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The new generation of instruments in the field of medical robotics aims to use devices that are less and less invasive
for the patient. However, some of these microrobots are in underdevelopment and must undergo several tests in
order to obtain the mandatory certifications to be used on patients. Indeed, one of the main tests to be validated is the
accurate determination of their reliability and remaining useful life (RUL) in order to ensure optimal performance
during the surgical procedure. This paper is focused on obtaining a degradation modeling for a microrobot dedicated
to intracorporeal laser surgeries. For this purpose, simulated degradation data is collected from a four-bar complaint
mechanism that fulfills the same behavior of a flexure hinge. For it, our work is based on the pillars of the Prognostics
health and management (PHM). Knowing that a flexure hinge of the microrobot is a critical element and knowing
that it is possible to have measures of the evolution of its performance and therefore of its degradation, we propose
a data-driven degradation modeling by considering the normal life distribution in order to assess the reliability and
the RUL. In conclusion, a data-driven model within the PHM study for lifetime estimation was presented.

Keywords: Data-driven, Degradation modeling, Remaining useful life, Reliability, Surgical microrobots, Flexure
hinges.

1. Introduction
Surgeries using a laser as a scalpel brings sev-
eral advantages as sealing off blood vessels and
nerves reduces bleeding, swelling, scarring, pain,
infection, and the length of the recovery period.
However, a laser as a scalpel is uniquely used in
surgical interventions in areas as ophthalmology,
dermatology, and a few other vocal folds, always
with the laser source placed outside the human
body. Between 2012 and 2015, the European FP7
project μRALP proposed to develop a system to
place a miniature robotic laser scalpel inside the
human body see Fig. 1.

This relative progress to the existing technology
was possible thanks to the creation of a teleop-
erated surgical system based on a microrobot as
an end-effector and an adjustable laryngoscope
to insert the microrobot and cameras inside the
patient’s body and in this way to treat diseases
inside the human body using a laser as scalpel.
Nevertheless, this microrobot which is used to
drive the laser beam inside the human body must
undergo several tests, mainly to determine its use-

ful lifetime and ensure an optimal performance
during the surgical procedure. Prognostics health
and management (PHM) approach incorporates
many assessment skills from the observation all
the way to the decision phase, including the anal-
ysis phase. Thus, a PHM approach is presented
precisely to determine the lifetime of the micro-
robot which is a necessity to the certifications to
get access to the commercialization.

Fig. 1. Concept of μRALP project.
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PHM approach has been studied to increase
the reliability, availability, safety, maintainability,
logistics of the systems in order to minimize the
maintenance cost of engineering assets, see (Ata-
muradov et al. (2017); Das et al. (2011)). A key
pillar of the PHM is the prognostics, which en-
ables the RUL estimation of the systems by taking
into account their current health state and their
future operating (Khelif et al. (2017)).

In order to estimate the RUL of the systems,
there are several prognostics methodologies and
techniques (Okoh et al. (2014)). They are clas-
sified into four groups: Experienced-based ap-
proaches are based on the distribution of events
records of a population of an identical item, can
be implemented when historical repair and fail-
ure data are available, and not consider the fail-
ure indication to predict the life. Model-based
approaches usually used mathematical dynamic
models, this can be physics-based models and
statistical models, for example, the Crack growth
modeling. Knowledge-based approaches usually
are solved by human specialists, for example, ex-
pert systems, and fuzzy logic systems, and they
have been used for fault diagnostics. Data-driven
approaches are based upon statistical and learn-
ing techniques, for example, multivariate statisti-
cal methods, neural networks, Bayesian networks,
and Hidden Markov models (Gorjian et al. (2010))

This work is based on a data-driven approach
since thanks to the growth of sensor technology
this has become the main approach in the do-
main of RUL estimation. Degradation data con-
tain valuable information about the performance
of systems. It even provides more information
than the traditional failure times. For that reason,
the reliability assessment of the systems using
degradation data has become a crucial approach to
evaluate the reliability and to estimate the RUL of
a complex system. Moreover, the degradation data
can be analyzed before failure occurs and provides
reliable estimations of the systems.

Probabilistic methods use a large quantity of
data of failure that, according to the information
that these provide, allow selecting a probabilistic
distribution that demonstrates the life cycle of the
system through a life distribution.

According to ReliaSoft (2015), the term life
distributions is used to describe the collection
of statistical probability distributions that we use
in reliability engineering and life data analysis.
A statistical distribution is fully described by its
probability density function (pdf) and its cumu-
lative distribution function (cdf). The pdf repre-
sents the relative frequency of failure times as a
function of time while the cdf is used to mea-
sure the probability that the item in question will
fail before the associated time value, and is also
called unreliability. These life distributions are se-
lected according to the given data-set. Each data-
set provides valuable information and the analyst

must choose the most appropriate one using a
goodness-of-fit-test. As it was mentioned already
above, the probabilistic distributions demonstrate
the behavior of a system during its life cycle, thus
it is important to explain that most failures of the
system are caused by the degradation of material
and devices that occur throughout this cycle.

Failures occur when the degradation measure
reaches a critical failure level making the systems
inoperable as designed (Huairui Guo (2015)),
within the specified conditions and specified time
(Ming Zhang (2017)). The degradation can not
be physically measured, but it is possible to have
measures of the evolution of the product’s perfor-
mance and therefore of its degradation see (Es-
cobar et al. (2003)). If the physics of the model
is unknown, the statistical approach can be used
to find a degradation model that can best fit a
given data set. We here propose a data-driven
degradation modeling by considering some usual
life distributions in order to assess the reliability
and the RUL of the flexure hinges, having as a
base the PHM concepts.

This paper is organized as follows. Section 2
presents a review of a microrobot dedicated to
intracorporeal surgeries and a short explanation
of the proposed mechanism to collect the simu-
lated degradation data. Section 3 deals with the
methodology of the pillars of the PHM where the
associated steps are explained as well as the life
distributions for reliability and RUL prediction. In
Section 4, the experiments and results for the com-
putation are explained. Finally, Section 5 provides
the conclusion of this work.

2. Microrobot Dedicated to
Intracorporeal Surgeries review

In this section, a synthesis of the microrobot
dedicated to intracorporeal surgeries is presented,
where the consecutive parts and the function of the
flexure hinges for better compression of this study
are explained. Moreover, the design of the sample
to data collection is explained which will show the
behavior of a single flexure hinge.

2.1. Microrobot Analysis
A microrobot with a parallel kinematics structure
destined to perform laser microsurgery on vocal
folds was created and tested in laboratory con-
ditions in FEMTO-ST Institute, this is shown in
Fig. 2. Smart Composite Microstructure (SCM)
fabrication technique was used to fabricate this
microrobot. The SCM technique was chosen to
create passive hinges which are combined in some
parts with piezoelectric cantilevers actuators and
in other parts simply left free in order to generate
the displacement. The flexure hinges are made
of polyimide and yield a relatively high range of
rotations (Lescano (2015)). However, these hinges
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Fig. 2. Microrobot dedicated to intracorporeal surg-
eries, (a) Parallel Kinematic structure made with SCM
technique, (c) microrobot assembly.

can cause complex deformations or failures in
the product which can affect the reliability of the
microrobot, hence these joints are considered the
critical element of the microrobot. The reliability
of the microrobot can be evaluated with the infor-
mation that provides the degradation data as well
as estimating the RUL since through this data its
performance is known.

Nevertheless, the parallel structure of the mi-
crorobot is complex to be analyzed since this inte-
grates many flexure hinges and in order to identify
the flexure hinge that causes the failure, an in-
depth analysis of the mechanism must be made.
Thus, a mechanism design was proposed to collect
the degradation data, this mechanism design will
be explained in Section 2.2.

2.2. Four-Bar Compliant Mechanism
Design and obtaining data

The proposed four-bar complaint mechanism
shown in Fig. 3 was used as a sample to collect
the simulated degradation data. This sample de-
sign performs the same movements of the flexure
hinges of the microrobot.

The mechanism design of the sample was based

Fig. 3. Four-bar mechanism, (a) Crank-rocker config-
uration of a four-bar mechanism and (b) Crank-rocker
configuration of a four-bar compliant mechanism.

Fig. 4. Bending motion simulation of a flexure hinge
and path collection.

on Grashof’s law and a crank-rocker configuration
equal to s + l < p + q was selected in order to
obtain a large flexion angle in the flexure hinge to
be analyzed, where s, l, p, and q are the links of
the mechanism.

When simulating the bending motion of the
flexure hinge in SolidWorks® Software, x and y
coordinates are obtained during its operating cy-
cle. These data save the information degradation
evolution over time. To observe this evolution, a
path that represents the collected past health state
is considered as a reference, in which the design
conditions are not modified during the simulation.

To obtain the current health path of the flexure
hinge, simulations are carried out for 10 samples
and the flexure hinge spring constant is modified,
which represents a design condition when simu-
lating a compliant mechanism.

The purpose of modifying the value of this
parameter is to try to show in the simulation that
each sample has different mechanical characteris-
tics even if they look similar, since these may vary
due to various factors at the time of manufacture,
however, these variations take very small values.

Fig. 4 shows a comparison between the past
health collected, represented by the black line,
with the current health, represented by the red line,
where the evolution of the degradation over time is
observed. The analysis of these paths is presented
in Section 4.

3. Methodology
We now come to present the proposed methodol-
ogy for flexure hinge degradation modeling with
the PHM. In this work, we will focus on the
data-driven approach since we will use a data
set collected from simulations that shown how a

Fig. 5. PHM Pillars.
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Fig. 6. Steps of the proposed methodology.

flexure hinge is degraded over time. Recall that
PHM usually has 6 pillars see Fig. 5 that collec-
tively enables us to understand the behavior of
the system. These pillars involve the next steps:
data acquisition, data processing, fault detection,
diagnostics, prognostics, and decision support.

Data acquisition is the first step of the PHM,
this provides access to the digitized sensors or
transducers data that are collected from the sys-
tems in order to perform diagnostic and prognos-
tics. In order to get error-free data and better inter-
pretation of the behavior of the system, the second
step is the data processing, since sometimes the
collected data involve noises that could confuse
the interpretation of the behavior of the systems.
Thus, the data must be submitted to cleaning,
evaluation, and selection of the main features in
order to get valuable information as the health
state of the systems. As for the faults’ detection, it
is dedicated to comparing the input data with ex-
pected values in order to detect strange behaviors
or anomalies taking account of the functioning
conditions (Thurston (2001)). Diagnostic enables
us to evaluate and detects the root cause of the
failures from the moment that these are identified.
The fault detection can provide useful information
for the diagnostic models, moreover to enable us
to get better precision with a reduction of the
inactivity time and a reduction in the operation
costs of the system (Bailey et al. (2015)).

Prognostics namely RUL estimation is known
as the prediction of the useful life of a system
and also can be defined as a mean of probability,
i.e., as a way of quantifying the possibility that
a machine will fail, or to know the time when
the machine can fail Dragomir et al. (2009). RUL
refers to the time left before observing a failure
given the current machine age and condition, and
the past operation profile. It is given by

RUL(t) = TEOL − t, (1)

where TEOL is the failure time to a predefined
degradation threshold and t is the current time.

Fig. 6 shows an algorithm about our proposed
methodology in order to evaluate the reliability
and estimate the RUL of the system. The first
step consists of collecting the data as described
in Section 2.2. Then, we go through the fault
detection part, the degradation modeling, and the
reliability and RUL estimation.

The main aim of developing a statistical model
for the degradation data is to identify a model for
the degradation paths. The shape of the paths can
take different forms depending on the degradation
process as a function of the variable measuring
lifetime of a unit (Meeker et al. (2011)).

As mentioned earlier, this study is focused on
analyzing degradation data, thus statistical meth-
ods can be used to find a model that can best
fit a given data set. Therefore, it is considered
important to present the basic degradation models
commonly used: linear, exponential, logarithmic,
and power (Huairui Guo (2015)) listed below:

• Linear model: D(t) = a× t+ b
• Exponential model: D(t) = b× ea×t

• Power model: D(t) = b× ta

• Logarithmic model: D(t) = a ln(t) + b

where D(t) is an index representing the degrada-
tion, a and b are the model parameters, a repre-
sents the slope of the curve and b represents the
intercept (at time =1), and t is the time. These
four models are ranked according to the sum of
the square of error (SSE) defined by

SSE =
m∑
i=1

SSEi =
m∑
i=1

ni∑
j=1

(Dij − D̂ij)
2, (2)
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where m is the number of units, ni is the number
of observations, Dij is the past degradation value

collected and D̂ij is the predicted degradation.
SSE essentially measures the variation of mod-
elling errors and is the sum of the squared dif-
ferences between each observation and its group’s
mean. The model with a smaller SSE is con-
sidered better than a model with a larger SSE
(Huairui Guo (2015)).

Moreover, in order to know if the model fits
well the given data also is recommended to ver-
ify the square of the correlation coefficient (R2)
between the observed degradation value and the
predicted value. R2 reflects the goodness-of-fit of
a model to the variable that it intends to explain. It
is important to know that the result of the coeffi-
cient of determination oscillates between 0 and 1.
The closer its value is to 1, the greater the fit of the
model to the variable that we are trying to explain.

The RUL estimation and the reliability evalua-
tion through the life data that are extracted from
the degradation modeling are considered as the
most central concepts in PHM, for their evaluation
life distributions are used. A life distribution is
a collection of failure data or life data and is
presented graphically as a graph of the number
of failures as a function of time. There are many
life distributions as Normal, Exponential, Lognor-
mal, and Weibull distributions that can be used
to model the reliability of the system, that is,
to determine with a certain degree of confidence
the probability that a system can survive for a
set time while operating correctly, and that also
allows estimating in terms of probability the time
left from the current time to the failure time or
degradation threshold known as RUL.

In our study will explain in more detail the
Normal distribution since this one was the most
appropriate for the computed pseudo failure time
data, which refer to the times that reach a preset
degradation threshold.

According to Pham (2006) the Normal distri-
bution is used to describe mechanism systems
where the failure is the product of the wear-out
effect or a result of the accumulation of small and
random mechanical damage. This distribution has
two parameters, μ that represent the mean of the
population, and σ , the standard deviation of the
population. The spread of the normal distribution
is determined by the standard deviation of its
pseudo failure data. The Normal distribution takes
the well-known bell shape and is described by the
probability density function f(t) and cumulative
density function F (t) given by

f(t) =
1

σ
√
2π

e−
1
2 (

t−μ
σ )2 (3)

and

F (t) =

∫ t

−∞

1

σ
√
2π

e−
1
2 (

s−μ
σ )2ds, (4)

where μ is the mean value, σ is the standard
deviation, f(t) indicates the relative frequency of
failures at any time t and F (t) gives the probabil-
ity that a system will fail at or before t.

The reliability function is defined by

R(t) =

∫ ∞

t

1

σ
√
2π

e−
1
2 (

s−μ
σ )2ds. (5)

Based on the above proposed methodology, we
will show the statistical and probabilistic methods
and techniques applied to the experimental results
in order to estimate the reliability and the RUL of
the flexure hinges.

4. Experimental Results
We now come to show the experimental results.
When the microrobot performs the activities for
which it was designed, the flexure hinges are sub-
jected to loading and unloading cycles repeatedly
during their operating cycle, this phenomenon
leads to the degradation of the material. Therefore,
when the flexure hinges of the microrobot perform
the bending motions in optimal conditions can be
obtained the graph of its path during this operating
time through the use of sensors, then as it occurs
the degradation of this path can change drastically.

In Section 2.2 it was explained how the path
was obtained for each sample through simula-
tions, now we will explain what these paths show.
Fig. 4 shows the path of sample 9 during 6 dif-
ferent times to know the health of the bending
hinges over time, where the black line represents
a good state of health of the system, that is, that
the hinge of bending is working properly within
the specified conditions and the specified time,
and the red line represents the degradation of the
bending hinge, that is, it shows the reduction of
its reliability, and from this figure, three different

Fig. 7. Failures and anomalies detection, (a) Failures
at 250 seconds, (b) Failures at 600 seconds, and (c)
Failures at 750 seconds.
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Table 1. Simulated degradation data for the flexure hinges over time.

t S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

10 6.2e−4 3e−3 5e−3 0.029 3e−3 3.7e−3 2e−3 3e−3 3.6e−3 3.2e−3

100 0.05 0.27 0.184 0.135 0.183 0.17 0.14 0.21 0.15 0.14
200 0.26 0.92 0.858 0.702 0.757 0.76 0.78 0.78 0.7 0.536
300 0.41 1.89 1.778 2.028 1.987 1.84 1.12 1.76 1.04 1.52
400 0.86 3.69 4.817 3.36 3.665 2.80 2.24 2.86 1.79 4.23
500 1.17 4.25 4.260 4.21 4.722 3.91 3.89 4.61 3.91 3.87
600 2.06 5.55 9.417 4.767 6.12 7.75 4.35 5.42 6.14 5.67
700 2.2 12.35 15.72 6.59 8.054 9.15 3.80 8.05 6.58 8.32
800 3.16 10.94 18.12 11.30 13.39 11.71 8.01 11.87 11.18 9.57
900 3.91 16.17 16.17 14.82 16.29 11.59 8.56 12.61 13.58 18.42
1000 5.66 24.32 26.03 12.27 13.54 19.44 14.21 20.13 11.12 18.66

health states were identified during three instances
of time shown in Fig. 7: when there is no failure
as very good at 250 seconds, when a soft failure
appears as not bad at 600 seconds, and when the
failure occurs as bad at 750 seconds.

As the reference x and y coordinates of 1 op-
erating cycle change with respect to the x and
y coordinates of n cycles number, it is deduced
that the flexure hinge has reached the degradation.
Taking into account these parameters and making
a statistical comparison between the reference x
and y coordinates, the number of cycles in which
the flexure hinge stops fulfilling the specified re-
quirements can be estimated.

The collection of these degradation data is es-
sential for PHM methodologies since it allows us
to predict and prevent failures in flexure hinges
thanks to the valuable information on the health
state provided by these data.

Fig. 8. Degradation path error corresponding to 10
samples.

To perform the degradation analysis, once the
initial path is obtained, a greater number of operat-
ing cycles is simulated in the MATLAB® Software
and random numbers are used in order to obtain
a change in the path according to the number of
cycles of the simulation, then a percentage error
between the initial path and the path to cycle n
is calculated to represent the degradation data.
The degradation data are shown in Table 1 and
correspond to a change in the percentage of the
error in the path vs time. The number of cycles
was transformed in time for a better interpretation
of the data. The degradation curves corresponding
to the 10 samples are shown in Fig. 8, where the x-
axis represents the time in seconds, the y-axis the
change in the percentage of the path error, and the
horizontal line is the degradation threshold value,
this line is considered as the indicator of failures
of the flexure hinge and maximum acceptable er-
ror is 10%. When the change in the percentage of
the path error exceeds a set degradation threshold,
it can be considered that the flexure hinge is no
longer suitable for future operations.

Once we get the degradation data set shown in
Table 1, the basic degradation models presented in
Section 3 are used in order to fit the data.

In the Table 2 is shown the result of fitting

Table 2. Sum squares of error (SSE)
and square of the correlation coefficient

(R2).

Model Rank SSE R2

Linear 3 58.36 0.91
Exponential 2 21.18 0.96
Power 1 10.23 0.98
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the given degradation data using three basic mod-
els: linear, exponential, and power, considering its
rank, the SSE, and the R2.

On the one hand, considering its ranking, the
power model got the highest rank for each sample,
since the values of the SSE of each sample proved
to be the smaller values, and on the other hand,
according to the computed values of the R2 of
the power model of each sample, these values
were the closest to 1, which shows the predicted
values are close to the observed values. According
to the results of the Table 2, the power model is
considered the model that best fits the given data.

4.1. Reliability Estimation
In order to estimate the reliability of the system,
the simple approach called pseudo failure time is
used, since when fitting the degradation model is
known its parameters a and b, therefore, when
knowing the degradation threshold can be com-
puted the pseudo failure time for each sample.

Table 3 provides the parameters a and b ob-
tained for each sample as well as their pseudo
failure times. If we replace these parameters in
the power model D(t) = b × ta and we replace
D(t) by the degradation threshold 10, then pseudo
failure times can be easily calculated by solving t
from the power model.

For example, the parameters a and b for sample
9 are 2.005 and 1.37 × 10−5, respectively. When
replacing these values in the power model and
taking D(t) = 10, the pseudo failure time t =
840.096 is obtained, this is shown in Fig. 9.

Once life or pseudo failure time data set are
available (see Table 3), the life distributions men-
tioned in Section 3 are used to estimate the relia-
bility of the flexure hinge at any time. In order to
select the life distributions that most accurately fit

Table 3. Power model parameters and pseudo fail-
ure time corresponding to each sample.

Samples Parameter Parameter Pseudo
a b Failure Time

1 1.984 6.077e−6 1359.01

2 1.988 2.324e−5 682.158

3 1.96 3.018e−5 655.34

4 1.971 1.979e−5 782.954

5 1.98 2.064e−5 743.633

6 1.994 1.736e−5 774.269

7 1.988 1.479e−5 1224.45

8 1.993 1.7e−5 785.069

9 2.005 1.37e−5 840.096

10 2.001 1.662e−5 773.108

Fig. 9. Power model fitting for sample 9 and its
pseudo failure time.

Fig. 10. Normal Distribution. (a) Probability density
distribution at t = 700 seconds, and (b) reliability
function at t = 700 seconds.

the given data set, the chi-square test was evalu-
ated.

The computed Normal distribution parameters
were μ = 862.009 and σ = 234.686, then replac-
ing these parameters in (5) and with a determined
time value we can compute the reliability of the
flexure hinge at any time.

For example Fig. 10 shown the reliability for
sample 9 at time t = 700 is R(700) = 0.76 rep-
resented by the orange area. This indicates 76%
of reliability at 700 seconds. In other words, the
probability that the flexure hinge will not fail is
high and the probability of failure represents 24%.
When knowing the life distribution that fits the
pseudo failure times, the reliability at any time can
be calculated.

4.2. RUL Estimation
The current RUL and predicted RUL are shown
in Fig. 11 these are represented by its probability
density function pdf . Estimated RUL is computed
from the point where the degradation was de-
tected, this represents the current time t, in this
time we can define a detection threshold value
until the time TEOL that represents the maximum
degradation condition. The RUL for sample 9 is
equal to 312 seconds, and it was computed by (1)
considering the current time t = 550 and the fail-
ure time TEOL = 862.009. In this way, different
RULs can be estimated, their precision depends
on the amount of data available, the higher data
amount their precision increases.
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Fig. 11. Illustration of current RUL and estimated
RUL where the orange and blue lines refer to the current
and the predicted degradation, respectively.

5. Conclusion
An analysis of the basic degradation models
within the PHM study for lifetime estimation was
for the first time presented of the flexure hinges of
a microrobot dedicated to intracorporeal surgeries.

The proposed approach is based on the flexure
hinge simulated degradation data and some ba-
sic probabilistic and statistical tools that allowed
fitting properly a degradation model and choose
the adapted life distribution for the failure times,
being the adapted Normal Distribution. The selec-
tion of the life distribution allowed us to predict
the reliability at any time and be able to estimate
the RUL.

This work opens a window for future studies
on real degradation analysis when the tests are
carried out with the proposed sample, as well as
involving more advanced approaches in order to
estimate the RUL.
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