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Abstract The well-known method of median filtering is used both in a wide
range of application frameworks and as a standalone filter. Small-window me-
dian filters can highly reduce the power of salt and pepper or additive Gaussian
noise and minimize edge blurring. Large-window filters are also used, for exam-
ple to estimate the background of images. Currently, the window size should
not be an issue as a constant time algorithm and several implementations,
including GPU1-based codes, have been proposed in recent years. Unfortu-
nately, none of these constant time implementations manage to fully exploit
the capabilities of modern GPUs and thus the throughputs of large-window
median filters remain far below the peak throughputs allowed by recent GPU
models.

This paper aims at showing that a separable approximation of a 2D me-
dian filtering is often stronger than its full 2D implementation. Statistical and
theoretical analysis are conducted to show and explain this fact which had
so far remained unobserved. It is confirmed by experimentations on a dataset
composed of 10,000 images, corrupted by different levels of salt and pepper
noise. Separable and full 2D median filter algorithms are compared with sev-
eral metrics, notably PSNR and MSSIM. In addition, a GPU implementation
of 2D separable-median filters is also proposed. This implementation is able
to output up to 125 billion pixels per second on a recent Volta V100, which
significantly outperforms existing implementations like Nvidia’s NPP2 library
or Green’s code, resulting in the fastest median filtering solution to date.
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1 Introduction

Median filtering is a mathematically simple technique, first introduced by
Tukey in [7]. Applying a median filter to an input image consists in replacing
each pixel value by the median value of its neighbors. Most of the time, the
neighbors belong to a n = k × k window around the working pixel. Median
filtering has been widely studied since its introduction and several median se-
lection methods have been proposed. These methods can be classified into two
main classes: histogram-based and sorting-based algorithms.
Histogram-based solutions work by building the histogram of the gray levels
of all the pixels inside the filtering window. Then, starting from either the top
or the bottom class, the number of pixels in each gray level class are summed
up until half the total pixel count of the windows is reached. The current class
holds the median value.
Sorting-based solutions simply sort the gray level values of the filtering window
and select the one located at the middle index in the sorted vector.

Originally, the computational cost, the data-dependent execution time and
most of all the computational complexity were seen as drawbacks. Researchers
have since addressed these issues and designed many implementations, among
which efficient histogram-based median filters featuring predictable runtimes
[4, 8] and even a constant-time algorithm proposed in [9], which exploits his-
togram properties to reduce the computational complexity to a single suppress
and add operation for each consecutive window position. More recently, au-
thors have managed to take advantage of the newly opened perspectives offered
by modern GPUs to develop CUDA3-based filters such as the Branchless Vec-
torized Median filter (BVM) [3, 5] featuring a significant runtime improvement,
along with the histogram-based PCMF4 median filter [6]. Lately, in a previous
work, the sorting-based PRMF5 implementation [10] has been proposed and
remains the fastest method to date for 3×3 and 5×5 windows. Since then,
other solutions have been proposed, that allow higher speed for larger kernels,
as it is the case for recent works proposed in [21] or [22], adapted from the
original [9]. PRMF uses simplified sorting networks to iteratively eliminate
min and max values. Recently in [2], the author worked on the separability of
sorting networks and obtained significant speedups, reaching almost the high-
est throughput of PRMF for 3×3 and 5×5 filters with better scalability for
larger sizes.

Median filtering is mainly efficient in reducing noises whose Probabil-
ity Density Functions (PDFs) show high standard deviation values, which
amounts to saying that it is a robust estimator of the average value. It is this
very property of robustness that makes median filtering so interesting in signal
processing, as it can ignore extreme or aberrant values present in the signal
and select the most representative value inside the filtering window. Two-

3 Compute Unified Device Architecture, Nvidia’s programming model.
4 Parallel Ccdf-based Median Filter (Ccdf: Cumulative Complementary Distribution

Function).
5 Parallel Register-only Median Filter.
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dimensional median filters are derived from a non-linear and non-separable
mathematical operator but, as shown by Tukey in [12], the median of medians
6 obtained by two computationally simpler stages of median filtering remains
as robust an estimator of the mean value as the exact median and can replace
it advantageously, mostly for runtime reasons.

Some authors have already studied the smoothing performances of both
full and separable median filters, as in [13] where coarse approximations are
given for the output variances under both uniform and Gaussian noise PDFs
assumptions.

In the field of noise reduction in digital images, Tukey’s observations can
be adapted with small datasets built from the pixels of the sliding window.
The first computational stage would then provide one median value for each
of the k rows of the window; the second stage would issue the median value of
those k median values. However, the median of median has not been widely
adopted as a noise reduction technique despite the increase in image sizes and
the need for larger filtering windows. The reason is probably its higher output
variance value. Instead, researchers have mainly kept trying to compute the
full 2D median filter at high speed rates on larger filtering windows.

On GPU architecture, some histogram-based algorithms are quite effi-
ciently implemented and show almost constant speed with respect to the fil-
tering window size, but the memory size required by the histogram forbids
to achieve near to peak throughput values. Sorting-based algorithms proved
highly efficient for small window sizes, but their complexity does not allow an
extended scalability. The fastest implementations of both categories [21] and
[10] define a threshold around 13×13, where the histogram-based implemen-
tation becomes faster than the sorting-based one.

The contribution of this paper is summarized in this paragraph. First, it
can be observed that a separable median filter is most of the time stronger
than a full median filter. Second, the output variance difference between both
versions of the median filter decreases very abruptly when the window size
increases. Third, a study is proposed to show that the noise types which are
best reduced by median filters have spiky looking PDFs, such as salt and
pepper noise. However, this does not lessen the interest of median filtering for
Gaussian noise reduction. Finally, a very efficient implementation on GPU is
described and throughputs are given on a Volta V100.

In the following, the median of medians two-stage process is referred to
as the “separable” median filter for simplicity and clarity’s sake, as opposed
to the “full” median filter. In addition, it will be shown that the separable
filter is almost always a better choice. For this purpose, section 2 first details
the comparison between full and separable median filters. Then, section 3
presents a reminder of the median value selection method used in the PRMF

6 In that chapter, Tukey adresses the issue of statistical analysis on large datasets and
discusses a method in which data are sliced into nine-value sets (or 81 values for larger
datasets) and where the mean estimation is taken as the median value of the median values
of all those sets, i.e. the ninther. The process can be recursive. In our implementation, data
slices are mapped to image rows.
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and how is has been efficiently implemented on GPU within the proposed 2D
separable median filter. Section 4 then presents the two experimental setups
used to evaluate the performances of the proposed implementation and to
conduct the statistical comparison of both median filter versions. Finally, the
execution time measurements and numerical properties of the compared filters
are exposed in section 5 before the conclusion drawn in section 6.

2 Theoretical comparison of separable and full median filter under
salt and pepper noise

This section proposes a theoretical study that demonstrates the conditions un-
der which the separable filter is stronger than the full version on bi-chromatic
images. It exposes a threshold for window size above which a separable filter
corrupts less pixels than the separable version, while the number of denoised
pixels tends to be similar.

Salt and pepper noise is caused by bad pixels in image sensors or by trans-
mission errors. Its name refers to the visual aspect of the resulting corruption:
black and white pixels scattered over the image.

The power of salt and pepper noise is represented by the probability P of
each pixel to be corrupted. For bpp 8 gray level images, the PDF can be char-
acterized by the expressions below where p(v | u) is the probability to observe
the gray-level value v knowing the ground-truth value u. These expressions
are derived from the classical equations of the model, whose description can
be found, for example in [23].

p(v | u) =



P
2 + (1− P ) if v = 0 and u = 0

P
2 + (1− P ) if v = 255 and u = 255

P
2 if v = 0 and u 6= 0

P
2 if v = 255 and u 6= 255

(1− P ) if v = u and u /∈ {0, 255}

0 elsewhere ∀(v, u) ∈ [0; 255]2

(1)

To establish which filter provides the strongest denoising, let us assume that
the original image is noiseless (none of its pixels is white or black) and that it
is corrupted by a salt and pepper noise of probability P , which means that all
black or white pixels are noise. Such a case is easily simulated by scaling the
gray levels and does not cause too much distortion, especially when dealing
with bpp 12 or higher-depth images.

2.1 Noisy pixels removed by full 2D median filter

If glmax is the highest gray-level value allowed by the pixel format, the prob-
ability for one pixel x of the input image to be corrupted is P (x = 0 or x =
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glmax) = λ. The full median filtering window is k×k pixels wide and contains
a total amount of n = k2 pixels. At each position of the filtering window, if
one of the extrema values (black or white) occurs at least dk2/2+1e times, the
output pixel y will be of that same extremum gray level, and will still remain
a noisy pixel. The probability of the output pixel y being left noisy, denoted
Pf (yn) is then given by the following equation:

Pf (yn) = 2

n∑
q=dk2/2+1e

Cq
n

(
λ

2

)q (
1− λ

2

)n−q

(2)

2.2 Noisy pixels removed by separable median filtering

As for the separable filter, similar considerations still apply, but two 1D filters,
1× k, then k × 1 are processing each image consecutively.

Here, the threshold is dk2 + 1e and the probability Psh(xhn) of xh being a
noisy pixel after the first pass (horizontal by assumption) and before the second
pass of 1D median filtering is given by the following expression, analogous to
equation 2

Psh(xhn) = 2

k∑
q=d k2 e

Cq
k

(
λ

2

)q (
1− λ

2

)k−q

and the probability of y being noisy is then

Psv(yn) = 2

k∑
q=d k2 e

Cq
k

(
Psh(xhn)

2

)q (
1− Psh(xhn)

2

)k−q

(3)

Fig. 1 displays the difference Psv−Pf when the noise level ranges from 7%
to 50% and filtering window sizes from 3 × 3 to 11 × 11. For larger filtering
windows, the difference becomes insignificant compared to the other parame-
ters that will be discussed later on in this paper. For example at a 50% level,
the probability of both 11 × 11 median filters to output a noisy pixel at a
given position differs by less than 2.6 × 10−4 point. It becomes obvious that,
the number of noisy pixels left by both filters rapidly tends towards extremely
close values.

However, median filters do not just alter noisy pixels, but are likely to alter
other pixels in the input image, thus generating unwanted corruption (noise).

Actually, computing the number of pixels which would be corrupted through
this mechanism, inside a natural image, is far beyond standard computing ca-
pabilities. Nevertheless, in order to begin to understand the distortion brought
by each of the full and separable median filters, let us make the strong hy-
pothesis of a bi-chromatic image composed of a background color cb and some
objects or shapes of color ca. Three illustrative examples of such images are
provided at Fig. 2.
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Fig. 1 Difference between the probabilities of a pixel being left noisy by full and separable
median filters for filtering windows ranging from 3 × 3 to 11 × 11 in presence of salt and
pepper noise of power 7% to 50%.

2.3 Pixels corrupted by full median filters

One pixel is altered by k × k full median filtering if there are at least dk
2

2 e
pixels of the other color inside the filtering window (and at most n− 1).

Consequently, a central pixel of color ca is altered if at least dk
2

2 e pixels
are of color cb inside the k×k filtering window. This color balance is provided
by a number sa of possible combinations, given by

sa =

n−1∑
q=d k2

2 e

Cq
n−1

The combination count sb that leads to altering a central pixel of color cb
follows the same expression and the sum sfull = sa + sb represents the total
number of color combinations where the central pixel will be altered by median
filtering. The following equation describes sfull.

sfull = 2n−1 − Cr−2
n−1 (4)

2.4 Pixels corrupted by separable median filtering

A similar path leads to the count of combinations ssep in the separable case.
Assuming that the first 1D filtering is achieved through a 1 × k horizontal
window, and that the color of the central pixel P is ca, this pixel will be altered
if at least dk2 e pixels are cb-colored inside the k×1 vertical window of the second
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(a) Black and white draw-
ing

(b) Synthetic image with
a few simple geometric
shapes

(c) Natural image converted to B&W

Fig. 2 Examples of 512× 512 bi-chromatic images.

filtering step. The pixel’s colors inside this vertical window are determined by
the first filtering step and thus, each cb-colored pixel is the output of one
1 × k median applied on one row where at least t pixels are cb-colored. Note
that combination counts regarding the middle row have to be adjusted as it
contains the central pixel, whose color is known by assumption(ca).

The same applies to cb-colored central pixels and the total combination
count ssep is obtained by adding up both subtotals. That leads to the expres-
sion of equation 5, which obviously applies whatever the direction of the first
filtering step.
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Fig. 3 Ratio between the combination counts of pixels altered by separable and full median
filters, for windows ranging from 3× 3 to 11× 11

ssep =

k∑
l=dk/2e

Ql−1
k Cl

k

(2k −Qk)k−l−1

k

×
(
Rk.l(2

k −Qk) +Qk(k − l)(2k−1 −Rk)
)

where

Qk =

k∑
q=dk/2e

Cq
k

Rk =

k−1∑
q=dk/2e

Cq
k

(5)

Fig. 3 displays the ratio ssep/sfull for filtering windows under 13×13 and
shows that both counts are very close and are asymptotically tending to iden-
tical values when k exceeds 11.

Judging from the above comparisons, it seems clear that in presence of salt
and pepper noise, full median filtering removes a higher number of noisy pixels
and also corrupts pixels in fewer situations than separable filtering.

However, a more in-depth analysis reveals that, inside natural images, not
all color combinations resulting in the corruption of a given pixel have the same
probability to occur. Unfortunately, these probabilities cannot be formally ex-
pressed as they depend on each image content. The combinatorial complexity
also forbids a numerical evaluation. For example, the smallest filtering window
sizes (3×3 and 5×5) would lead to analyse respectively more than 4 × 1021

and 1.6× 1060 combinations.
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(a) Separable filter alters the output pixel and full fil-
ter does not.

(b) Full filter alters output pixel and separable does
not

Fig. 4 Combinations, inside a bi-chromatic image, where the central pixel is altered by one
and only one version of the 3×3 median filter. Due to the symmetry, colors ca and cb can
be associated to either the white or black pixels. The number under each combination is the
decimal value of the binary representation obtained by concatenating the rows from top to
bottom (most significant bits first) and considering that a black pixel is associated to the
digit 1.

2.5 When the separable median outputs better images than its full version.

For k = 3, the filtering window includes k2 = 9 pixels, each of them colored
with one of the two possible gray levels ca and cb. Thus, it allows a binary
representation of the entire filtering window, with the first row holding the
k most significant bits and the last row holding the k least significant ones.
Among the 2k

2

= 512 possible binary combinations offered by this representa-
tion, separable median will add noise by altering the center pixel (ie. changing
its color) for 192 of these combinations and only 186 for the full filter. More-
over, there are 30 combinations where the separable filter alters the central
pixel and the full filter does not, while the opposite is observed in only 24
situations. Fig. 4 details all these combinations where only one of the filters
alters the central pixel.

Nevertheless, the above figures do not take into account the probability
of each above combinations to appear in natural images. At a first glance,
one can notice that most of the situations of Fig. 4b seem likely to be found
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in natural images, as they can represent pieces of simple continuous contours
or segments. This is the case for 22 out of the 24 combinations detailed in
4b, only numbers 460 and 481 are not continuous. The situations displayed
in Fig. 4a describe more scattered pixels less likely to be found in natural
images. Indeed only 6 out of the 30 combinations of Fig. 4a could represent
a piece of simple continuous contour or segment (numbers 424, 232, 124, 46,
313 and 43). These observations can lead to the assumption that the full filter
alters more than the separable one when processing natural images. This is
confirmed by parsing the three images of Fig. 2 and counting the occurrences
of each combination. The results are shown in Table 1.

combination counts→
image↓

Only altered

by full

Only altered

by separable

Teddy bear 3352 93

Synthetic 10 0

Houses 1620 497

Table 1 Total count of pixels in the bi-chromatic image that are altered by only one of the
3× 3 median filters (full or separable).

The full filter removes a higher number of noisy pixels than the separable
one but the gap decreases very rapidly when k increases. Meanwhile, the full
filter seems to corrupt images more than the separable version. These two
remarks tend to imply that for any given power of noise, there is a threshold
value for k above which separable median filtering is better than full median
filtering. This is confirmed by the measurements conducted on grayscale images
detailed in sections 4 and 5.

3 Implementing a fast 2D median filter in a separable way

In an earlier work, the 2D full-median filter implementation called PRMF
[10] was proposed. Though extremely fast for small filtering windows, it is
outperformed for large window sizes by several other implementations like [3],
[6], [9] and [21]. However, section 2 demonstrates that the separable median
filter is as robust as the full version, and could output less noisy images in a
wide range of situations, notably for large window sizes. This is because the
computational complexity of the full median is higher than that of separable
median, so that the expected runtimes of the latter are significantly faster.

The main issue to achieve good performances is the choice and imple-
mentation of the selection method used to identify the median value among a
collection of gray levels. A second key issue is how to rule redundancy between
consecutive positions of the sliding window, since two neighboring pixels share
some of the values to be sorted, as shown in Fig. 5. The separable implemen-
tation proposed in this paper uses the same optimizations for the selection
process as in PRMF [10]. It consists in a forgetful selection algorithm using
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Fig. 5 Overlapping windows (framed in red and blue) of two 5 × 1 median filters applied
on adjacent pixels colored in red and blue. Filtering windows share 4 pixels.

thread registers and exploiting the Instruction Level Parallelism (ILP) capabil-
ity of the GPU. These principles are exposed in sections 3.1 and 3.2. Compared
to the full version, the way of ruling the redundancy has been extended and
is discussed in section 3.3. It is also the case for the strategies to manage the
global memory used to store input, output and intermediate images. They are
presented in section 3.4.

3.1 Using registers

As register access is at least 20 times faster than all the other memory types
available on the GPU, it is natural to try to use thread registers as a means to
store temporary data inside our kernels, keeping in mind that from Kepler to
Volta architectures [15]–[18], each individual thread can use a maximum of 255
registers within the limit of 32K or 64K per thread block, depending on the
GPU family. However, a high register usage, even if below the above-mentioned
limitations, may result in a loss of performance due to a lower parallelism
level inside each block, i.e. less threads actually run in parallel. Consequently,
registers need to be used as sparingly as possible, in order to preserve high
pixel throughput values. To do so, the forgetful selection algorithm already
described in [10] has been implemented. Its principle is to build an initial list
of Rk pixels values taken among the k pixels inside the 1D window (horizontal
or vertical), then to identify and eliminate (forget) both elements showing the
maximum and the minimum values in the list. Finally, one of the values left
apart of the original list is included in the current list. This process is repeated
until no more values can be included in the list. The remaining element in the
list is the global median value. It is important to notice that this algorithm
has a fixed and known number of steps, equal to

(
k − dk2 e

)
, which implies that

all threads have almost the same workload, despite the data dependency of
the extrema identification step.

The number Rk of elements (and thus registers) in the initial list is chosen
as the minimum element count which allows to identify the global median
value through the above process. It is obtained by considering the constraint
of keeping the global median in the list at each elimination step. This leads
to:

Rk = dk
2
e+ 1

It is also noticeable that each elimination step uses one register less than the
previous one as two elements are eliminated and one element added at each
step.
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(a) Forgetful selection applied
to a 7-pixel window.

(b) Extrema identification
applied to a 21× 1 window.

Fig. 6 (a) Determination of the Median value by the forgetful selection process.(b) First
extrema identification step of the forgetful selection. It begins at the top row with unsorted
elements and ends with the minimum value at the first position (left) and the maximum
at the last position (right). The last pack of instructions, in light purple, may contains
interdependent instructions, while the others contain only independent ones. The state of
the array is displayed at the end of each pack.

Fig. 6a illustrates the forgetful selection process applied to a 7-pixel 1D
median filter. The process begins with R7 = 5 elements and ends after 3
iterations, when there is no more candidate element to add to the current list.
This also corresponds to the state where there is only one element left in the
list: the median value. The selection of both extrema is similar to the first
iteration of a bubble sort. It uses a basic 2-element swapping function to push
the minimum (resp. the maximum) value to the beginning (resp. the end) of
the list. The implementation of this selection process ensures that the GPU
kernel code is free of divergent branches liable to severely impact performances.

3.2 Hiding Latencies

Optimizing a GPU kernel also means hiding latencies potentially generated by
memory accesses and data dependent instruction calls. Indeed, modern GPUs
are able to pipeline instruction processes so as to reduce the average latency
of an instruction sequence. This capability is called ILP (Instruction Level
Parallelism). As for global memory accesses, when two or more consecutive
arithmetic operators manipulate (read or write) independent variables, only
the first access generates latency. The massive thread parallelism of CUDA-
enabled devices helps in hiding some of those latencies transparently. In our
parallel code, an analysis of the actual computation performed by each thread,
shows that ILP has to be optimized:
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First, the Instruction Level Parallelism can be increased within the forget-
ful selection method by re-arranging the instruction sequence as it would be
done in a sorting network [1], so as to reduce the data dependency of con-
secutive instructions and thus to prevent frequent empty pipelines. Fig. 6b
shows the scheduling of the first extrema identification step of a 21×1 median
filter, carried out with R21 = 12 elements. Each arrow represents one call to
the 2-element swapping function: after the call, the starting point symbolizes
the lowest value element and the ending arrow points out the highest one.
In addition, horizontal dashed lines separate packs of instructions, where the
first packs contain instructions with independent variables and the last pack
contains the swapping instructions with the largest strides. This last pack may
contain some interdependent instructions, depending on the size of the array.
After the execution of each pack, the current state of the array is also dis-
played to help in following the individual moves of each value. In the example
of Fig. 6b, 3 packs of independent instructions are defined, and the fourth
contains interdependent ones. Considering the whole sequence, the schedule
of each instruction is adjusted to maximize the distance (in terms of line of
code) between interdependent instructions. It allows to maximize the ILP. In
this example, the last pack cannot be optimized, but it is negligible compared
to a naive implementation that would not have achieved any ILP at all.

3.3 Exploiting the window overlapping

The goal here is to increase computations inside the GPU threads, as the
performances of the median filter are limited by the cost of memory accesses.
Increasing the computation ratio must be done without impairing the possible
parallelism level, i.e. by avoiding to process too many redundant operations at
thread level, thus multiplying the registers use. The following design intends to
reduce the registers count per thread while increasing the threads computation
load. It also allows to reduce the effect of global memory access latencies.

Since each thread processes m input pixels, it has to carry out m selec-
tions. Thus, the window overlapping cannot be exploited in the same way
as it is achieved within histogram-based solutions. Nevertheless, the window
overlapping implies that these m selections are not independent. Thus, an ef-
ficient implementation must avoid redundant extrema identifications. This is
achieved by choosing the Rk elements of the first selection step among those
shared by all windows. It only makes sense if the consecutive windows actually
share at least Rk elements. For example, if m = 2, k must be greater or equal
to 5. The first selection steps can then be considered common to all windows.
The following selection steps apply on the remaining pixels, which are shared
by fewer windows.

This principle was already exploited in the 2D PRMF design, but was
limited to m = 2. Indeed, when two 2D consecutive windows overlap, a total
of 2× k pixels are not shared and have to be processed separately, using two
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Algorithm 1: Code generator for the forgetful selection. The gen-
erator actually writes the required number of #define minMax i

macros inside the CUDA code, in order to achieve the forgetful se-
lection process. Each minMax i function works on a set of i single
variables am stored in registers. During execution of each minMax i
function, a swapping function s(am, an) is called multiple time to
rearrange am and an in ascending order whenever necessary.

input : r, the radius of the (2r + 1)× (2r + 1) pixels filtering window
input : (a0...aP ) the set of pixel values stored in registers
output: The set of #define minMax i definitions

1 kmin ← r + 2;
2 for i← kmin to 3 do

output: “#define minMax i(a0, ..., a(i−1)) ”

// Init sorting network loop

3 step ← 1;
4 ia ← 0;
5 N ← i;

// first stage (common to min and max selection)

6 minList ← empty list of integers;
7 maxList ← empty list of integers;
8 while (ia + step < N) do
9 ib← ia + step;

output: “s(aia, aib);”
10 ia← ia + 2× step;

11 end
12 if (N%2 = 1) then
13 minList.add(N-1);
14 maxList.add(N-1);

15 end
16 step = step× 2;
17 while (step < N) do

// minima

18 taille← sizeOf(minList)− 1;
19 minList.clear();
20 idmin← 0;
21 while idmin + 1 < taille do

output: “s(aminList(idmin), aminList(idmin+1));”

22 idmin← idmin + 2;

23 end
24 if (idmin < taille) then
25 minList.add(idmin);
26 end

// maxima

27 taille← sizeOf(maxList)− 1;
28 maxList.clear();
29 idmax← 0;
30 while idmax + 1 < taille do

output: “s(amaxList(idmax), amaxList(idmax+1));”

31 idmax← idmax + 2;

32 end
33 if (idmax < taille) then
34 maxList.add(idmax);
35 end
36 step← step× 2;

37 end
output: “\n”

38 end
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different groups of registers. For example, if k = 5, there are 20 pixels shared
by the two 2D windows. The selection starts using R5×5 = 14 pixels, and thus
registers. After seven selection steps, all shared pixels have been processed and
there are only 6 registers that contain relevant values for the next steps. Their
values are copied to a new group of 7 registers that is used to process the
selection for the second window, while the original group of registers is used
for the first window. In total, the process uses 14 + 7 = 21 registers, instead
of 14 + 14 = 28 if overlapping is not exploited.

Nevertheless, when processing two 1D windows, using the same k as in
2D, the computation load of a thread is very low. For example, if k = 5,
a thread processes only 6 pixels, compared to 30 in 2D. Since R5 = 4, our
selection process uses 7 registers instead of 8 if both windows are processed
independently. But even if there is a gain, experiments have demonstrated
that it is not sufficient to compensate the weak load of each thread. This is
why the method needed to be extended to larger pixel packets for 1D filters.
Fig. 7 details the extended method in the case of a 9 × 1 horizontal median
processing four pixels per thread (m = 4). A solution that does not take the
overlapping into account would use m×R9 = 4×6 = 24 registers. Our method
drastically reduces this number. Each of the m center pixels is displayed in a
specific color and is associated to a group of registers printed in the same color.
These groups are numbered from 0 (the blue one) to 3 (the yellow one), and
registers of group i are named xi∗. The numbers in the square pixels are sample
gray-level values. The first stage consists in devoting group 0 (blue) for each
of the R9 = 6 pixels shared by all filtering windows. The first minMax[Rk]
(here minMax6) selection stage is then achieved, which frees two registers (the
min and the max). The four remaining relevant registers of group 0 are copied
to group 1 (red), dedicated to the second center pixel. Both groups are next
augmented with one pixel value chosen among the remaining pixels, starting
from the innermost ones. Now two Rk−1 (here minMax5) selection stages are
achieved. This duplication-augmentation-minMax process is then repeated.
At each iteration i, group i is created and filled by copy from the relevant
registers of group i − 1, then for each group, one of the remaining pixels is
integrated, before executing the minMax. It goes until four minMax3 selection
steps output the four median values. In this example, groups have respectively
a size of 6, 5, 4 and 3, leading to a total of 18 registers, instead of 24 for a
naive implementation. For m = 4, the number of registers used by each thread
is then given by (Rk + 12), while it is (Rk + 42) for m = 8 (provided k is large
enough). It is worth noting that since each thread uses more registers than
with m = 1, it may lead to overpass the limit of the register count per thread
block. Nevertheless, it is easy to stay under this limit by dividing the block
size by m, while preserving the grid size.

The GPU specific access patterns required to ensure coalescence to and
from global memory lead to choose packet sizes m as powers of two. The
maximum packet size mmax is then the greater power of two that remains less
than k/2. Above k = 65, all packet sizes can be chosen between 2 and 32.
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The case k = 3 cannot be treated in the same way, as no overlapping can
be exploited at this size. However, devoting one thread to processing only one
pixel does not provide a satisfying level of performance, because of unbalanced
computations and communications (memory accesses). Instead, experiments
show that the highest throughput is obtained by processing m = 4 pixels per
thread, without taking the overlapping into account. It appears that it is also
the case for 5× 5 and 7× 7, even though sufficient overlapping exists at these
particular sizes. That confirms that computation load has a higher impact
than the parallelism level, which is not a limiting factor in our design, for
small sizes.

3.4 Optimizing the sequence of both 1D filtering stages

As already stated, the choice of running the horizontal 1D step first is arbitrary
and does not impact the filtering performances. Separable implementations
(not only median operators) frequently adopt a symmetrical architecture that
allows the same function to execute twice, for both vertical and horizontal
stages, separated by an image transposition. The proposed implementation
does not follow this scheme and uses one specific GPU kernel for each 1D
stage. This is imposed by the memory allocations and alignment constraints
that must be fulfilled in order to achieve optimal accesses to and from the
GPU global memory.

Three global memory areas are allocated onto the GPU before calling the
filtering kernels: d in, d outh and d outv. Assuming an input image of M rows
and N columns, stored row after row :

– d in contains the input image. It has the same height as M , but is larger.
In order to avoid special processing, the input image must be horizontally
zero-padded by adding bk2 c columns on both the right and the left sides.
To limit non coalescent accesses to global memory, the first column of d in
must be 128-Byte aligned. Under these conditions, the width of d in is the
closest multiple of 128 above N + k − 1. It is filled with zeroes and the
input image is stored starting at row 0 and column bk2 c.

– d outh receives the intermediate image output by the horizontal kernel that
will then become the input of the vertical kernel. For the same reasons as
for d in, the output needs to be vertically zero-padded by adding bk2 c rows
on both bottom and top sides and the first column of d outh must be 128-
Byte aligned. Thus, the height of d outh is M + k− 1 and its width is the
closest multiple of 128 above N . It is filled with zeroes and the intermediate
image is stored starting at row bk2 c and column 0.

– d outv receives the output image. It only requires a 128-Byte alignment.
The first pixel column of the image is written in column 0.

To summarize, the optimization techniques described above allow each
thread to use fewer registers while processing more pixels, thus increasing
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Fig. 7 Reducing register count in a 9×1 register-only median kernel by processing 4 input
pixels in parallel (in blue, red, green and orange). The 4 filtering windows are numbered
from 1 to 4 and contain gray-level values printed in white. A set of 4 groups of registers xij
is defined by its color and by the number of the associated filtering window as i index. The
first forgetful selection step is processed once for the 4 filtering windows, as R9 = 6 is the
exact count of pixels that are shared by all of the 4 windows. During each following step,
the leftmost branch of register groups follows the standard forgetful selection process until
the median value is output. At the same time, the rightmost branch of register groups is
divided after each selection step in order to devote, at the end, one group to each filtering
window. In this example, only 18 GPU registers are used by each thread to process four
9× 1 median values.
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the level of parallelism and allowing larger filtering windows without suffering
a drastic drop in performances, which occurs when the register file limit is
reached. In addition, global memory accesses are coalescent and cache misses
are minimized. All of these properties contribute to providing a high level of
performance that is demonstrated in the next sections.

4 Experimental setup

This section describes the software and hardware context to evaluate the ap-
plicability of the results of Section 2 to grayscale images, and the performances
of our GPU implementation presented in Section 3.

4.1 Context of the statistical comparison of full and separable median filters

The approach has been to conduct a statistical comparison over a large num-
ber of natural images and odd window filtering sizes. The chosen images are a
collection of 10,000 gray-level 8-bit depth Portable Gray Map natural pictures
from the BOSSRank database [14], whose original purpose was to benchmark
steganalysers. These images, called cover images are meant to represent orig-
inal images, i.e. images with no significant and/or visible noise. During the
simulations, cover images have been corrupted by salt and pepper noise with
different strengths: 7%, 10%, 25% and 50%, which cover a wide range from
light to strong power of noise.

Measurements have been conducted to compare the output of both full and
separable median filters for filtering sizes ranging from 3×3 to 131×131. For
each pair of filtered images, the difference between output images has then
been measured through PSNR7 and MSSIM8 [24] indicators. Absolute values
have not been displayed as they have been detailed in the literature during
the past decades and would not provide any additional information.

For any given image Iin(i, nl) of size H ×W pixels, where i ∈ [1 : 10, 000]
and the noise level nl ∈ [0; 1], the output images Ifull and Isep are obtained
respectively by filtering Iin(i, nl) with a k×k median filter in its full or separa-
ble version. For each given set of parameters, the two main indicators ∆PSNR

and ∆MSSIM are obtained by evaluating the following expressions:{
∆PSNR = PSNR(Ifull, Iin)− PSNR(Isep, Iin)

∆MSSIM = MSSIM(Ifull, Iin)−MSSIM(Isep, Iin)
(6)

In addition to the average ∆PSNR and ∆MSSIM values, each pair of out-
put images has been analysed to count how many images are best denoised
respectively by the full and the separable median filter. This led to produce
a supplementary indicator that helps in deciding which filter version to use,

7 Peak Signal to Noise Ratio.
8 Mean Structural SIMilarity.
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regarding the window size as well as the type and power of the noise. This
indicator is simply displayed in the various figures as a label with either of the
following texts: “full likely better” or “separable likely better”.

Eventually, another batch of measurements has been conducted in order to
confirm what the study of the bi-chromatic case has revealed: there are more
color combinations where only the separable filter would alter the central pixel,
but they are less likely, inside the filtering window, than those where the full
would be the only one to alter the central pixel. To avoid mixing noisy and
non-noisy pixels, both median filters have been applied on every cover images
of the database and the two interesting situations described above have been
counted.

To avoid any doubt regarding the simulation results, all measurements have
been performed under Matlab R2017b, using standard functions like med-
filt2(), psnr() and the original mssim implementation proposed in [24].

4.2 Evaluation context

Results have been obtained by averaging runtimes of a variable number of
executions. The actual number of runtimes was dynamically set to ensure a
total execution time under 0.5 second. This setup avoids any overhead caused
by the RCU scheduler on Linux 3.16.0-4-amd64 host platform powered by one
Xeon E5620 @2.40 GHz processor and CUDA v9.0. Each kernel has been
run by Titan-X9 and V10010 GPUs on 8 bit images of sizes 1,024×1,024
and 8,192×8,192. Cover images of the BOSS database, whose original size
is 512×512, have then been resized and corrupted by a medium power salt
and pepper noise of 25%.

The pixel throughput value of the GPU kernels was used as a main per-
formance indicator. It does not include transfer times to and from the GPU,
as median filter kernels are likely to be part of a complex process fully run on
the GPU.

To evaluate the absolute performance of the proposed implementation, the
maximum effective pixel throughput that our own GPU/host couple is able
to achieve has been measured. Such a peak value helps in deciding on further
investigation. We performed this measurement by running dummy kernels that
fetch the gray-level of each pixel from GPU’s global memory and output it into
another area into the GPU’s global memory, exclusive of any other instruction.
Each thread may process several pixels in order to balance the compute and
read/write loads.

An experimental tuning stage shows that processing four pixels by thread
achieves the peak pixel throughput of respectively 80 (Titan-X) and 200 (V100)
billion pixels per second on an 8192×8192 pixel image. The most significant

9 Titan-X GPU: Maxwell family, compute capability 5.2, 3,072 cuda cores at 1.24 GHz,
12 GByte of RAM.
10 V100 SXM2 GPU: Volta family, compute capability 7.0, 5,120 cuda cores at 1.45 GHz,

32 GByte of RAM.
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factor in the speedup brought by V100 is its memory bandwidth of 900 Go/s,
compared to 336 Go/s for Titan-X. This speedup of ×2.5 achieved by the Volta
V100 against the Titan-X is observed whatever the median kernels executed
on both GPU models. That led to display only the results of the most recent
V100 GPU model. If needed, readers can easily deduce Titan-X throughputs
values by dividing those of V100 by 2.5.

5 Results

The first part of this section presents the denoising quality obtained for the
considered image set, using PSNR and MSSIM metrics. It is followed by a
comparison on the pixel corruption generated by both versions. Finally, an
analysis of the computational complexity and performance is given.

5.1 Comparison of full and separable median filters under salt and pepper
noise

Fig. 8 displays the evolution of the average ∆PSNR and ∆MSSIM values when
k ranges from 3 to 131 on the whole set of images. It should be noted that on
average, whatever the noise level, the separable median filter achieves better
PSNR and MSSIM values for every window size above or equal to 11×11, and
the average differences tend very rapidly towards the pair of values below :

lim
k→min(H,W )

∆PSNR = −0.4 dB

lim
k→min(H,W )

∆MSSIM = −0.005

Another interesting fact is detailed by Fig. 9 which displays the percentage
of images, among the whole database, that are best denoised by full median
filtering. It reveals that, whatever the power of noise, the separable version
gives better results above 21×21, and that below 25% of salt and pepper
noise, this threshold is downsized to 7×7.

Given the filtering size and the power of noise, Fig. 9 can then provide a
rule for selecting the best type of median filter to use, from a statistical point
of view: below 50%, on average, the separable filter is probably the best choice.

It is also important to note that, up to a 7% of salt and pepper noise,
separable filtering is always better than full filtering.

On the basis of the above statistical study, and with all the precautions
that must be taken regarding the data-dependency of median filtering as well
as its intrinsically limited scope (though quite large) provided by the 10,000
natural scenes of the database, the conclusion is that in common situations,
separable median filtering is likely to achieve higher salt and pepper noise
reduction than full median filtering. As for larger filtering windows often used
for other reasons than noise reduction, both filters have a very close behavior
which is in favor of the much faster separable version.
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(a) ∆PSNR(dB)

(b) ∆SSIM

Fig. 8 Relative performance of the full median filter compared to its separable version, on
average, over 10,000 natural images for filtering window sizes ranging from 3×3 to 131×131.
A positive value indicates that full filtering is better than the separable one.
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(a) Ranking on PSNR value

(b) Ranking on SSIM value

Fig. 9 Percentage of images that are best denoised by Full Median filter, over 10,000 natural
images for filtering window sizes ranging from 3×3 to 31×31 under salt and pepper noise
corruption. Above 50%, the full median will more likely provide a better output image than
the separable version.
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(a) 17.34 dB / 0.182 (b) 11.82 dB / 0.045 (c) 35.80 dB / 0.968

(d) 27.06 dB / 0.837 (e) 36.23 dB / 0.970 (f) 24.74 dB / 0.758

Fig. 10 Example of a 512×512 image, corrupted by 7% (a) and 25% (b) salt and pepper
noise and then processed by both full and separable 3×3 filters. c) and d) are filtered using
the full version while e) and f) are filtered by the separable one. For each image, results are
given through PSNR(dB)/MSSIM.

An example is presented in Fig. 10, where image #9850 of the database,
randomly chosen, is displayed in two configurations: after corruption by 7%
and 25% salt and pepper noise (images a and b). Images c and d show the
results after a full 3×3 median filtering stage, while images e and f display the
results of the separable 3×3 filtering stage. The visual comparison confirms
the statistical results of Fig. 9 and Fig. 8 with very close output images in
the 7%-noise case, while the full filter outperforms the separable one in the
25%-noise case.

To illustrate the discussion about the filtering size, Figure 11 shows the
results of the same processes applied on a 8192×8192 image corrupted by a
25% salt and pepper noise. For a better visibility, a small square region of
interest is displayed, making it easier to compare both output images. In this
configuration, a 15×15 filter is well adapted to noise reduction and both filters
visually produce very close results.
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(a) 10.61 dB / 0.015 (b) 10.61 dB / 0.015

(c) 40.97 dB/ 0.994 (d) 47.74 dB / 0.994

Fig. 11 Example of a 8192×8192 image, corrupted by a 25% salt and pepper noise (a) and
then processed by both full and separable 15×15 filters. a) shows the whole image, b) focus
on a 681×681 pixel square around the last letters “US” on the right side. Images c) and
are filtered using respectively the full and the separable version. For each image, results are
given through PSNR(dB)/MSSIM and are computed on the whole images.

5.2 Comparison of the corruption generated by separable and full filters

The percentages of non-noisy pixels corrupted by only one of the median filters,
separable or full, are plotted on Fig. 12. It confirms that in the range of our
experiments, the full filter always alters more pixels than the separable version,
though the difference tends to decrease when the window size increases. The
maximum difference of 6.68 points is observed for the smallest size while the
minimum of 2.64 points is reached at the largest size of the experiment, ie.
131×131. It represents between 17,500 and 6,900 pixels for the 512×512 images
of the database.
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Fig. 12 Percentage of non-noisy pixels corrupted by only one of the median filter versions
and not the other. The percentages represent the total pixel count, over the 10,000 natural
images of BOSS database, for filtering window sizes ranging from 3×3 to 131×131.

5.3 Computational complexity analysis

As presented above, computations are mostly achieved by means of multiple
calls to a simple swapping function, that actually swaps its two input pa-
rameters if their values are not in ascending order. A good approach to the
complexity is given by the number of times each median filter calls this func-
tion. It actually represents the worst case, as each call will not necessarily
result in an actual swap.

For each processed pixel, the proposed separable filter realizes respectively
3, 10 and 16 calls for the smallest sizes 3×3, 5×5 and 7×7 because no over-
lapping is exploited. For sizes ranging from 9×9 to 19×19 the packet size is
set to m = 4 and the number of calls is given by:

Wsep(k) = 18 +
1

2

i=6+ k−9
2∑

i=6

sw(i) (7)

where

sw(i) =

{
3 i−1

2 + 1 , i odd

3 i
2 , i even

Above 21×21, the packet size is set to m = 8 and the number of calls is
then given by:
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Fig. 13 Complexity of both PRMF (full) and PRSMF (separable) implementations, for
filtering window sizes ranging from 3×3 to 131×131. The complexity is displayed as the
total number of calls to the swapping function, according to real executions.

Wsep(k) = 64.25 +
1

4

i=12+ k−21
2∑

i=10

sw(i)

(8)

According to Equations 7, 8 and results from [10], the complexity of pro-
cessing a single pixel for the proposed separable median filter isO( 1

4klog(k)2),
which is close to k3, as opposed to O( 1

10k
4) for the PRMF full version.

It is illustrated in Fig. 13 where the proposed PRSMF implementation
is compared to the PRMF regarding the real (i.e. during executions) total
number of calls to the swapping function made by both filters. Except for a
flat area in the PRSMF results, curves perfectly match the given complexities.

5.4 Performances of the proposed implementation

Kernel throughput values of the proposed implementation called PRSMF11

are presented in Fig. 14 for 1,024×1,024 and 8,192×8,192 pixel images and
compared with Nvidia’s NPP, Green’s new GPU 2D filter [21] and our pre-
vious PRMF 2D filter [10]. Green’s new GPU implementation represents one
of the most recent and most effective 2D median filter but does not run in
a separable way. As we do not have access to the source code, the timings

11 Parallel Register-only Separable Median Filter
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on V100 have been extrapolated from [21], where a comparison on Titan-X
against PRMF is detailed; we trusted author’s results and used the constant
×2.5 speed factor measured between Titan-X and Volta (see 4.2) to produce
a relevant comparison. Nvidia’s NPP is a closed code library which appears
to be currently the only one that allows to run in the separable way with
reasonable throughputs.

The maximum throughputs of PRSMF are reached by the 3 × 3 filter,
processing m = 4 pixel per thread, with around 125 billion pixels per second
on V100. That represents around 62.5% of the peak throughput (for both
GPUs). The optimal value for m depends on the window size k but only takes
two different values: m = 4 when k < 21 and m = 8 when k ≥ 21. This
behavior confirms that the computation load has a higher impact than the
parallelism level for relatively small windows, as the smallest size for which
m = 8 filters use less registers per pixel than m = 4 filters is k = 33, according
to section 3.3.

The performances of PRSMF are between 9 and 24 times faster than the
Nvidia NPP library, which seems to implement two different methods depend-
ing on the filtering size: below k = 21, the plot looks like a sorting-based
implementation while from k = 31 and above, the plot seems to reveal a
histogram-based implementation (near constant time). As for Green’s imple-
mentation, the achieved throughput is almost constant whatever the filtering
and image sizes, while PRSMF’s throughput increases with the image size.
Still, Green’s implementation achieves lower throughputs whatever the filter-
ing size, at least up to k = 131 where the lowest speedup brought by PRSMF
is around ×5 and reaches around ×200 as its highest value (3×3, 8,192×8,192
pixel image).

It is important to notice that the performances of these kernels on 16-bit
images remain the same as when run on 8-bit images.

Additionally, it is worth noting that the proposed implementation also
optimizes data transfers by allocating aligned memory on the GPU side and
pinned memory on the CPU side. As a reference value on both Titan-X and
V100, 9.0 ms are needed to copy a 8,192×8,192, 8 bit depth image from CPU
to GPU’s global memory, and 5.2 ms are necessary to copy back the same
image to CPU’s pinned-memory. The same transfer from GPU to CPU, using
a classical pageable-memory allocation on CPU side(malloc) will cost 40 ms
on both GPU models. Notice that transfer times vary linearly with pixel depth
and are thus doubled for 16-bit images with respect to 8-bit images.

6 Conclusion

In this paper, extensive study and theoretical considerations have proved that
statistically, better 2-D median filtering is obtained through a separable version
than classical full 2-D filtering. In addition, a very high speed implementation
has been designed, which makes it possible to process up to 50 billion pixels per
seconds on a very common Titan-X GPU, which represents for example, more
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(a) 1024×1024 input image.

(b) 8192×8192 input image.

Fig. 14 Pixel throughput value comparison, in million pixels per second, of Nvidia’s NPP,
Green’s and PRMF implementations against the proposed PRSMF, on Volta V100 GPU.

than 6000 Ultra High Definition (or 4K) images per second. An unprecedented
throughput of 125 billion pixels per second has been achieved on a high-end
V100 GPU model.

Let us also note that the throughput values achieved by 3×3 window filters
come quite close to the measured peak effective pixel throughput allowed by
our development platforms. Hence, the search for further improvement seems
to be conditioned by new GPU architecture capabilities.

Indeed, new perspectives have been opened with the release of Volta and
Turing family GPUs and not yet investigated in this work because of its very
recent availability. For example, independent thread scheduling and collabo-
rative groups could be promising features to be utilized.

The generalization of the comparison of the separable 2D median filter and
the full 2D median in presence of additive white Gaussian noise has already
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been conducted and confirms the average superiority of the separable median
(not discussed here due to the limited number of pages). Likewise, it would
be relevant to study the same situation with the 3D median filter and other
noise types. Finally, we plan to revisit other non-linear filters with the pseudo-
separability in mind.

Source codes of the proposed implementation can be generated online and
downloaded for testing purposes at:
http://info.iut-bm.univ-fcomte.fr/staff/perrot/convomed/ In addition, full def-
inition images and more measurements can be found at:
http://info.iut-bm.univ-fcomte.fr/staff/perrot/separable-median/
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