the bubble functions inverse inequalities: we have conve-
niently used the techniques in the proofs of Lemmas 4.3, 4.4 and 4.5 of [15] with the ones in the proof of Theorem
5.6 of [25].

In order to manage the different triangulations coming from the nonstationary nature of the problem, for example,
for the estimation (87), we arbitrarily fixed T' € Tj, 1, where Tp, ,, is the conforming triangulation in common with
Thm and Tpm—1 (as specified just above) and defined :

. . A™ _Am—l o B .
2 = ( ih—o <h7_—mh —i—ch,?L") —curl (uteurl A} )>T ,

so that 0 = hz[[17 [|7. Having proved inequality (87) for an arbitrary tetrahedron T € Thm, the assertion on

the triangulation 7~71m (at the beginning of this paragraph) implies that :

mr)> S Y. ).
feﬁ m TCT
So we can extend the lower upper error bound for all the T' belonging to the triangulation 7y, ., (remarking that,

for a regular triangulation, hz ~ hr for TcC T).
For this reason, from now on, we can directly work on the triangulation 7 .,, bearing in mind that we should work,
in a first moment, on a suitable triangulation 7}, ,,, and, afterwards, extend the results to the triangulation 7y, ,,.

For the estimation (89), the difference of the proof with the analogous L2-estimation (87) lies on the extension of
the domain of integration from T to all the domain © (thanks to the fact that the bubble function on T is zero
outside of T'), and the use of the relation :

7 bz llx @  ~ [0zl + [[curl (vF b7) ||
~ lrF bzl + [[eurl (FF bz) [|7

—1 m
S @HhEY Il
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where bz denote the bubble function on T. The others dual estimations proceed similarly. [ |

Lemma 5.3. For any T € T}, and for any F' C 9T, we have :

s S oftlloPET I, (91)
s S max ol || o PR L, (92)
Cwr
Proof: For T € T, we define :
v = (div(e (AR + Y 7 Vel ) ), sothat 1ty = hr |17 |7 . (93)
p=1

From the inverse inequalities (3.19) and (3.20) of Lemma 3.3 of [15], using the fact that

/U(Am—l—ZTpV@p)-;a’dx =0,
T

p=1

derived from the semi-discrete weak formulation (18) with A’ = 0 (see (62)), and the property that by = 0 over
0T, we can estimate 17 :

I 13 < (e bi2 2 = /Tdiv(a(Az” 3 7, Vel ) - (0 br) dx
p=1

(94)

| o Vapbr)ax S o 10 E I |90 br)
T

N

ol > hi || 2 E™ ||p || ||

Joining this result to (93), the estimation (91) follows. The estimation (92) is deduced in a similar manner, using
the inverse inequalities (3.21), (3.22) and (3.23) of Lemma 3.3 of [15] and the extension operator Fey in order to
estimate the integral over F' € 0T, which leads to an integral on the patch wp. [ |

Now, a bound of the local spatial indicator can be stated.

Theorem 5.4. For any T € Ty, we get :

m < 1/2 —1/2 1/2 E" —E"! —1/2
Mt S max (Y2 iy ) (|| 0P|+ 1l 2curlenns (tm) Il
m wr
+ O'L/f) max || Ul/QEm ||wT ) + §LnT ?

3
where ;" 7 = Z(r}%T j)2 + Z ('r)ﬁl)2 denotes the space error estimator on the element 7.
i=1 FCOT.FeFint

Proof: Since ny'r < nra + Nre + s + Z (N1 + MEe + MEg), the conclusion is a direct
FCOT,FeFint
consequence of Lemmas 5.2 and 5.3. ]

5.3 Efficiency of the whole error
Theorem 5.5. For alln =1, ..., N, we have :

n n
> 2
n"t = )2 + T S Comin s rnax s Hmin sHmas (E(tn)2 + 195 — WTJSHLQ(O-,tn;X(Q)/) + Z Tm (€™ )2> )
m=1 m=1
where Co i ormas s ttmin spmax d€DOtes a constant which only depends on the values of oyin , Omax s fimin a0d fimax -
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Proof: The result is a direct application of Lemma 5.1, the relations (89), (90) of Lemma 5.2, Lemma 5.3 and the
use of relations (33) and the left hand side of (31) with v, = e .. Moreover we recall that :
n 2 2
> |
m=1

Em o Em—l
01/2— = H01/2 (6,58,4,},7- + vegﬁ,hT)

Tm

L2(0,tn:X(Q)7)

x(©Q)y
So we can write :
S+ Tm(nph)?

m=1

2 2

A

+ Hﬂ_l/chrleA,T(t)’

Vi 129 v
Max (Hmas fmax Omin + Hinin ) (Ha (Orear + Vep.r) L2(0,t,;X (Q)") L2(0,t,;L2(Q))

2
_ 2 —1 ~1/2
+ s 7TTJS||L2(0,tn;X(Q)’) ) + max (K, - 1) H“ curles py (t)‘ L2(0.,:L2(Q))

2

+ Omax ( HOJ/Q (ateA,h‘r + Ve(p,h‘r)

+ Z Tm
m=1

L2(0,tn;X(2))

tn 2 n
o2 (eanr(tn) + V/ €p, hr(s)ds) ) + Z T (€™)%
0 Q. m=1

6 Numerical validation

In this section, numerical experiments are performed to underline and confirm some of our theoretical predictions
with the use of the software Code_Carmel. It consists of an analytical test, by solving the fully discrete formulation
(19) on the time interval [0, 7] and on the domain Q = (—1.2,1.2)3, where the inductor domain €2, is defined by
Q. = (—1,1)%, as shown in Figure 2. Here we consider y = 1 in Q and ¢ = 0 in Q\Q,, and define the analytical

Figure 2: Configuration and regular mesh of the domains © and Q..

solution (A, ¢) of the A — ¢ formulation (8) given by :

f(z,y,2)
A(t,z,y,2) =sin(27t)curl 0 inQx[0,717,
0
where
(2 D2 - D (214 in Q,
f(2,y,2) = .
0 otherwise,

and ¢ =0 in Q.. The source term Jy is consequently deduced from equation (8). Note further that in that case
the support of Jg is the whole conductor domain .. For the simulations, we use an uniform discretization in time
and a regular mesh family 7, ., of €.

We aim to check the expected rates of convergence of the numerical scheme, both in space and time, and also
to underline the behavior of the estimators. The parameters corresponding to Test 1, Test 2 and Test 3 are given

26



Test 1 Test 2 Test 3
I, 1 1 103
(h1,7) | (0.2653,0.0590) | (0.2653,0.0304) | (0.1366,0.125)
(ha,72) | (0.1874,0.0416) | (0.1874,0.0304) | (0.1366,0.0625)
(hs,73) | (0.1366,0.0304) | (0.1366,0.0304) | (0.1366,0.0313)
Table 1: Parameters corresponding to the three tests.
in Table 1.
In Test 1, we take ojg, = 1 and we consider three meshes from the coarse one to the more refined one,

corresponding to decreasing values of h denoted h; > ho > hs. The discretization is uniform in time, and the time
step 7; is chosen to be proportionnal to the value of h;, 1 <4 < 3. We plot in Figure (3a) the error e(ty) defined
by (81) as a function of h in a log-log scale. We can see that the numerical solution (A}, ¢}') converges towards the
exact one (A, ¢) at order one, as theoretically expected. Now, in order to illustrate Theorem 4.11, we also compute
the estimator 7V defined by (30), and display in Figure (3b) the so-called global effectivity index given by :

As we can see, the effectivity index converges towards a constant when the couple (h,T) goes towards zero. This
illustrates the reliability of the proposed estimator, having in mind that the other terms arising in the right-hand
side of (82) correspond to higher order terms.

In Test 2, we want to illustrate the behavior of the spatial part of the estimator. To do so, we still take oo, =1
and the same meshes as the ones used for Test 1, but this time we choose for all computations 7 = 0.0304, so that
the error in space is significantly larger than the one in time (we observe that while decreasing the time step, the
error remains constant). As expected, we observe a convergence at order one in h of the error e(ty) (see Figure
(3¢)). Moreover, if we now introduce the space effectivity index given by :

we see in Figure (3d) that it converges towards a constant when h goes towards zero, showing in that case the
equivalence between the error and the spatial part of the estimator.

Similarly, in Test 3 we want to illustrate the behavior of the temporal part of the estimator. Hence, we now
consider o), = 103 in order to volontary increase the error in time, and we take the same mesh for all computations
corresponding to h = 0.1366. As expected, we observe a convergence at order one in 7 of the error e(ty) (see Figure
(3e)). Moreover, if we now introduce the time effectivity index given by :

we see in Figure (3f) that it converges towards a constant when 7 goes towards zero, showing in that case the
equivalence between the error and the temporal part of the estimator.
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Figure 3: Plots of the rate of convergence of the error (Figures (3a),(3c),(3e)), and of the effectivity indices (Figures (3b),(3d),(3f)).



References

1]

2]

A. Alonso Rodriguez, R. Hiptmair, and A. Valli. A hybrid formulation of eddy current problems. Numer.
Methods Partial Differential Equations, 21(4):742-763, 2005.

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional nonsmooth
domains. Math. Meth. Appl. Sci., 21:823-864, 1998.

R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth. Residual based a posteriori error estimators for
eddy current computation. M2AN Math. Model. Numer. Anal., 34(1):159-182, 2000.

A. Bergam, C. Bernardi, and Z. Mghazli. A posteriori analysis of the finite element discretization of some
parabolic equations. Mathematics of computation, 74(251):1117-1138, 2005.

C. Bernardi and B. Métivet. Indicateurs d’erreur pour I’équation de la chaleur. Revue européenne des éléments
finis, 9:425-438, 2000.

S. Berrone. Robust a posteriori error estimates for finite element discretizations of the heat equation with
discontinuous coefficients. M2AN Math. Model. Numer. Anal., 40(6):991-1021 (2007), 2006.

A. Bossavit. E’lectromagnétisme, en vue de la modélisation, volume 14 of Mathématiques & Applications (Berlin)
[Mathematics & Applications]. Springer-Verlag, Paris, 1993.

A. Bossavit. Computational electromagnetism. Electromagnetism. Academic Press Inc., San Diego, CA, 1998.
Variational formulations, complementarity, edge elements.

D. Braess and J. Schéberl. Equilibrated residual error estimator for edge elements. Math. Comp., 77(262):651—
672, 2008.

M. Biirg. A residual-based a posteriori error estimator for the hp-finite element method for Maxwell’s equations.
Appl. Numer. Math., 62(8):922-940, 2012.

J. Chen, Y. Xu, and J. Zou. Convergence analysis of an adaptive edge element method for Maxwell’s equations.
Appl. Numer. Math., 59(12):2950-2969, 2009.

Z. Chen, L. Wang, and W. Zheng. An adaptive multilevel method for time-harmonic Maxwell equations with
singularities. STAM J. Sci. Comput., 29(1):118-138 (electronic), 2007.

M. Clemens, J. Lang, D. Teleaga, and G. Wimmer. Adaptivity in space and time for magnetoquasistatics. J.
Comput. Math., 27(5):642-656, 2009.

S. Cochez-Dhondt and S. Nicaise. Robust a posteriori error estimation for the Maxwell equations. Comput.
Methods Appl. Mech. Engrg., 196(25-28):2583-2595, 2007.

E. Creusé, S. Nicaise, Z. Tang, Y. Le Menach, N. Nemitz, and F. Piriou. Residual-based a posteriori estimators
for the A — ¢ magnetodynamic harmonic formulation of the Maxwell system. Math. Models Methods Appl.
Sci., 22(5):1150028, 30, 2012.

F. Izsdk, D. Harutyunyan, and J. J. W. van der Vegt. Implicit a posteriori error estimates for the Maxwell
equations. Math. Comp., 77(263):1355-1386, 2008.

X. Jiang, L. Zhang, and W. Zheng. Adaptive hp-finite element computations for time-harmonic Maxwell’s
equations. Commaun. Comput. Phys., 13(2):559-582, 2013.

F. Leydecker, M. Maischak, Ernst P. S., and M. Teltscher. Adaptive FE-BE coupling for an electromagnetic
problem in R®*—a residual error estimator. Math. Methods Appl. Sci., 33(18):2162-2186, 2010.

J. Li, Y. Huang, and W. Yang. An adaptive edge finite element method for electromagnetic cloaking simulation.
J. Comput. Phys., 249:216-232, September 2013.

G. Meunier, editor. The finite element method for electromagnetic modeling. ISTE, London, 2008. Translated
from the 2008 French original.

29



[21]

[22]

[23]

[24]

[25]

P. Monk. Finite element methods for Mazwell’s equations. Numerical Mathematics and Scientific Computation.
Oxford University Press, New York, 2003.

S. Nicaise. On Zienkiewicz-Zhu error estimators for Maxwell’s equations. C. R. Math. Acad. Sci. Paris,
340(9):697-702, 2005.

S. Nicaise. Existence results for the A — ¢ magnetodynamic formulation of the Maxwell system. 2013. URL
http://hal.archives-ouvertes.fr/hal-00917597 and submitted to Applicable Analysis.

S. Nicaise and E. Creusé. A posteriori error estimation for the heterogeneous Maxwell equations on isotropic
and anisotropic meshes. Calcolo, 40(4):249-271, 2003.

S. Nicaise and N. Soualem. A posteriori error estimates for a nonconforming finite element discretization of
the heat equation. M2AN Math. Model. Numer. Anal., 39(2):319-348, 2005.

M. Picasso. Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engryg.,
167(3-4):223-237, 1998.

R. A. Prato Torres, E. P. Stephan, and F. Leydecker. A FE/BE coupling for the 3D time-dependent eddy
current problem. Part II: a posteriori error estimates and adaptive computations. Computing, 83(3-4):155-172,
2010.

J. Schoberl. A posteriori error estimates for Maxwell equations. Math. Comp., 77(262):633-649, 2008.

R. E. Showalter. Hilbert space methods for partial differential equations. Pitman, London, 1977. Monographs
and Studies in Mathematics, Vol. 1.

R. Verfiirth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Chichester
and Stuttgart : Wiley and Teubner, Amsterdam, 1996.

R. Verfiirth. A posteriori error estimates for finite element discretizations of the heat equation. Springer-Verlag,
40(3):195-212, 2003.

W. Zheng, Z. Chen, and L. Wang. An adaptive finite element method for the H-1 formulation of time-dependent
eddy current problems. Numer. Math., 103(4):667-689, 2006.

W. Zheng and F. Zhang. Adaptive finite element frequency domain method for eddy current problems. Comput.
Methods Appl. Mech. Engrg., 197(13-16):1233-1241, 2008.

30



