

Identification of keloid and surrounding healthy skin material parameters using Digital Image Correlation measurements in vivo Aflah ELOUNEG

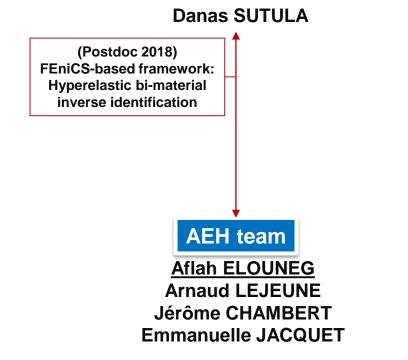
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Thesis October 2018:

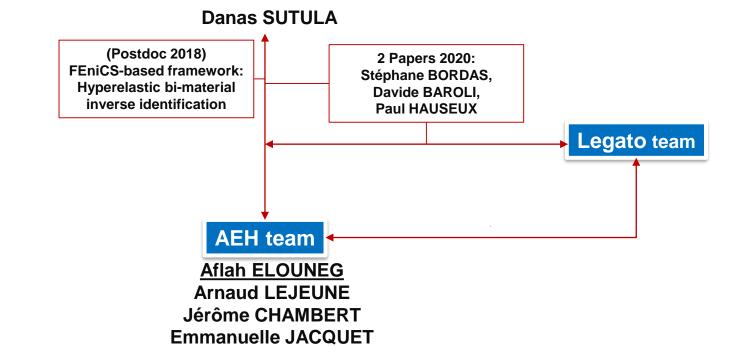
«Mechanical properties of the skin and uncertainties in biomechanics» Funded by Region of Bourgogne-Franche-Comté (France)

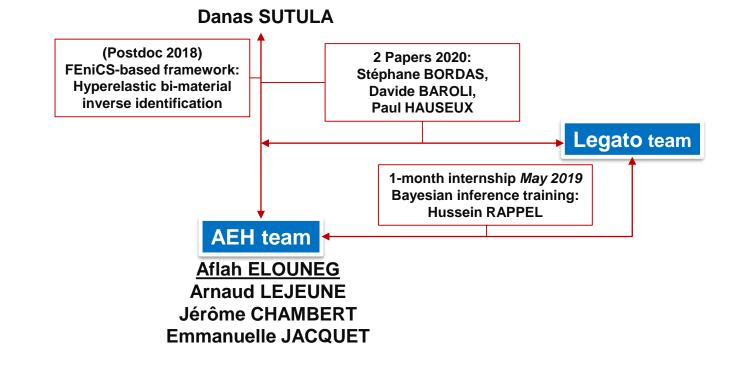
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

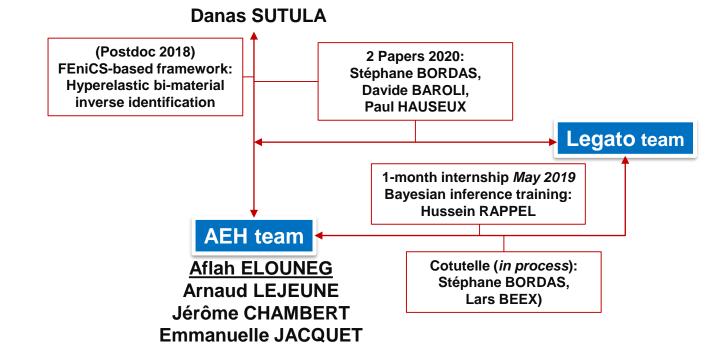
2

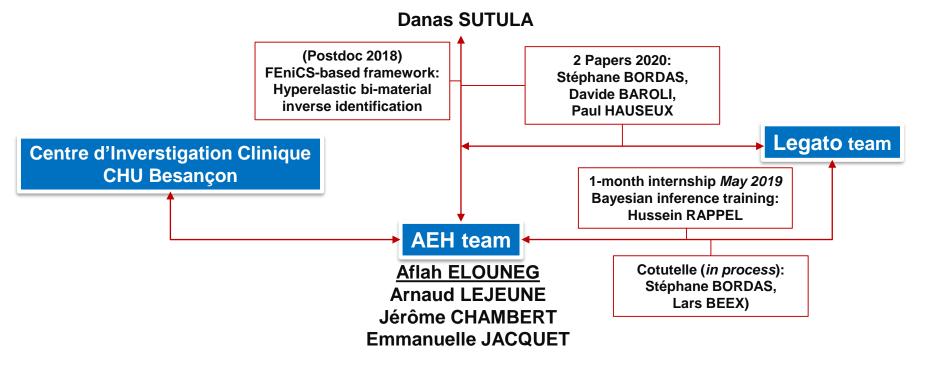

Thesis October 2018:

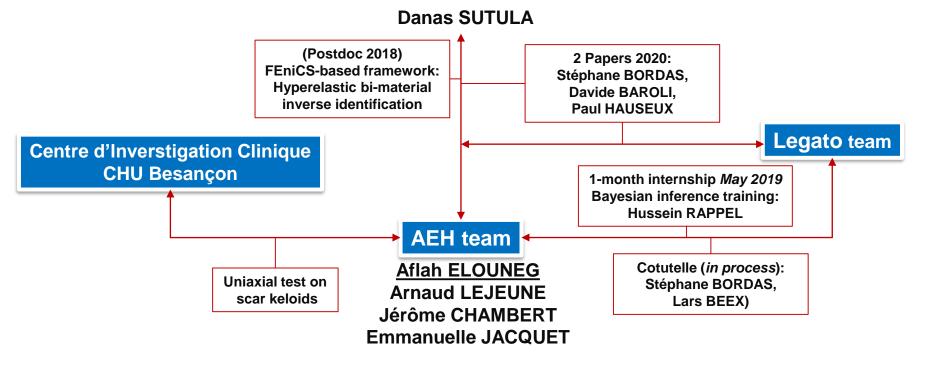
«Mechanical properties of the skin and uncertainties in biomechanics» Funded by Region of Bourgogne-Franche-Comté (France)

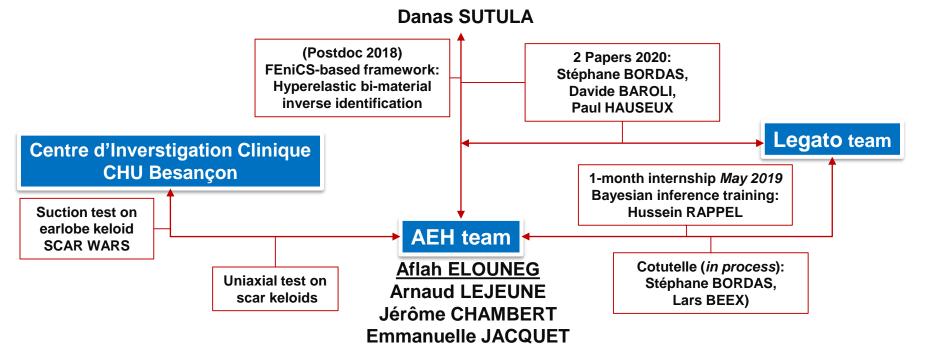

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

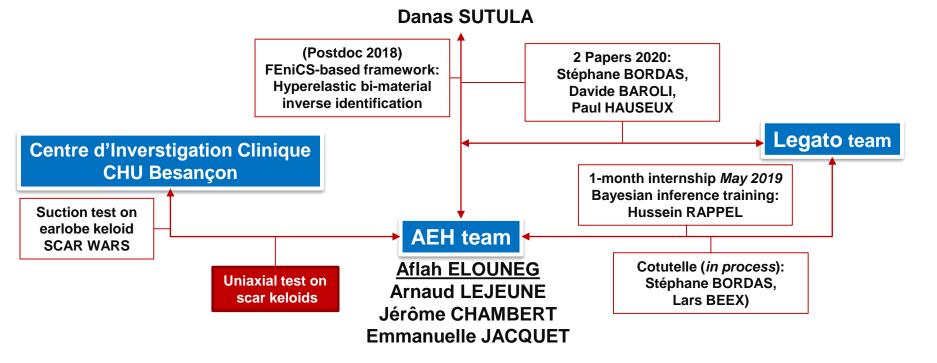

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Keloid chest scar formationKeloid shoulder scar formation(Ogawa, 2008)(Ogawa, 2008)

Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

Keloid earlobe (healthline.com/health/keloids)

- Benign tumor overgrowing beyond original wounds.
- The growth of a <u>keloid</u> is governed by many factors: biological, genetic and <u>biomechanical</u>.

Aims:

- <u>Identify keloid material parameters</u> (<u>in vivo uniaxial</u> and suction tests)
- Find the preferential directions of keloid growth.
- Establish specifications of a preventive <u>clinical solution</u>.

Keloid chest scar formationKeloid shoulder scar formation(Ogawa, 2008)(Ogawa, 2008)

Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

Keloid earlobe (healthline.com/health/keloids)

- Benign tumor overgrowing beyond original wounds.
- The growth of a <u>keloid</u> is governed by many factors: biological, genetic and <u>biomechanical</u>.

Aims:

- <u>Identify keloid material parameters</u> (<u>in vivo uniaxial</u> and suction tests)
- Find the preferential directions of keloid growth.
- Establish specifications of a preventive <u>clinical solution</u>.

Keloid chest scar formationKeloid shoulder scar formation(Ogawa, 2008)(Ogawa, 2008)

Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

Keloid earlobe (healthline.com/health/keloids)

- Benign tumor overgrowing beyond original wounds.
- The growth of a <u>keloid</u> is governed by many factors: biological, genetic and <u>biomechanical</u>.

Aims:

- <u>Identify keloid material parameters</u> (<u>in vivo uniaxial</u> and suction tests)
- Find the preferential directions of <u>keloid</u> growth.
- Establish specifications of a preventive <u>clinical solution</u>.

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Keloid chest scar formationKeloid shoulder scar formation(Ogawa, 2008)(Ogawa, 2008)

Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

Keloid earlobe (healthline.com/health/keloids)

- Benign tumor overgrowing beyond original wounds.
- The growth of a <u>keloid</u> is governed by many factors: biological, genetic and <u>biomechanical</u>.

Aims:

- <u>Identify keloid material parameters</u> (<u>in vivo uniaxial and suction tests</u>)
- Find the preferential directions of <u>keloid</u> growth.
- Establish specifications of a preventive <u>clinical solution</u>.

Keloid chest scar formationKeloid shoulder scar formation(Ogawa, 2008)(Ogawa, 2008)

Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

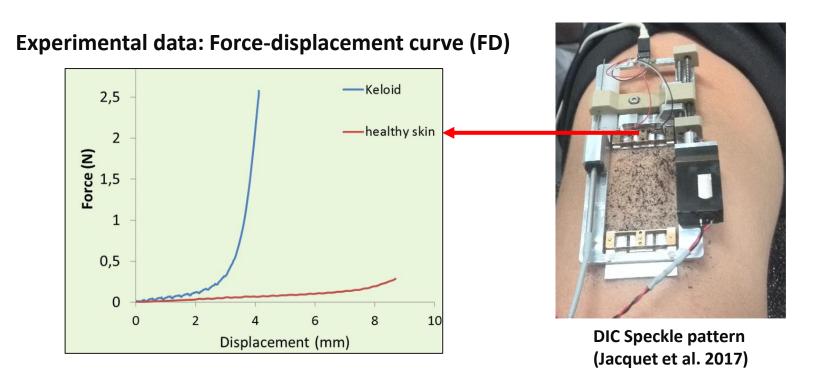
Keloid earlobe -(healthline.com/health/keloids)

- Benign tumor overgrowing beyond original wounds.
- The growth of a <u>keloid</u> is governed by many factors: biological, genetic and <u>biomechanical</u>.

Aims:

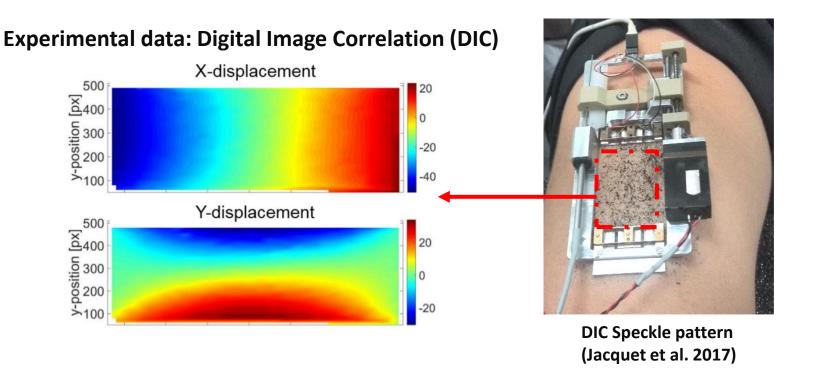
- <u>Identify keloid material parameters</u> (<u>in vivo uniaxial</u> and suction tests)
- Find the preferential directions of <u>keloid</u> growth.
- Establish specifications of a preventive <u>clinical solution</u>.

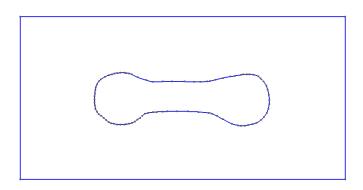
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

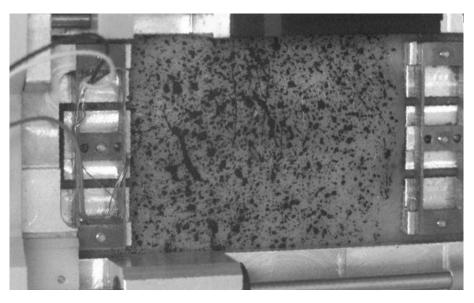

Outlines:

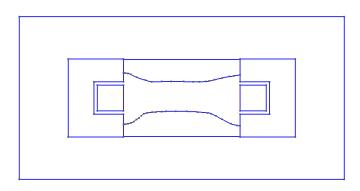
- Uniaxial tensile test on bi-material soft tissues
- FEniCS-based framework of the inverse identification
- Sensitivity analysis (noisy *in silico* data)
- Application to keloid scar surrounded by healthy skin
- Conclusion and perspectives

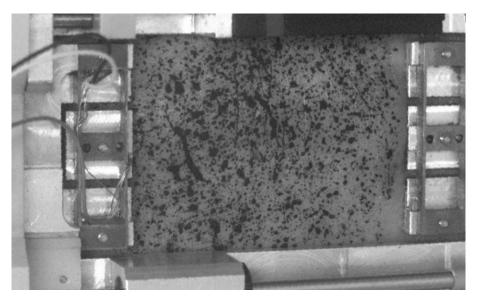
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

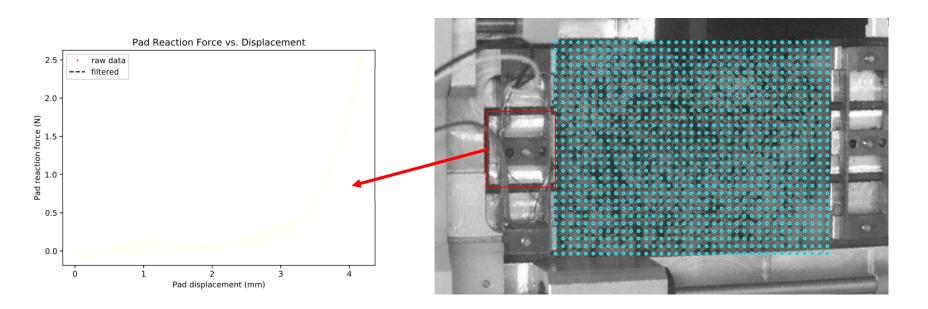

17


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo



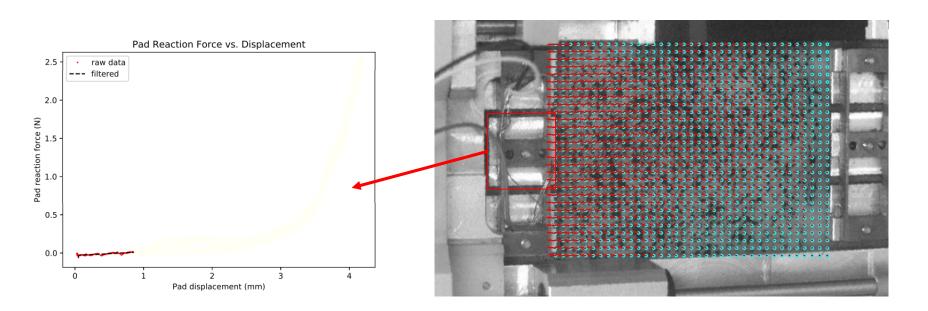

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo





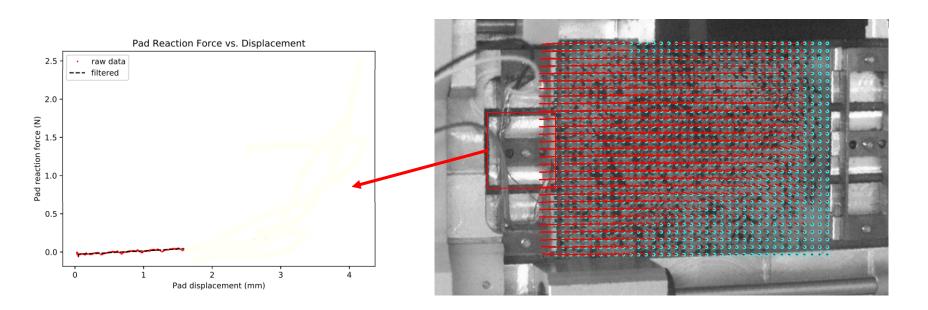
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

21



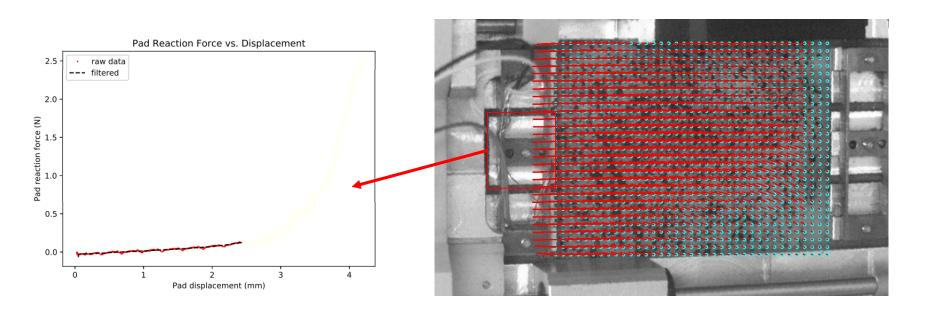
Experimental data: Force-Displacement and DIC (Digital Image Correlation)

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo



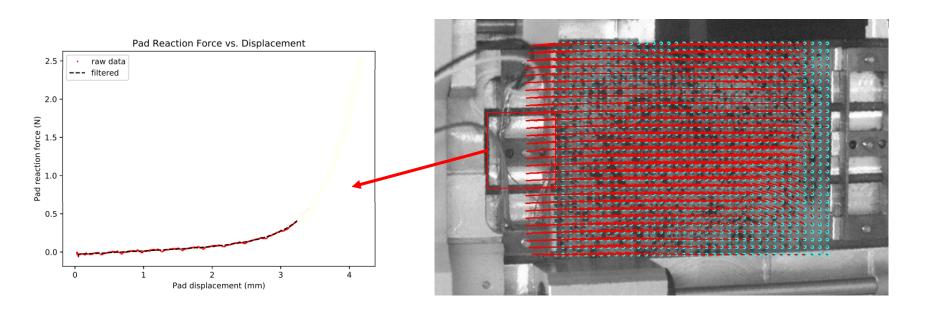
Experimental data: Force-Displacement and DIC (Digital Image Correlation)

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo



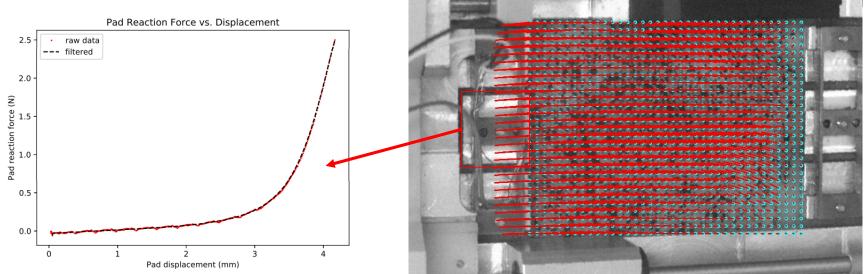
Experimental data: Force-Displacement and DIC (Digital Image Correlation)

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo



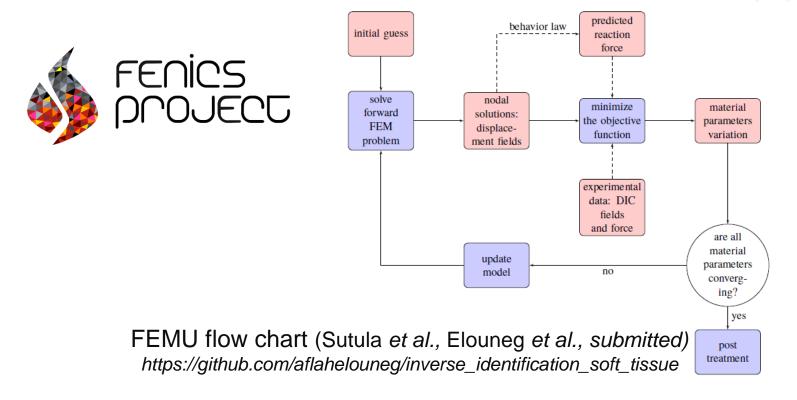
Experimental data: Force-Displacement and DIC (Digital Image Correlation)

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

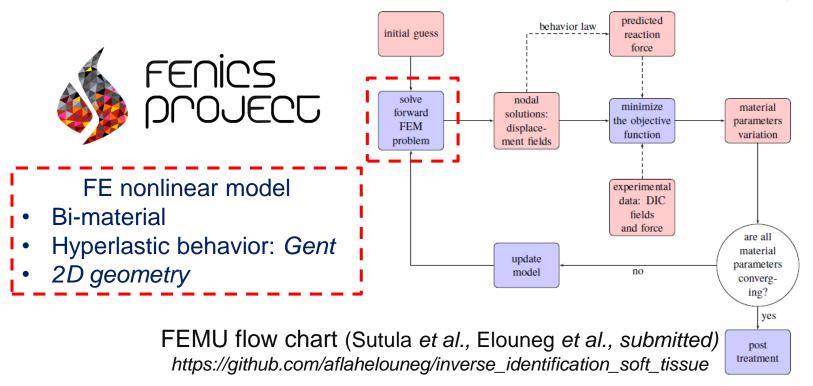


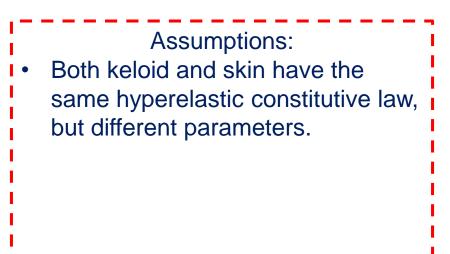
Experimental data: Force-Displacement and DIC (Digital Image Correlation)

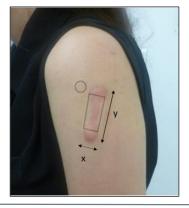
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

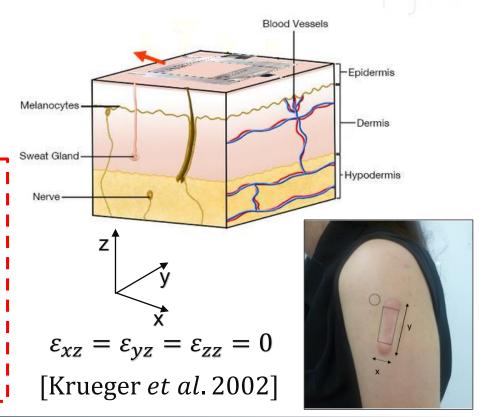


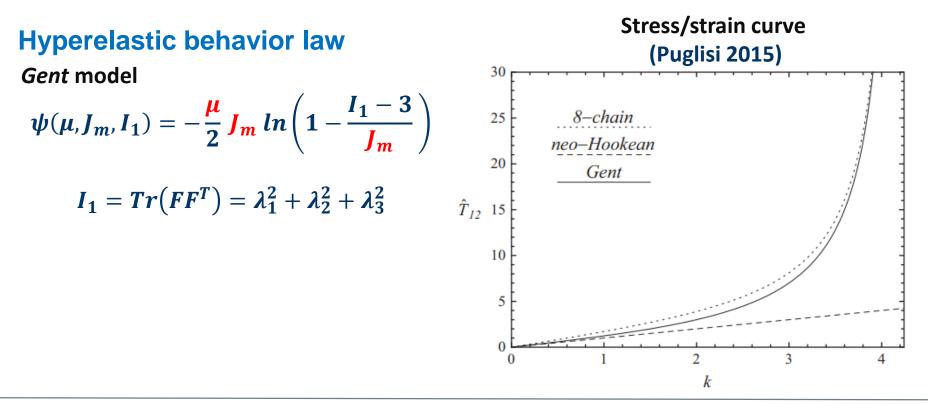
Experimental data: Force-Displacement and DIC (Digital Image Correlation)


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

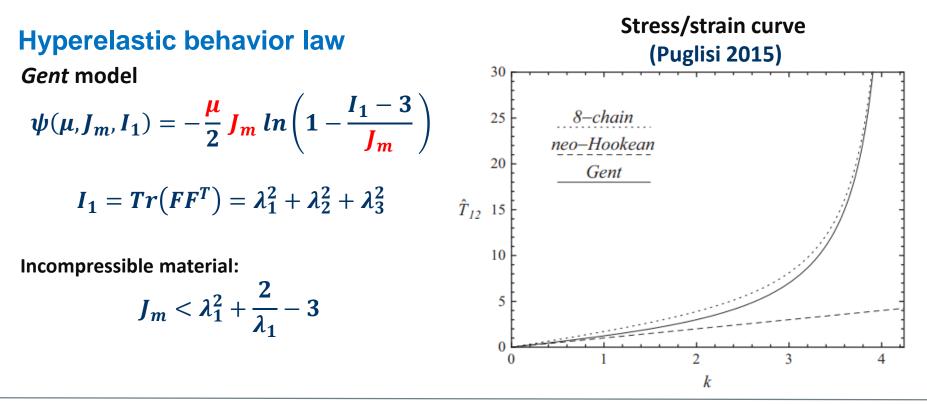






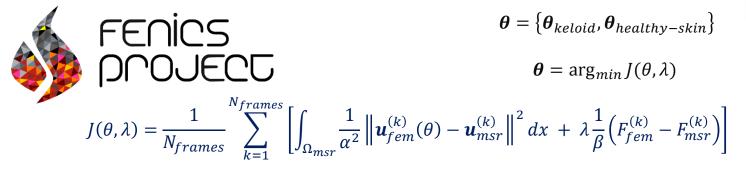

Assumptions:

- Both keloid and skin have the same hyperelastic constitutive law, but different parameters.
- Plane strain conditions are made for the whole 2D structure considering sub-cutaneous links (unlike ex vivo).


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

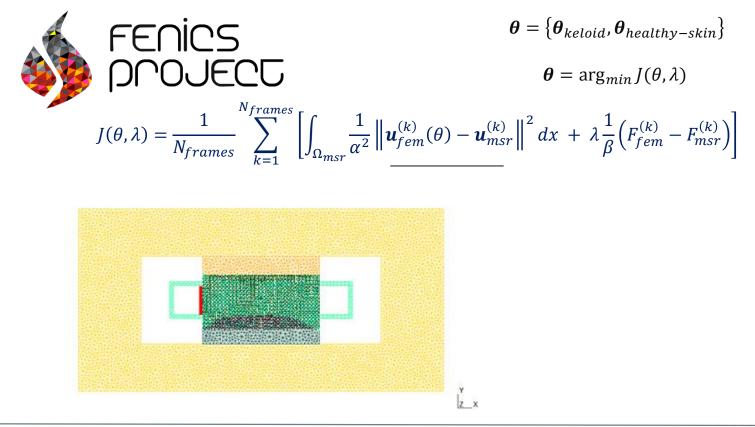
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


$$\begin{aligned} \theta &= \{\theta_{keloid}, \theta_{healthy-skin}\} \\ \theta &= \arg_{min} J(\theta, \lambda) \\ J(\theta, \lambda) &= \frac{1}{N_{frames}} \sum_{k=1}^{N_{frames}} \left[\int_{\Omega_{msr}} \frac{1}{\alpha^2} \left\| \boldsymbol{u}_{fem}^{(k)}(\theta) - \boldsymbol{u}_{msr}^{(k)} \right\|^2 dx + \lambda \frac{1}{\beta} \left(F_{fem}^{(k)} - F_{msr}^{(k)} \right) \right] \end{aligned}$$

Constant weights

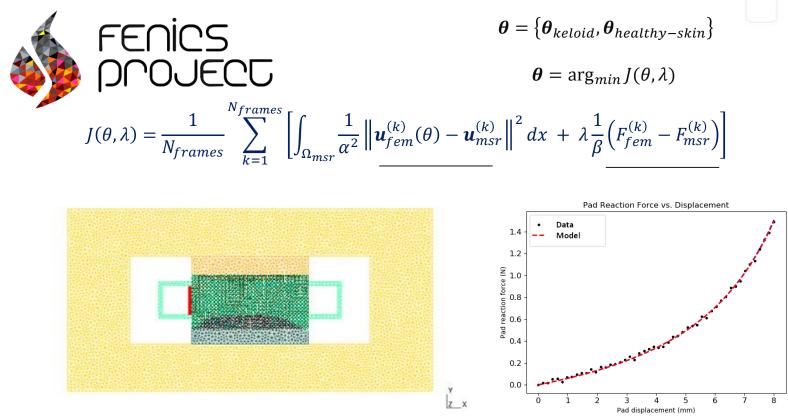
 λ : Lagrange multiplier

$$\alpha = \max_{k=0,1,\dots,N_{frames}} \left\| \boldsymbol{u}_{msr}^{(k)} \right\|_{\Omega_{msr}}$$
$$\beta = \max_{k=0,1,\dots,N_{frames}} \left| F_{msr}^{(k)} \right|$$



Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

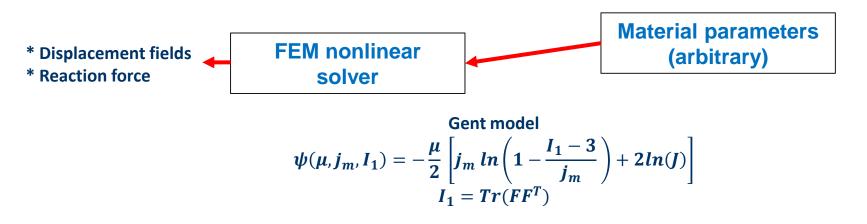
38


FEniCS-based framework of the inverse identification

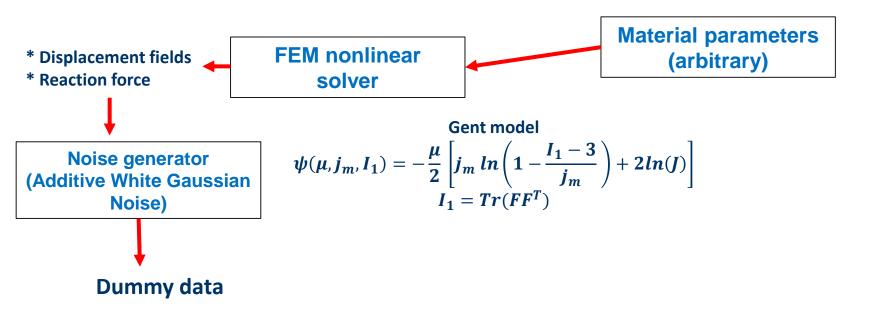
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

FEniCS-based framework of the inverse identification

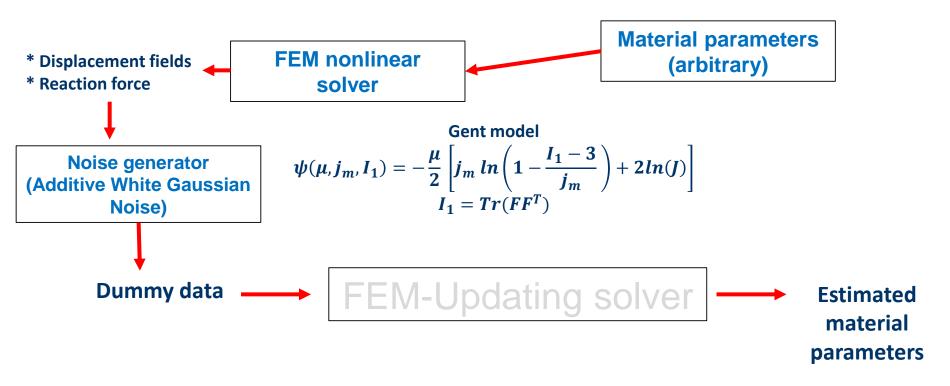
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

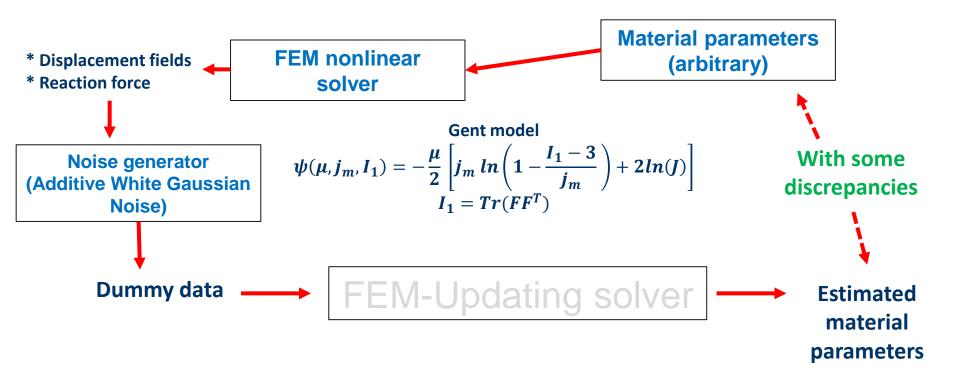


Material parameters (arbitrary)


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

41

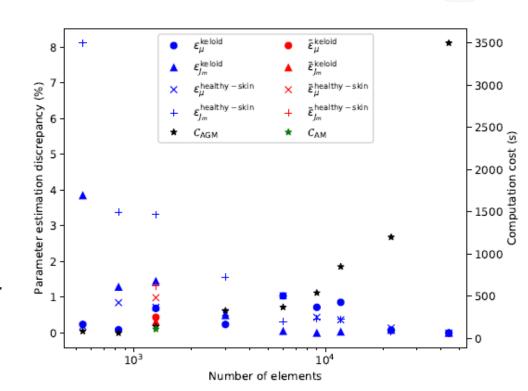




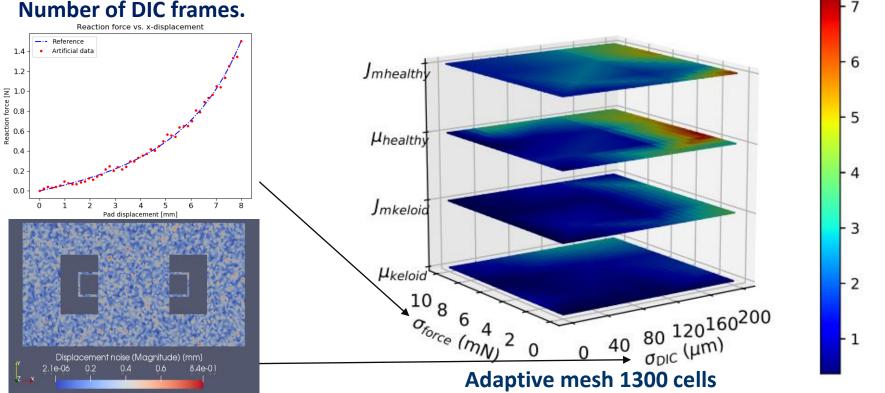
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.



- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.


Quantification of parameter identification discrepancy with respect to discretization error

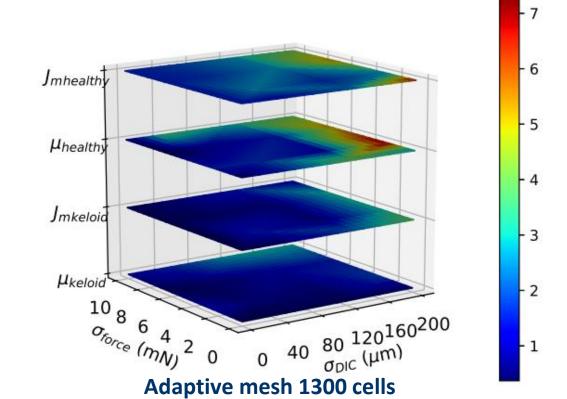
$$\varepsilon_{i} = \frac{\left|\theta_{i} - \theta_{i_{ref}}\right|}{\left|\theta_{i_{ref}}\right|}; 1 \le i \le 4$$

- **Discretization error.**
- Measurement noises standard deviation.
- Number of DIC frames.

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Legato team group meeting. 24/04/2020 – Aflah ELOUNEG

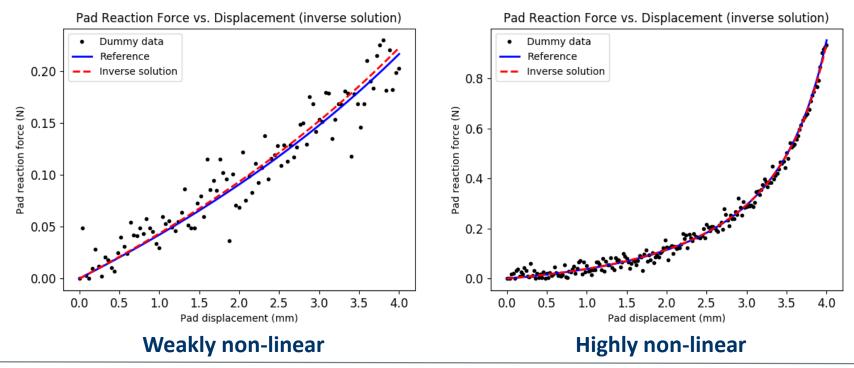
Discrepancy (%)



 $\sigma_{DIC_{max}} = 160 \, \mu m$

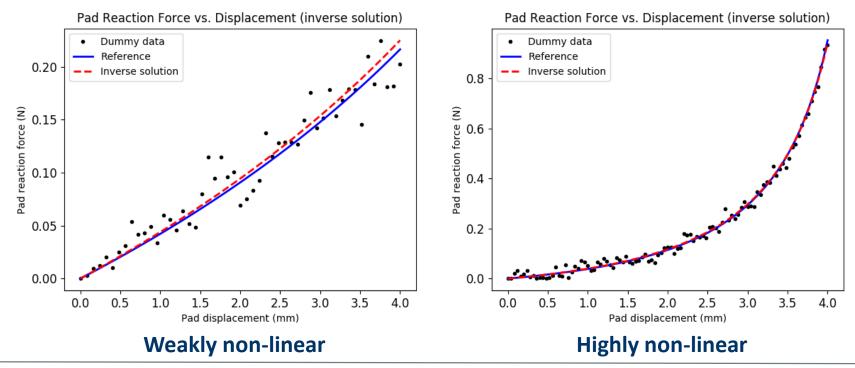
 $\sigma_{force_{max}} = 10 \, mN$

- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.



- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.

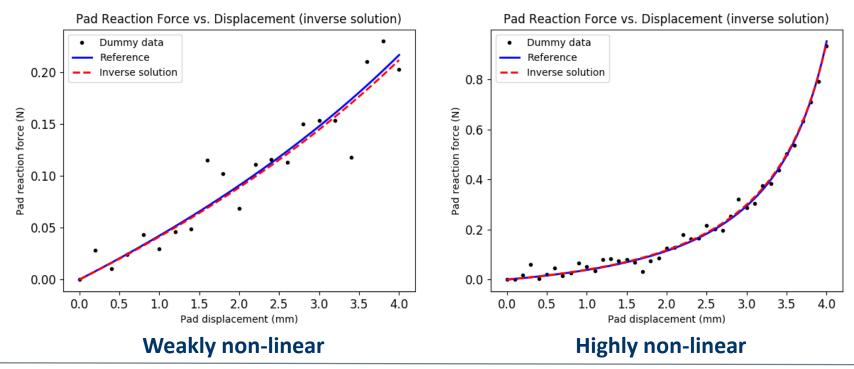
$\sigma_{DIC} = 200 \, \mu m \, \sigma_{force} = 20 \, mN$



Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.

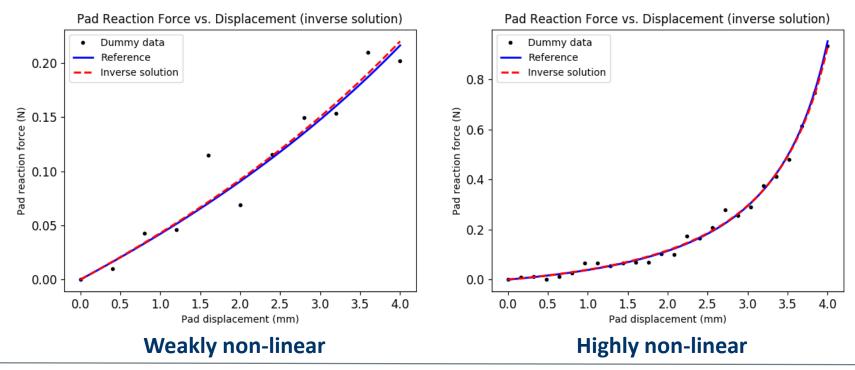
$\sigma_{DIC} = 200 \, \mu m \, \sigma_{force} = 20 \, mN$



Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.

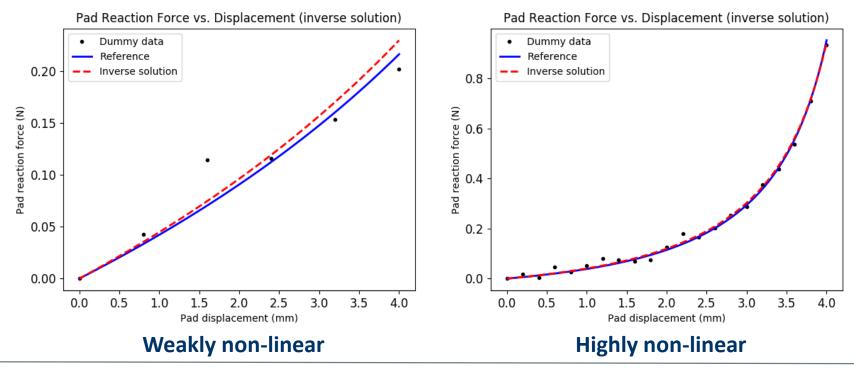
$\sigma_{DIC} = 200 \, \mu m \, \sigma_{force} = 20 \, mN$



Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.

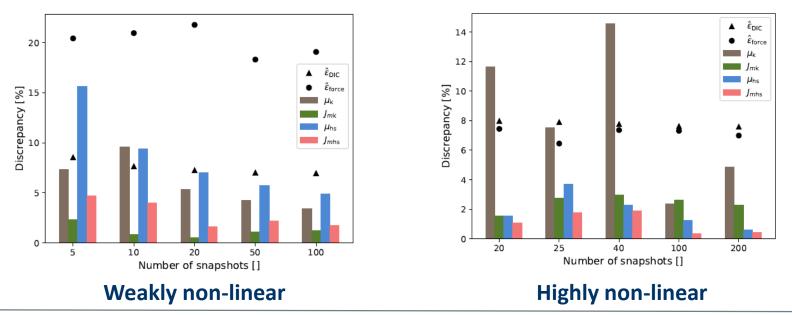
$\sigma_{DIC} = 200 \, \mu m \, \sigma_{force} = 20 \, mN$



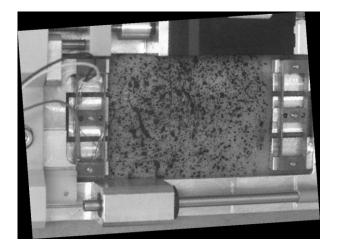
Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.

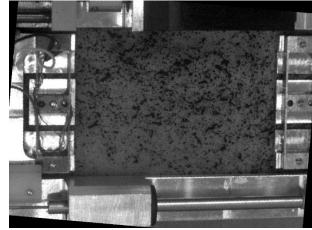
$\sigma_{DIC} = 200 \, \mu m \, \sigma_{force} = 20 \, mN$



Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo


- Discretization error.
- Measurement noises standard deviation.
- Number of DIC frames.

 $\sigma_{DIC} = 200 \ \mu m \ \sigma_{force} = 20 \ mN$

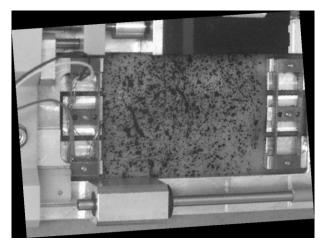


Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo



Keloid + surrounding healthy-skin

Healthy-skin (Colateral test)

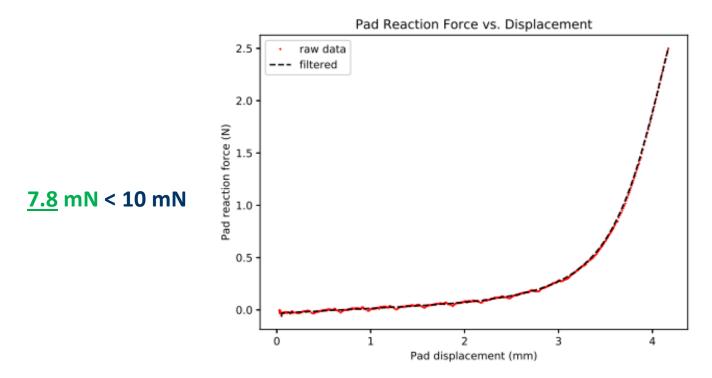


Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

Neohookean model <u>2</u> parameters (healthy skin) + <u>2</u> parameters (keloid)

(Sutula et al., submitted)

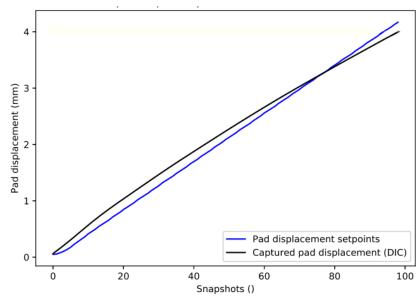
Keloid + surrounding healthy skin

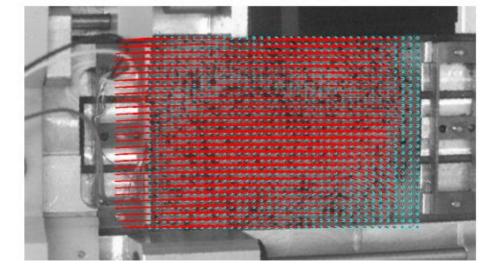


Butterfly-shaped keloid (x=15mm, y=47mm) (Chambert et al., 2019)

Gent model <u>4</u> parameters (keloid + healthy-skin)

Measurement uncertainty quantification

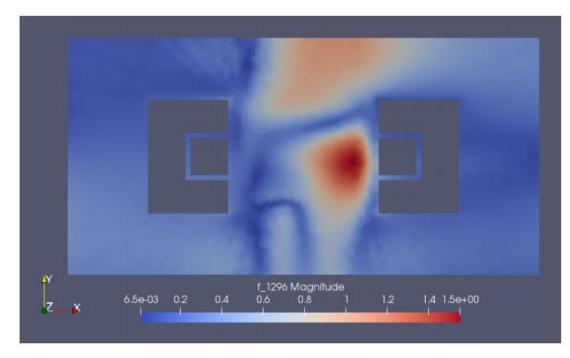



Data filtering with Moving-Average method

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Application to keloid scar surrounded by healthy skin Measurement uncertainty quantification

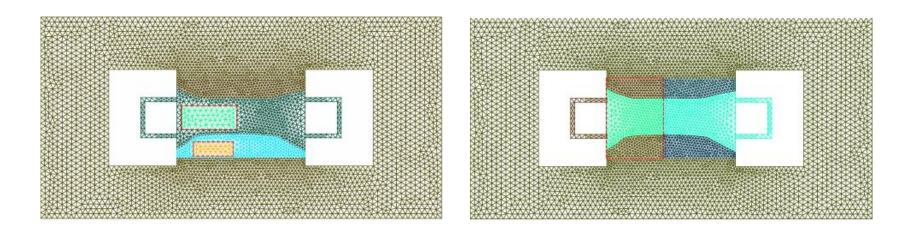
Captured pad displacement with DIC


$128\,\mu\text{m} < 160\,\mu\text{m}$

DIC with pyDIC library https://github.com/ladisk/pyDIC

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Application to keloid scar surrounded by healthy skin Inverse identification



Discard between consistent (generated) and the experimental displacement fields

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Application to keloid scar surrounded by healthy skin Inverse identification

Splited and jointed optimization domains

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Inverse identification

Cost weights	ZOI configuration	Local optimum $\hat{\theta}$	$\varepsilon_{\rm force}$	$\varepsilon_{\rm disp}$	$\varepsilon_{\rm force} + \varepsilon_{\rm dis}$	
		$\mu_k = 9.26 \text{ kPa}$				
Constant	Splited	$J_{mk} = 0.0154$	1.13%	4.020	6.05%	
Constant		$\mu_{hs} = 6.98 \text{ kPa}$		4.92%	0.05%	
		$J_{mhs} = 0.169$				
		$\mu_k = 8.11 \text{ kPa}$				
Constant	Splited	$J_{mk} = 0.0142$	0.97%	5%	5.97%	
Constant		$\mu_{hs} = 5.58 \text{ kPa}$				
		$J_{mhs} = 0.163$				
		$\mu_k = 6.686 \text{ kPa}$				
Variable	Splited	$J_{mk} = 0.0127$	5.11%	5.17%	10.28%	
, and the		$\mu_{hs} = 4.404 \text{ kPa}$		5.17 10		
		$J_{mhs} = 0.153$				
	Splited	$\mu_k = 7 \text{ kPa}$	1.8%			
Variable		$J_{mk} = 0.0124$		5.1%	6.9%	
		$\mu_{hs} = 4.43 \text{ kPa}$				
		$J_{mhs} = 0.157$				
	Jointed	$\mu_k = 9.13 \text{ kPa}$	1.09%	5.34%		
Constant		$J_{mk} = 0.0155$			6.43%	
		$\mu_{hs} = 7.03 \text{ kPa}$				
		$J_{mhs} = 0.169$				
	Jointed	$\mu_k = 8.35 \text{ kPa}$	1.32%			
Constant		$J_{mk} = 0.0142$		5.4%	6.72%	
		$\mu_{hs} = 5.99 \text{ kPa}$				
		$J_{mhs} = 0.167$ $\mu_k = 8.82 \text{ kPa}$				
	Jointed	$\mu_k = 8.82 \text{ kPa}$ $J_{mk} = 0.0168$	2.3%			
Variable		$J_{mk} = 0.0168$ $\mu_{hs} = 4.39 \text{ kPa}$		5.4%	7.7%	
		$\mu_{hs} = 4.59 \text{ KPa}$ $J_{mhs} = 0.159$				
C				-		
Sui	mmary of	iocal optir	num	S		

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

		Cost weights	ZOI configuration	Local optimum $\hat{\theta}$	$\varepsilon_{\rm force}$	$\varepsilon_{\rm disp}$	$\varepsilon_{\rm force} + \varepsilon_{\rm disp}$
	Inverse identification	Constant	Splited	$\mu_k = 9.26 \text{ kPa}$ $J_{mk} = 0.0154$ $\mu_{hs} = 6.98 \text{ kPa}$ $J_{mhs} = 0.169$	1.13%	4.92%	6.05%
1.75	Inverse solution	Constant	Splited	$\mu_k = 8.11 \text{ kPa}$ $J_{mk} = 0.0142$ $\mu_{hs} = 5.58 \text{ kPa}$ $J_{mhs} = 0.163$	0.97%	5%	5.97%
1.50 2 1.25		Variable	Splited	$\mu_k = 6.686 \text{ kPa} J_{mk} = 0.0127 \mu_{hs} = 4.404 \text{ kPa} J_{mhs} = 0.153$	5.11%	5.17%	10.28%
Generation force (N)		Variable	Splited	$\mu_k = 7 \text{ kPa}$ $J_{mk} = 0.0124$ $\mu_{hs} = 4.43 \text{ kPa}$ $J_{mhs} = 0.157$	1.8%	5.1%	6.9%
ی 0.50 م 0.25 م		Constant	Jointed	$\mu_k = 9.13 \text{ kPa}$ $J_{mk} = 0.0155$ $\mu_{hs} = 7.03 \text{ kPa}$ $J_{mhs} = 0.169$	1.09%	5.34%	6.43%
0.00	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Pad displacement (mm)	Constant	Jointed	$\mu_k = 8.35 \text{ kPa}$ $J_{mk} = 0.0142$ $\mu_{hs} = 5.99 \text{ kPa}$ $J_{mhs} = 0.167$	1.32%	5.4%	6.72%
	Inverse solution	Variable	Jointed	$\mu_k = 8.82 \text{ kPa} J_{mk} = 0.0168 \mu_{hs} = 4.39 \text{ kPa} J_{mhs} = 0.159$	2.3%	5.4%	7.7%
		Su	mmary of	local optir	num	S	

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

		Cost weights	ZOI configuration	Local optimum $\hat{\theta}$	$\varepsilon_{\rm force}$	$\varepsilon_{\rm disp}$	$\varepsilon_{\rm force} + \varepsilon_{\rm disp}$
	Inverse identification	Constant	Splited	$\mu_k = 9.26 \text{ kPa}$ $J_{mk} = 0.0154$ $\mu_{hs} = 6.98 \text{ kPa}$ $J_{mhs} = 0.169$	1.13%	4.92%	6.05%
	Inverse solution			$\mu_k = 8.11 \text{ kPa}$			
1.75 -	data	Constant	Splited	$J_{mk} = 0.0142$ $\mu_{hs} = 5.58$ kPa $J_{mhs} = 0.163$	0.97%	5%	5.97%
1.50 · 2 1.25 ·		Variable	Splited	$\mu_k = 6.686 \text{ kPa}$ $J_{mk} = 0.0127$ $\mu_{hs} = 4.404 \text{ kPa}$ $J_{mhs} = 0.153$	5.11%	5.17%	10.28%
Reaction force		Variable	Splited	$\mu_k = 7 \text{ kPa}$ $J_{mk} = 0.0124$ $\mu_{hs} = 4.43 \text{ kPa}$ $J_{mhs} = 0.157$	1.8%	5.1%	6.9%
0.50 · 0.25 ·		Constant	Jointed	$\mu_k = 9.13 \text{ kPa}$ $J_{mk} = 0.0155$ $\mu_{hs} = 7.03 \text{ kPa}$ $J_{mhs} = 0.169$	1.09%	5.34%	6.43%
0.00 -	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	Constant	Jointed	$\mu_k = 8.35 \text{ kPa}$ $J_{mk} = 0.0142$ $\mu_{hs} = 5.99 \text{ kPa}$ $J_{mhs} = 0.167$	1.32%	5.4%	6.72%
	Pad displacement (mm)	Variable	Jointed	$\mu_k = 8.82 \text{ kPa}$ $J_{mk} = 0.0168$ $\mu_{hs} = 4.39 \text{ kPa}$ $J_{mhs} = 0.159$	2.3%	5.4%	7.7%
		Su	mmary of		num	S	

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Inverse identification Inverse solution -- data 1.75 1.50 (N) 1.25 1.00 0.75 0.50 0.25 0.00 0.5 1.5 2.0 2.5 3.0 3.5 4.0 0.0 1.0 Pad displacement (mm) **Inverse solution**

Cost weights	ZOI configuration	Local optimum $\hat{\theta}$	$\varepsilon_{\rm force}$	$\varepsilon_{\rm disp}$	$\varepsilon_{\rm force} + \varepsilon_{\rm dis}$
		$\mu_k = 9.26 \text{ kPa}$			
Constant	Splited	$J_{mk} = 0.0154$	1.13%	4.92%	6.050
Constant		$\mu_{hs} = 6.98 \text{ kPa}$			6.05%
		$J_{mhs} = 0.169$			
		$\mu_k = 8.11 \text{ kPa}$			
C	Splited	$J_{mk} = 0.0142$	0.97%	5%	5.97%
Constant		$\mu_{hs} = 5.58 \text{ kPa}$			
		$J_{mhs} = 0.163$			
		$\mu_k = 6.686 \text{ kPa}$			
Variable	Splited	$J_{mk} = 0.0127$	5.11%	5.17%	10.28%
variable		$\mu_{hs} = 4.404 \text{ kPa}$		5.17%	10.20%
		$J_{mhs} = 0.153$			
	Splited	$\mu_k = 7 \text{ kPa}$	1.8%	5.1%	6.9%
Variable		$J_{mk} = 0.0124$			
Variable		$\mu_{hs} = 4.43 \text{ kPa}$		5.1 %	
		$J_{mhs} = 0.157$			
	Jointed	$\mu_k = 9.13 \text{ kPa}$	1.09%	5.34%	
Constant		$J_{mk} = 0.0155$			6.43%
Constant		$\mu_{hs} = 7.03 \text{ kPa}$		5.54 10	0.45 %
		$J_{mhs} = 0.169$			
	Jointed	$\mu_k = 8.35 \text{ kPa}$	1.32%		
Constant		$J_{mk} = 0.0142$		5.4%	6.72%
Constant		$\mu_{hs} = 5.99 \text{ kPa}$		21110	0.1210
		$J_{mhs} = 0.167$			
	e Jointed	$\mu_k = 8.82 \text{ kPa}$	2.3%	5.4%	
Variable		$J_{mk} = 0.0168$			7.7%
		$\mu_{hs} = 4.39 \text{ kPa}$			
		$J_{mhs} = 0.159$			
Su	mmary of	local ontir	num	S	

Summary of local optimums

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

Conclusion and perspectives

A primary material parameter set of keloid/healthy-skin has been identified by taking into account measurement noise admissibility criteria.

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

68

Conclusion and perspectives

A primary material parameter set of keloid/healthy-skin has been identified by taking into account measurement noise admissibility criteria.

- Develop a full 3D or pseudo-3D FE model.
- Model selection.
- Use stochastic method Bayesian inference- to identify a global optimum. (?)
- Identify earlobe keloid parameters through suction test

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo

69

Thank you for your attention !

Questions?

Mechanical parameters identification of keloid and surrounding healthy skin using Digital Image Correlation measurements in vivo