

Agent-Based Modelling of the vibration-induced arterial growth

Maha Reda*+, Christophe Noël*, Emmanuelle Jacquet+

* Institut National de Recherche et de Sécurité, Vandoeuvre-Lès-Nancy, France
 * Univ. Bourgogne Franche-Comté – Department of Applied Mechanics,
 Besançon, France

Our job: making yours safer

Background

- In France, 11% of workers are exposed to Hand-Arm transmitted Vibrations (HAV)
 - **8%** have an exposure time \geq 20 hours / week
- A sustained exposure to HAV can perturb some mechanical quantities inside the digital artery:
 - Wall Shear Stress (WSS) values (the mechanical shear stress exerted by the blood on the arterial wall)
 - Dynamic stress and deformation fields.
- On the long term, these perturbations may lead to various vascular pathologies and disorders such as:
 The vibration-induced Raynaud's syndrome i.e.
 Vibration White Finger (VWF).

Vibration White Finger

Background

- Raynaud's syndrome: a vascular disorder that causes vasospasms in the body extremities (fingers and toes), often triggered by cold or emotional stress.
- It is characterized by an arterial growth and remodeling potentially induced by an intimal hyperplasia phenomenon.

Thickening of the intima due to:

- Presence of Smooth Muscle Cells (SMCs) in intima instead of in media only.
- Pathological proliferation of SMCs
 + SMCs synthesis of ExtraCellular Matrix inside the intima.
- Our goal is to develop a model of the intimal hyperplasia that can predict the degree of arterial growth upon exposure to vibration.

Methods

- Vibration can reduce the WSS values between the blood and the endothelium and causes a Low Shear Stress (LSS) flow inside the digital artery (Noël and Settembre, 2017).
- The LSS can alter some endothelium functions
 - the Endothelial Cells (EC) secretion of Growth Factors (GF).
- These Growth Factors control the Smooth Muscle Cells (SMCs) proliferation and migration.

Methods

- 2 layers of a muscular artery are modelled, separated by the Internal Elastic Lamellae (IEL):
 Intima: Endothelial Cells (ECs)
 - Media: Smooth Muscle Cells (SMCs) + ExtraCellular Matrix (ECM) (collagen and elastin fibers)

Results

- Working conditions: exposure to vibration \rightarrow WSS = 1 Pa
 - 4h / day
 - 1h / day

Results

Simulating the intimal hyperplasia

Working condition: 4 h of exposure / day for 5 years

Conclusion

- Implementation of a lattice agent-based model of the vibration-induced intimal hyperplasia in NetLogo.
- The model can describe the physiological state and predict the isotropic arterial growth as a function of exposure time to vibration.
- It can simulate different working conditions and predict the resulting degree of arterial growth specific to each condition.
- The model has the ability to include more agents and to study different and more complex cellular phenomena.

Outlook

Time

Our job: making yours safer Thanks for your attention

