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Abstract

Programmable matter based on modular self-reconfigurable robots could stand as the ultimate form of display
system, through which humans could not only see the virtual world in 3D, but manipulate it and interact with
it through touch. These systems rely on self-reconfiguration processes to reshape themselves and update their
representation, using methods that we argue, are currently too slow for such applications due to a lack of
parallelism in the motion of the robotic modules.

Therefore, we propose a novel approach to the problem, promising faster and more efficient self-reconfig-
urations in programmable matter display systems. We contend that this can be achieved by using a dedicated
platform supporting self-reconfiguration named a sandbox, acting as a reserve of modules, and by engineering
the representation of objects using an internal scaffolding covered by a coating.

This paper introduces a complete view of our framework for realizing this approach on quasi-spherical
modules arranged in a face-centered cubic lattice. After thoroughly discussing the model, motivations, and
making a case for our method, we synthesize results from published research highlighting its benefits and
engage in an honest and critical discussion of its current state of implementation and perspectives.

Keywords: Programmable Matter, Distributed Algorithms, Modular Robotics, Self-Reconfiguration,
Multi-agent Systems

1. Introduction

Through human history, humans have constantly
been on a quest to represent the world around them,
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perhaps as a way of communicating and collaborat-
ing more efficiently with their peers and passing on
their culture to future generations. One common way
of representing the world is through the use of dis-
play systems, a term which can widely fit any medium,
device, or system that can be used as way to display
information. Some of the first ever display systems
were most arguably something like cave paintings, a
very primitive way of representing a 3D world with
simple 2D drawings. For the most part of human
history, these display systems have remained tragi-
cally two-dimensional, failing to accurately describe
a world with an extra dimension. Some technologies
have made an exception, such as sculpture, but they
usually required very high effort and skills. With
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recent advances in digital technologies, 2D display
systems are now ubiquitous. Most allow interaction
with the user, through touch for instances, but they
largely still fail to account for that extra dimension of
the real world. Low effort visual 3D display systems
have nonetheless existed for quite some time in the
collective imagination (e.g., holographic displays in
science fiction), and are starting to materialize with
relatively recent technologies such as virtual reality
(VR) and augmented reality (AR). However, we want
to take 3D display systems one step further, and to be
able to display objects and data in an interactive and
tangible way through the use of programmable mat-
ter.

Programmable matter is usually defined as mat-
ter that is able to autonomously change its physical
properties (shape, color, density, etc.) programati-
cally in reaction to an event, internal or external. Al-
though several technologies could be considered a
kind of programmable matter, we will be focusing in
this paper on programmable matter based on mod-
ular self-reconfigurable robotic systems (MSRS).
Those are robotic systems made from an arrange-
ment of independent but interconnected robotic mod-
ules that must coordinate in order to achieve a com-
mon goal, usually while remaining connected to each
other at all times. Modular robotic systems provide
programmability, autonomy, interactivity, and evo-
lutivity through the motion of their parts, making
them, we believe, the current best substrate for pro-
grammable matter. They come in different archi-
tectures Ahmadzadeh et al. (2016), mainly as chain
modular robots where modules act as joints and links
to form chains, or as lattice modular robots were
modules assemble to form 2D or 3D lattice structures
that can be easily modeled as a discrete-space grid.
Finally, hybrid modular robots belong to both classes
at once. Of modular robotic systems, their most in-
teresting feature is their ability to self-reconfigure, to
change their morphology from an initial configura-
tion to a goal configuration of its modules through
the motion of their parts. As it turns out, the self-
reconfiguration problem, whose goal is to find a se-
quence of (potentially concurrent) module motions
transforming an initial configuration into a goal one
is in fact a very complex problem Bourgeois et al.
(2016). First, given a modular robot with n mod-

ules, the number of possible configurations that can
be made with such a robot is huge: (c.w)n, with c the
number of possible connections per module, and w
the number of ways of connecting them together Park
et al. (2008). Second, the branching factor of the
configuration space, describing all possible configu-
rations that can be achieved from a given configura-
tion is very high: O(mn), with m the number of possi-
ble movements and n the number of modules free to
move Barraquand and Latombe (1991). This leads to
a combinatorial explosion making the search space
between any two configurations exponential in the
number of modules, resulting in the intractability of
the self-reconfiguration problem. It has been proved
to be NP-complete for chain-type MSR by reduction
to 3-PARTITION Hou and Shen (2010) and Proba-
bilistic SATisfiability (PSAT) Gorbenko and Popov
(2012), and is also suspected to be NP-complete for
lattice MSRS.

Not only is self-reconfiguration computationally
intractable when computing it in a centralized fash-
ion, but most modular robotic systems must avoid re-
lying on centralized computing and use a distributed
paradigm instead. The difficulty of distributed self-
reconfiguration algorithms then also comes from the
incredible level of coordination required for many
modules to move in parallel while avoiding collisions
between each other, and creating deadlocks during
the construction process, situations where part of the
construction cannot be realized because some mod-
ules are blocking part of the goal shape, perhaps be-
cause of an unfeasible construction scheduling.

In fact, a self-reconfiguration algorithm could well
proceed without any parallel motion of the modules,
but the critical parameter that must be optimized in
self-reconfiguration is reconfiguration time. That is
the time to transform the initial configuration I into
the goal configuration G. This reconfiguration time
is usually expressed in number of discrete time steps,
and as a function of the number of modules in the
configurations. It is evidently much slower to per-
form the transformation one module at a time than
with parallel motions, and sequential algorithms are
hence mostly impractical due to their slow speed.
Other metrics for self-reconfiguration algorithms in-
clude the total number of motions performed by the
modules, the memory cost of the algorithm, or the
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number of messages exchanged.
Several research communities have become inter-

ested in the self-reconfiguration problem, with very
different viewpoints Thalamy et al. (2019b). On one
end of the spectrum, roboticists seek to design algo-
rithms to implement specific behaviors in their hard-
ware systems; on the other, theoretical computer sci-
entists study this problem from the standpoint of com-
putational geometry Michail et al. (2017) — mostly
on 2D problems until now. Finally, in-between these
two extremes, other research communities such as
in distributed systems study self-reconfiguration al-
gorithms without necessarily being involved in hard-
ware research. We mostly belong to the latter, even
though as we will see we are now making progress
in the design and manufacturing of hardware micro-
scale modular robots.

On the robotics side, early work on self-recon-
figuration considered only a very limited number of
modules in the system (dozens), and with intricate
geometries that made self-reconfiguration excessively
complex (bipartite systems, for instance Kotay and
Rus (2000); Ünsal et al. (2000), or others Yoshida
et al. (1998)). The field also moved away from heav-
ily centralized approaches to more adequate distri-
buted methods, better fitted for large-scale reconfigu-
ration and the dynamic nature of the underlying sys-
tems. While most self-reconfiguration methods are
deterministic, a number of stochastic methods can
be found in the literature. Early attempts based on
stochastic relaxation Yoshida et al. (1998) or simu-
lated annealing Kurokawa et al. (1998) suffered from
a difficulty to converge into the goal shape as they
were getting trapped into local minima. Nonetheless,
more recent attempts such as Fitch and McAllister
(2013)—based on a Markov decision process to op-
timize the number of connections/disconnections of
modules—have proven very promising as they can
easily be made generic and applied on diverse hard-
ware systems and models. Stochastic methods might
also be by themselves more robust to faults in hard-
ware systems during reconfiguration, which is crit-
ical, while deterministic methods would need addi-
tional correction mechanisms.

On the other hand, deterministic approaches gen-
erally have a guaranteed convergence into the goal
shape, but might need additional correction mecha-

nisms in case of hardware failures as opposed to the
built-in robustness of stochastic methods. The most
popular self-reconfiguration model is by far the sim-
ple sliding-cube, which resides in a cubic lattice and
can perform translations and convex rotations on the
surface of other modules, or only one of the former
in some models. Approaches vary from disassem-
bly/reassembly through an intermediate shape Fitch
et al. (2003), tunneling through the shape with sliding-
only cubes Kawano (2015) (both with quadratic op-
erating time cost), to more specialized methods such
as Bie et al. (2018) which can build branching struc-
tures in a linear number of module motions using
Lindenmayer-systems and cellular automata Bie et al.
(2018); Zhu et al. (2017).

The self-reconfiguration problem evidently stands
as one of the major foundational issues of program-
mable matter. In this context, algorithmic solutions
are required to exhibit some particular properties, that
we discuss in Thalamy et al. (2019b) through an anal-
ysis of the state of the art of self-reconfiguration jux-
taposed to the expectations of programmable matter.

To solve the reconfiguration problem more ef-
ficiently we propose, therefore, two optimizations.
The first one is to change the way we define an ob-
ject: rather than constructing an object filled with
micro-robots, we define it using its boundary repre-
sentation. Second, we propose, based on previous
research Kotay and Rus (2000); Ünsal and Khosla
(2001); Lengiewicz and Holobut (2019); Støy (2006);
Støy and Nagpal (2007) to build an object using an
internal scaffold that leaves internal holes inside the
shape to facilitate motion and coordination. This scaf-
fold can then be coated by modules to restore the ex-
ternal aspect of the object. Accordingly, while the
object will look like a plain object from the outside,
it will actually be composed exclusively of a scaffold
with an added coating. The resulting object will thus
contain fewer micro-robots than it would otherwise,
and these micro-robots will be able to move inside
the object; these two features significantly contribute
to decreasing the reconfiguration time. Furthermore,
while traditional self-reconfiguration research assu-
mes systems where all the number of modules in the
initial and goal configurations are equal, we drop this
constraint and assume that our self-reconfigurations
take place in a dedicated environment named a sand-
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Figure 1: Visual comparison of cups made of modular-robot-based programmable matter with cubic and spherical modules and at
various resolutions in terms of the size of the modules.

box, that acts as a reserve of modules placed under-
neath the reconfiguration scene and that can supply
and discard modules from the reconfiguring ensem-
ble.

As an anecdotal example of self-reconfiguration
speeds, an estimate of the reconfiguration time for
our sliding blocks Piranda et al. (2013) and using the
metrics introduced in Zhu and El Baz (2019) is 12
hours for 800 blocks. This is just a rough estimate
to stress that time is really an issue in self-reconfig-
uration algorithms. Besides, it was shown in prac-
tice that it could take 11.66 h to reconfigure an en-
semble of 1,000 Kilobots Rubenstein et al. (2012).
Given a rotation time of 20 ms, as gauged by our
latest hardware experiments with our quasi-spherical
rotating 2 mm 3D Catom modules, and using scaf-
folding, we simulated that it would take roughly 6 s
to build the scaffold of a cube of size 19 × 19 × 19
modules (110 cm3) and made of nearly 1,200 modules—
while the filled cube of the same size would consist
of 6,859 modules. Such a tremendous reconfigura-
tion time decrease can seem impossible and suspi-
cious. Indeed, this is more of an order of magnitude
than a precise result, as reconfiguration time also has
to factor in the time spent processing and commu-
nicating by the modules, control loops, synchroniza-
tion, etc. This figure is thus most likely a very low
approximation of expected self-reconfiguration time.
Nonetheless, even if the actual duration of ends up
×50 times greater, the total reconfiguration time for
more than a thousand modules would still be a matter
of minutes, not hours. This hints that together, elec-
trostatic actuation and the reconfiguration method we
propose can dramatically reduce self-reconfiguration
time, enabling practical applications for programmable
matter.

In this paper, we introduce in detail our proposed

approach to the fast, efficient, and high-fidelity self-
reconfiguration of modular robotic systems for dis-
play systems based on programmable matter. We
aim to establish the foundations of this new self-re-
configuration paradigm, and highlight analyses and
simulation results from published research showing
that it delivers on its promises. We begin with a
thorough presentation and discussion of the robotic
model under consideration and its constraints in Sec-
tion 2. Based on this model and constraints, as well
as the current state of the art of the field, we explain
in Section 3 how the traditional challenges of self-
reconfiguration and that of our own model can be
solved or simplified using a combination of existing
techniques (e.g., scaffolding, local motion rules), and
new additions (i.e., sandboxing, coating). Section 4
then gives an account of the various construction al-
gorithms for constructing the scaffold and the coat-
ing in a sandbox environment based on our published
research, and highlights the key performance take-
aways from our analyses and simulations of these
algorithms. Finally, Section 5 takes some distance
from the our approach and discuss the strength and
current limits of our implementation and its under-
lying robotic model. Last but not least, Section 6
draws a number of perspectives for improving and
enriching our implementations, and generalizing our
method to other models.

1.1. The Programmable Matter Project
The work presented in this paper is part of a much

larger effort to realize the concept of programmable
matter. A consortium around this effort has been
built under the name of The Programmable Matter
Consortium, and has rallied numerous partners from
major research institutions (see Programmable Mat-
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ter Consortium Web Site2), industrial leaders and man-
ufacturers, and even art studios tasked with exploring
the concept from their perspective.

This partnership goes beyond the mere financial
support of research efforts through research grants,
as it enables frequent real-world interactions and col-
laboration between partners. The value of this part-
nership is the open and global exchange of exper-
tise between research teams with diverse and com-
plementary specialties, each capable of addressing
some of the many challenges standing between the
current state of technology and the real-world pro-
grammable matter of our future.

Our consortium is involved in research on both
software and hardware aspects of the technology. On
the software side, the objectives of the consortium
are to establish strong theoretical and algorithmic foun-
dations (synchronization, leader election, distributed
coordination, etc.) for programmable matter systems,
and further our understanding of the capabilities of
metamorphic self-reconfiguring systems—which is
where the topic of this work fits.

On the hardware side, the current main focus of
this joint enterprise is to push against the current lim-
its of miniaturization of modular robotic systems and
start a new era of systems at the micro-millimeter
scale. This requires major innovations in several ar-
eas of research from the fields of micro- and nano-
electro-mechanical systems and electrical engineer-
ing, such as computer miniaturization and integra-
tion, electrostatic actuation, nanoscale 3D printing
technologies, etc. Bourgeois and Goldstein (2012)
The robotic architecture under development is also
the one that is taken into consideration in this paper:
the 3D Catom. The target size of the current proto-
type is a quasi-spherical autonomous robot of 3.6mm
diameter (See Section 2.4 for more information).

If we believe that miniaturization is such an im-
portant aspect of modular-robot-based programmable
matter, it is because the size of the modules has such
a tremendous impact on the fidelity of programmable
matter object with regard to their inert counterpart.
To better illustrate the influence of the geometry and
size of the modules, Figure 1 shows a visual compar-
ison of programmable matter cups made from cubic

2 https://www.programmable-matter.com

and spherical modules at various sizes.

2. 3D Catom Model and Motion Constraints

In this section, we introduce the model that stands
as the basis of this work, both in terms of the robotic
and computing model. The exact characteristics of
the envisioned 3D Catom, its underlying theoreti-
cal model, and its current state of hardware devel-
opment, are thoroughly discussed.

2.1. The 3D Catom Modular Micro-Robot
As it has just been pointed out, the distributed

algorithms presented in the following sections con-
sider the self-reconfiguration of modular robots named
3D Catoms. We will thereafter refer to a single unit
from this modular robot as a 3D Catom module, or
simply as a module. 3D Catoms are quasi-spherical
rotating modules, with an expected diameter in the
micro-millimeter range. These modules can attach
to each other and rotate around one another without
moving parts through electrostatic actuation.

2.1.1. Geometry

Figure 2: The 3D Catom: geometry from two opposite angles,
skewed coordinate system, and the two possible paths for the
motion of a neighbor on its surface, using and a hexagonal ac-
tuator (Rh) or an octagonal actuator (Ro).

3D Catoms have a quasi-spherical geometry which
consists of 12 flat squares (the connectors, drawn
in red in Figure 2a, linked by curves. Connectors
are centered and tangent to the contact points of a
dense set of spheres placed in a Face-Centered Cu-
bic (FCC) lattice (see Piranda and Bourgeois (2018)
for relative contact points coordinates). There are
two kinds of curves that are placed between connec-
tors to allow the rotation of a 3D Catom around an-
other: The first shape, the hexagonal actuator (drawn
in blue in Figure 2) is made of a triangle and 3 sec-
tions of the body of a cylinder; the second shape,
the octagonal actuator (drawn in green in Figure 2)
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is made of a square and 4 sections of the body of a
cylinder.

3D Catoms assemble by latching onto each other
using one of the 12 electrostatic connectors (also,
interfaces) on their surface (numbered from #0 to
#11 for identification purpose), and form FCC lat-
tice structures—see Figure 3 for the positions of all
12 neighbors (modules directly connected to a given
module) of a 3D Catom, across three layers. Each
position within a 3D Catom lattice can also be re-
ferred to as a lattice cell (or simply cell), and is as-
signed a unique discrete coordinate. We assume that
modules can only sense the presence or absence of
their immediate neighbors, through their interfaces.

Furthermore, as can be seen in Figure 3, modules
on adjacent horizontal layers of modules are stag-
gered. For that reason, different coordinate systems
can be pertinent depending on the task at hand. We
choose to use a coordinate system with a skewed −→z
axis (cf. Figure 2)—as it circumvents the trouble of
a straight −→z axis caused by having different top and
bottom neighbor positions depending on the parity of
the current horizontal layer.

Figure 3: Arrangement of a 1-ball of 3D Catoms in a Face-
Centered Cubic (FCC) Lattice.

2.1.2. Rotations
3D Catoms move around the FCC grid by rotat-

ing on the surface of the surrounding modules, using
their orthogonal or hexagonal actuators. Individual
movements consist in a rotation from one connec-
tor of a neighbor module to another connector on the
surface of this same module, which acts as a pivot.
Note that a module acting as a pivot is not allowed
to perform a motion while it is actuating for another
module, and that a moving module cannot carry an-
other during its motion.

Figure 4 shows the two possible ways of perform-
ing rotations, using an octagonal actuator on the left
(rotating around the green pivot), and using a hexag-
onal actuator on the right (rotating around the yellow
pivot). Each rotation displaces the rotating module

from one cell to an adjacent one within the FCC lat-
tice. More complex motions comprised of several
steps are therefore sequences of individual rotations
on the surface of neighbor modules. All lattice cells
are not accessible to every module, these restrictions
are the result of motion constraints.

First, a module can perform a motion from its
current position to an adjacent one if and only if one
of its immediate neighbors can act as a pivot for that
motion, meaning that this neighbor module must be
both a neighbor of the module seeking to move and
of the target position of the movement, which must
also be free. However, this condition is not sufficient
condition to guarantee the success of the motion, as
there could be a module in the neighborhood of the
pivot whose presence could produce a collision. For
instance, if a module is attached to connector #0 of
the 3D Catom in Figure 2 (acting as a pivot in this
case) and seeks to move to connector #2 of the pivot,
it would not be able to do so using the octagonal
actuator if the pivot has a neighbor on its interface
#5. Accordingly, using the hexagonal actuator of the
pivot would not be possible either if it has a neighbor
on its interface #10, in which case that module would
not an appropriate pivot for that motion.

It thus becomes apparent that locally planning
motion is not a trivial task for 3D Catoms. We will
say that a module is mobile if it can perform at least
one motion in any direction. Furthermore, 3D Cat-
oms do not undergo any deformation when rotating,
as deformation is likely to require moving parts, and
3D Catoms are meant to be inexpensive and mass
producible by design. This raises, however, an im-
portant constraint on the movement of modules, as
the geometry of 3D Catoms thus does not allow
a module to enter or leave a position that is sur-
rounded by two opposing modules (as illustrated in
the rightmost part of Figure 4). In terms of the mod-
ule, this means that a module cannot move if it has
neighbors connected to two of its interfaces that are
opposite, such as connectors #2 and #8, or #1 and #7,
in Figure 2.

This means for instance that in the case of two
lines of modules growing into each other, it would
not be possible to insert the last module required to
bridge the gap between the two lines. This is a ma-
jor constraint on any self-reconfiguration using 3D
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Catoms, as this means that the construction of any
shape must follow a strict set of ordering principles
and construction rules so as to avoid the occurrence
of deadlocks during construction. From here on, we
will refer to this constraint as the bridging constraint.

Furthermore, any motion that would result in a
collision with another module is prohibited. There
are two possible scenarios in which that could hap-
pen. On the one hand, there is the presence of a mod-
ule that is not in the local neighborhood (i.e., the 12
immediate neighbors) of a mobile module, and that
nonetheless blocks this module from entering its tar-
get cell, resulting in a collision. While a module can
directly sense its immediate neighbors to ensure that
none might impede on its motion, there is no local
way of doing such verification on a wider radius in
our model. We will refer to this problem as the re-
mote blocking conundrum. On the other hand, a
collision could occur between two mobile modules
if the two have planned concurrent and intersecting
motions, which is also a scenario that cannot be pre-
vented solely from the local scope of a module. This
is the motion coordination challenge. We will dis-
cuss potential solutions to these problems after hav-
ing introduced the communication capabilities of 3D
Catoms. Figure 5 illustrates these two problems: On
the left, the motion of the green module will collide
with the orange module even though its local neigh-
borhood and the one of its pivot (magenta) are clear
for this motion; On the right, both yellow modules
are attempting to enter the same lattice position, as
no local constraint prevents it, which will result a
collision between the two.

2.1.3. Communication
Latching and motion actuation are not the sole

purpose of the electrostatic connectors on the surface
of 3D Catoms. We consider in our 3D Catom model
that all communication is performed locally, accord-
ing to the distributed communication paradigm, and
in a peer-to-peer fashion between connected modules
through their electrostatic connectors. Hence, 3D
Catoms cannot rely on global communication to re-
ceive essential data about the state of the system, but
must instead propagate information distributively.

2.2. Motion Constraints and Challenges
As a consequence, when considering motion and

communication constraints together, we see that mod-
ules can only sense their local neighborhood (imme-
diate neighbors) through the connection of their in-
terfaces, which they can also use to communicate
with their first degree neighbors exclusively. How-
ever, modules in their second-degree neighborhood
(the neighbors of their neighbors), can still cause trou-
ble (cf. the remote blocking conundrum). Validat-
ing a candidate motion thus involves ensuring that
no position in the first and second degree neighbor-
hoods of a module are blocking that motion. The for-
mer is done locally, therefore, while the second has
to be done through remote communication, distribu-
tively searching the graph of the configuration until
all lights are green. Unfortunately, this necessarily
means performing an entire flooding of the 3D Cat-
om network every time a motion must occur, which is
insanely prohibitive due to the sheer number of mes-
sages that such verification would require (as well as
the time and energy cost). Besides, the motion co-
ordination challenge, that is in itself a race condi-
tion, can be solved by more local mechanisms, such
as the virtual locking of lattice cells surrounding a
moving module, much like mutual exclusion around
a shared resource in programs with concurrency sit-
uations. While this is not local to the mobile mod-
ules, it is at least regional, as they would only need
to lock all the cells in a one-module-thick FCC ball
(cf. Figure 3d) around their initial position. Nonethe-
less, the lack of shared memory primitives between
nearby modules still makes such strategy quite bur-
densome and impractical.

There is one last motion constraint that has not
yet been mentioned, named the connectivity con-
straint. It states that all modules in a 3D Catom en-
semble must remain connected as a single ensemble
at all times. In other words, the connectivity graph
G = (V, E) where V is the set of all modules in the
system and E the interconnection and between mod-
ules through their interfaces. According to the con-
nectivity constraint, G must remain a connected graph
at all times, that is to say that no module motion that
would split the graph G into two disconnected sub-
parts is allowed (even temporarily). An example is
given in Figure 5, where all the modules outlined
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Figure 4: (Left) Two additional sample motions on octagonal and hexagonal actuators. (Right) The bridging constraint, in which
the yellow module is unable to reach its destination because of the two blocking modules in orange.

Figure 5: The two main motion challenges posed by the 3D Catom model: the remote blocking conundrum and the motion
coordination challenge.

with a light blue square are not allowed to move due
to the connectivity constraint, even though they are
mobile in all other aspects. The purpose of the con-
nectivity constraint is to guarantee that modules can
always act as a single global entity (i.e., they can
always communicate with each other), and that the
ensemble is therefore never split into two or more
disjoint parts. Furthermore, in some modular robots,
this also ensures that power can always be supplied
to all modules in the system. Indeed, some modu-
lar robotic systems are likely to require an external
source of a power, that would have to be routed to
all modules in the system Daymude et al. (2020)—a
daunting challenge.

Much like for the remote blocking conundrum,
checking the connectivity constraint also requires a
massive communication overhead, as it involves eval-
uating whether a module seeking to move is an artic-
ulation point of the configuration graph. Støy (2004)
showed that this could be one by using a connection
gradient propagated from modules that are in their
final positions, and with an invariant on module mo-
tion stating that the motion should not alter the con-

nection gradients of the surrounding modules.
We have thus seen that motion constraints exist at

two levels for a 3D Catom: local motion constraints
and global ones. All motion constraints imposed on
3D Catom modules are summarized below, with for
each of them the corresponding condition that has
to be evaluated by the module before attempting a
motion:

Local motion constraints can be directly evalu-
ated by a module:

• Pivot constraint: ”Can one of my nonmoving
neighbors act as a pivot to get me to the cell I
am trying to reach?”
• Local criterion of the bridging constraint: ”Do

I have two neighbors that are on opposite con-
nectors?”

Global motion constraints, however, must be resolved
through regional or systemwide distributed commu-
nication:

• Global criterion of the bridging constraint: ”Are
there two opposite neighbors surrounding the
position that I am trying to reach?”
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• Remote blocking conundrum: ”Is there a non-
connected module that might impinge on my
motion path?”
• Motion coordination challenge: ”Is my motion

crossing the path of another module?”
• Connectivity constraint: ”Will this motion split

the 3D Catom ensemble in two disconnected
subparts?”

2.3. Programming Model and Assumptions
As we have seen, while the movement of a sin-

gle module can seem trivial, the intricacy of self-
reconfiguration becomes apparent when considering
3D Catoms in a swarm context, with multiple mod-
ules attempting to perform their respective tasks in
parallel. Below are a number of additional assump-
tions that govern the 3D Catom ensembles under con-
sideration in our work.

We model a modular robot consisting of a con-
nected ensemble of 3D Catoms as a distributed sys-
tem, where:

• The system is fully distributed
• each module is assigned a unique identifier;
• all modules are identical and execute the exact

same distributed program—3D Catoms thus form
a homogeneous modular robot;
• modules can only react to either the reception

of a message, to the connection/disconnection
of a neighbor, or to an internal event such as a
timed interruption or the start or the end of a
motion;
• computation is only performed locally to each

3D Catom;
• communication is also performed exclusively

in a local fashion, with modules only commu-
nicating with their immediate neighbors on the
FCC grid, and through a message-passing sche-
me;
• message sending and message propagation time

are negligible against the rotation time of 3D
Catoms;
• all modules share a common coordinate sys-

tem and have a global knowledge of the goal
shape Tucci et al. (2017) for self-reconfiguration
tasks;
• modules perform everything asynchronously.

2.4. First Hardware Prototype
Although this can seem like a strictly abstract

model, several partners from the Programmable Mat-
ter Consortium are actively engaged in creating hard-
ware 3D Catoms and will soon complete the produc-
tion of the first 3D Catom prototype.

Flexyboard

Micro Mote

Half shells

a) b)

c)

1 mm

Figure 6: First 3D Catom prototype. a) A synthetic model
showing the design of the several parts of the 3D Catom. b)
A picture of the M3 millimeter scale computer. c) Two steps
of the assembly of the two half shells of the 3D Catom using
micro manipulators.

The 3D Catom design under realization therefore
consists in a 3D-printed envelope referred to as the
shell, (cf. Figure 6c, assembling picture, courtesy of
David Hériban - Percipio-robotics, showing a 3.6 mm
diameter shell), with electrostatic actuators on its ex-
ternal surface (cf. flexyboard on Figure 6a), and with
a processor, battery, and high voltage driver for com-
manding the actuators embedded inside (cf. Micro
Mote on Figure 6b). The brain of a 3D Catom is the
Michigan Micro Mote (M3) Pannuto et al. (2013),
the world’s smallest computer at the time of writing,
which is a testimony to the cutting-edge nature of the
3D Catom technology. The overall size of the final
first prototype is 3.6mm.

3. Engineering Fast and Efficient Self-Reconfigura-
tion

Throughout the past two sections, we have dis-
cussed the relevant state of the art of self-reconfigu-
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ration (Section 1), and identified the modular robotic
model, constraints, and assumptions under which we
consider self-reconfiguration (Section 2).

Building upon this knowledge, we describe in this
section how we propose to accelerate the process of
self-reconfiguration and attenuate the complexity of
module motion planning. This is done by slightly
tweaking the parameters and setting of the self-re-
configuration, and by forcing an arrangement of the
matter that structurally mitigates concurrency issues.

We will see that this strategy is not suitable for
all kinds of context for self-reconfiguration. “There
ain’t no such thing as a free lunch”, saloon owners
and economists would tell you alike, and this is no
exception. In this particular case, we are conceding
to sacrifice ubiquity and mobility (of the system as
a whole), to gain a boost in reconfiguration speeds.
This may not be acceptable for many applications
of metamorphic robots (such as search and rescue
robots), but we believe that for the purpose of object
representation and display, it is.

As we have seen in Section 2.2, the 3D Catom
model imposes highly restrictive constraints on the
motion of the modules, with some that are not even
local to the modules themselves. We have discussed
the tremendously prohibitive messaging overhead re-
quired to clear the remote blocking conundrum or
the connectivity constraint for any motion. While
these motion constraint issues are exacerbated by the
FCC structure of the lattice and the ensuing combina-
torial explosion of a 12-neighbor grid, they are fairly
standard among modular robotic models. There is,
however, one particular technique that researchers in
the field have used to remediate some of these issues
and facilitate planning: scaffolding — which was in-
troduced in Section 1. In this work, we build upon
the idea of a scaffolding, and propose a geometry and
construction method for an FCC lattice scaffolding,
from which we derive very important self-reconfigu-
ration benefits.

As a reminder, scaffolding consists in arranging
the internal structure of the modular ensemble as a
porous and highly regular scaffold, intentionally re-
ducing the density of the matter so as to ease the
internal motion of modules through it. This can be
done by removing modules that do not contribute
to the overall shape or to the structural strength of

the configuration Støy (2004). Nonetheless, this idea
had only ever been applied to modules in a Square
Cubic (SC) lattice (a regular 3D grid), and with holes
no larger than one module in size. The best example
of such apparatus can be found in the works of Støy
Støy (2004); Støy and Nagpal (2007) (see Figure 7).
The same scaffold geometry later inspired Lengiewicz
and Holobut (2019), with a resembling model but
solving reconfiguration through a max-flow search to
optimize the flow of modules between the boundaries
of the initial shape and those of the goal shape. Both
achieved self-reconfiguration with a number of indi-
vidual movements linear in the number of modules
present in the system.

Figure 7: Scaffolding structure in a Square Cubic (SC) lattice
as proposed by Støy and Nagpal (2007).

Scaffolding is a powerful tool for self-reconfigu-
ration and presents numerous advantages, which are
discussed below.

3.1. Motion Support
The primary motivation for using a scaffolding

structure is that it greatly relieves the burden of con-
current motion planning that has to be done by the
programmer of the system, as we will see. But on
a higher level, a scaffold also has an impact on the
actual possible trajectories of module motions: By
lowering the density of the configuration and leaving
space inside the forming objects, modules can now
flow through the object, while with a higher density
only surface motions are possible. This means a dif-
ferent reconfiguration paradigm where not only more
paths are available for module motions, but they are
also shorter and more direct.

Furthermore, thanks to the regularity and thus to
the predictability of the internal structure of the scaf-
fold, the interior of the growing object can be seg-
mented into deterministic and parallel (non-intersec-
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ting or at least seldom-intersecting) motion paths thr-
ough which modules can flow without risk of concur-
rency issues. This process is named pipelining. This
transforms the programming challenge from a mo-
tion coordination problem to the one of the resource
allocation or traffic regulation across motion paths,
with the coordination issues between modules now
only local to specific locations where motion paths
are susceptible to intersect. But this predictability
can also directly benefit solving the remote block-
ing conundrum. By increasing the spacing between
modules and reducing the number of neighborhood
locations of a module that can be occupied, planning
motions becomes easier with scaffolding. Careful
readers might point out that reducing the number of
potentially blocking positions still means having to
check the presence of modules in several positions
before a motion, which still generates an unreason-
able communication overhead — no matter how re-
duced it is. We propose, however, to remove that
communication phase altogether, by artificially re-
ducing the set of motions that a module can under-
take to a number of predetermined motion paths be-
tween two scaffold positions, where all motions in
the path cannot be blocked by a scaffold module Tha-
lamy et al. (2020b) will cover that further. Finally,
scaffolding can also have a positive effect on the other
dreadful global motion constraints: the connectiv-
ity constraint. Once again, this depends on the ex-
act design of the scaffolding structure, which will
be discussed later on, but with our scaffold design,
every move that is not locally immobilized (by lo-
cal motion constraints) cannot break the connectiv-
ity constraint either. One last thing remains unad-
dressed by the scaffold at this point is the mutual ex-
clusion problem and motion coordination challenge.
On the one hand, mutual exclusion over a particular
pipeline or motion path is ensured thanks to a local
traffic-light-style motion coordination protocol Tha-
lamy et al. (2020b). On the other hand, mutual ex-
clusions at path intersections are handled by the re-
configuration algorithm itself.

As a summary, Table 1 shows the impact of scaf-
folding on the various motion constraints introduced
in Section 2.2.

Motion Constraint Aided by Scaffold
Pivot Constraint ✗

Bridging Constraint (Local) ✗

Bridging Constraint (Global) ✓

Remote Blocking Conundrum ✓

Motion Coordination Challenge ✓

Connectivity Constraint ✓

Table 1: Summary of motion constraints that can be easier to
satisfy in a scaffold setting.

3.2. Reduced Matter Usage
Another advantage of scaffolding is that it reduces

the number of modules that constitute the target ob-
ject. However, this also means that scaffold-based
self-reconfigurations have also less modules to dis-
place, which also contributes to a faster reconfigu-
ration time. Its purpose is therefore twofold, both
having a positive impact on reconfiguration time: re-
ducing the amount of matter that must be displaced to
perform the reconfiguration, and supporting module
motions for an easier displacement and coordination
of the remaining modules.

As there are no existing scaffolding models for
the FCC lattice and our module geometry, we pro-
pose a novel scaffold model that suits our needs in
Section 3.6.

3.3. The Limits of Scaffolding
There is, however, a major downside to scaffold-

ing, and it is that it greatly alters the quality of the
visual aspect of the represented objects. Indeed, on
a structural level using scaffolding for self-reconfig-
uration can be seen much like audio compression
methods: audio compression methods discard infor-
mation that is not essential to the integrity of the track
for the sake of a reduced memory footprint, but it
might impact audio quality; scaffolding saves mod-
ules and eases processing at the expense of visual
quality, by only keeping modules that are mechani-
cally/structurally essential.

Notwithstanding, we believe that this can be mit-
igated by coating the scaffolded object after the re-
configuration with a thin layer of modules, in order
to achieve the benefits of scaffold usage at a lower
cost to the external aspect of objects. Thalamy et al.
(2020a) further explores this idea, and Figure 8 illus-
trates this concept of coating through a side-by-side
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comparison of regular, scaffold-based, and coated ob-
jects.

3.4. The Sandbox: Enabling Anisonumeric and Clus-
tered Reconfiguration

Virtually all self-reconfiguration problems that have
been posed until now have assumed that the initial
and the goal configuration had the same number of
modules, which we will refer to as isonumeric re-
configuration. This makes perfect sense for modu-
lar robotic applications in unknown and unstructured
environment such as exploration or search and rescue
missions, or any other applications where versatili-
ty/ubiquity is important or where the integrity of the
robotic unit has to be maintained. However, in other
applications such as our object representation in our
case, where self-reconfiguration could be confined
to a dedicated environment, anisonumeric reconfig-
uration can be considered — reconfigurations where
the number of modules in the initial configuration I
and goal configuration G differ (|I| ≠ |G|). anisonu-
meric reconfiguration thus covers two possible cases
in the relation between the number of modules dur-
ing reconfiguration: hyponumeric reconfigurations,
where the goal configuration has fewer modules than
the initial one (|I| > |G|), and hypernumeric recon-
figurations, which is the opposite (|I| < |G|).

This constraint on the size of the configurations
also relates to the connectivity constraints, as attract-
ing new modules coming from outside the system re-
quires some sort of wireless or global communica-
tion channel since they are not connected to the con-
figuration. Accordingly, discarding modules from
the initial configuration would mean that these mod-
ules cannot be summoned back into the reconfiguring
robot later without external communication means.
Some authors have thus relied on wireless communi-
cation for that purpose, or structured (grid-like) en-
vironments supplying energy and used as a global
communication bus between modules across the grid
Spröwitz et al. (2014).

In a nutshell, hyponumeric reconfiguration thus
requires the extra modules can be discarded some-
where near the reconfiguration scene, and hypernu-
meric reconfiguration requires a reserve of modules
from which additional modules can be attracted. Both
require a means of communication between modules

in the configuration and modules that are attracted or
discarded.

Nonetheless, it has not yet been pointed out what
makes anisonumeric reconfiguration attractive in the
first place. On a basic level, the fact that modules
cannot be discarded or (re)introduced into the con-
figuration at any time means that all modules in the
initial configuration will have to move to a goal po-
sition in the final configuration, potentially having
to traverse the entire configuration (and potentially
wait for its turn to do so). Instead, through anisonu-
meric reconfiguration, a module that is too distant to
where it is needed might instead be discarded, while
another module is introduced right next to the posi-
tion that needs to be filled. Naturally, this can only
be beneficial if modules can be discarded and intro-
duced at various locations, and it has a cost in terms
of actual module units and energy. But, as speed is
our critical parameter, that is a very interesting prop-
erty.

For these reasons, we develop in this work a frame-
work for anisonumeric reconfiguration, in the form
of a dedicated self-reconfiguration platform, which
we name Sandbox.

The Sandbox consists in a reserve of modules that
is located underneath the reconfiguration scene, and
that is able to introduce modules at various locations
regularly placed on the ground of the reconfiguration
scene (cf. Section 3.7).

One major advantage of having these locations
for introducing/discarding modules regularly placed
on the reconfiguration scene means that the resource
allocation concerns of the self-reconfiguration can be
segmented or clustered into areas of the goal config-
uration located around each of these sandbox entry
points (cf. Figure 9). In other words, the initial and
goal configurations can be discretized into areas that
are located around (and above) the entry points, so
that modules can self-organize in each area to trans-
form this area from the initial configuration into the
matching area from the goal configuration through
displacement of configuration modules, feeding of
modules of the sandbox, or the discarding of mod-
ules to the sandbox, depending on the local problem.
Modules from one area almost never have to cross
into a nearby area, thus easing coordination and fur-
ther increasing the predictability of the self-reconfig-
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Figure 8: Side-by-side comparison of: (a) regular cube made of 3D Catoms; (b) scaffold version of the object; (c) scaffold cube
with added coating.

uration from the point of view of the modules.
Things really become exciting when using scaf-

folding in conjunction with the sandbox, however, as
combining the two together enables unprecedented
reconfiguration ease and speeds thanks to a multi-
level pipelining: pipelining at the level of the shape
thanks to the sandbox, where each part of the shape
can be constructed in parallel once high-level con-
struction rules are observed; and pipelining at the
shape areas, thanks to the dedicated motion paths of-
fered by the scaffold.

3.5. Relationship to the Self-Reconfiguration Litera-
ture

Our approach is somewhat conceptually similar
to Dewey et al. (2008), where modules are arranged
into regular multi-module units (metamodules, which
can be in an empty state (only structural modules of
the unit), or in a filled state (surplus of modules in the
unit). Modules flow through the growing shape from
filled metamodules to empty metamodules guided by
a planner and achieve a completion time linear with

Sandbox

Entry points

Figure 9: (Left) Overview of the sandbox, with the entry points
used for supplying and discarding modules circled in orange.
(Right) Scaffold of a cube of side 13 modules over the sand-
box. Brown planes divide the object into several vertical areas.
Scaffold modules from each area can be supplied exclusively
through the sandbox entry points directly below them, enabling
pipelined reconfiguration.

the diameter of the ensemble. They did not address,
however, the resource allocation aspect of the recon-
figuration, that is to say how to decide on which part
of the initial shape will fill each part of the goal shape,
an inescapable and complex problem.

Furthermore, previous scaffolding approaches men-
tioned in previous paragraphs considered an initial
shape as a prebuilt scaffold but none addressed how
to construct the scaffolding structure from a mass of
modules, which is the topic of this work. We are
also, therefore, putting forward an original solution
to a previously unstudied problem, as shape assem-
bly work from the modular robotic literature is usu-
ally more concerned with the final latching of mod-
ules at specific locations than the planning of the
motion that led them there Tucci et al. (2018), and
classical self-reconfiguration approaches with mas-
sive ensembles generally transform a shape into an-
other rather than build one from the ground up Dewey
et al. (2008); Butler et al. (2004); Lengiewicz and
Holobut (2019). Because of this, identifying bases
of comparison for evaluating this work in regard to
other assembly or self-reconfiguration solutions is ar-
duous and the resulting findings might be inconclu-
sive. As a matter of fact, this a much deeper prob-
lem in this line of work, as traditional (i.e., shape
to shape) self-reconfiguration works are already af-
flicted by this evaluation conundrum, due to the vari-
ance in robotic models, capabilities, and modes of
motion Thalamy et al. (2019b); Ahmadzadeh et al.
(2016).

A comprehensive account of the structure (when
relevant) of each of the proposed components is pro-
vided in the following sections.
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3.6. Scaffolding and Structural Engineering
This section focuses on the anatomy and con-

struction of the scaffolding structure introduced in
the introduction.

As a reminder, we aim to build an internal scaf-
folding of a goal object as fast and efficiently as pos-
sible. This scaffold, which forms a sort of highly
regular skeleton of an object, is composed of an ar-
rangement of regular units sharing a common struc-
ture named scaffold tiles.

3.6.1. Structure of a Scaffold Tile
The scaffold tile is the parameterizable unit of the

scaffold. All the tiles composing a 3D Catom scaf-
fold share a common geometry, but their exact struc-
ture can vary depending on the specific location of
the tiles within the shape.

A tile consists of a number of components placed
in an appropriate coordinate system, where −→x and −→y
are classical orthogonal axes but where the vertical
axis −→z is skewed and defined as −→z = (

√
2

2 ;
√

2
2 ; 1

2 ).
These components are:

• A root module at the center of the tile, to which
we will refer hereinafter as the tile root or sim-
ply R module (in white in Figure 10a).
• Two horizontal branches placed orthogonally

across the −→x and −→y axes named the X and Y
branches (in red and green in Figure 10b, re-
spectively).
• Four upward branches ascending at a 45◦ an-

gle and placed orthogonally to each other: the
Z branch along the −→z axis, and the RZ, RevZ,
and LZ branches at 90°, 180°, and 270° clock-
wise from Z (therefore following axes (1,−1, 1),
(−1, −1, 1) and (−1, 1, 1), respectively—all in
light blue in Figure 10b.
• Four support modules: S Z, S RevZ , S LZ, and

S RZ; one under each of the ascending branches
at respective positions (1, 1, 0), (−1,−1, 0), (−1,
1, 0), and (1,−1, 0) relative to the tile root R.
Supports are absolutely necessary for modules
coming from below the tile so that they can tra-
verse it vertically, as imposed by the bridging
constraint (in yellow in Figure 10b).

3.6.2. Parameters and Conditional Structure
Let b be the parameter of the scaffold that defines

the length of the branches of the tiles in number of
modules. There is a lower bound on the value of b as
under four modules in length tiles become too dense
to allow module movement through all of their inter-
nal paths. Furthermore, an upper bound on the value
of b is given by the mechanical strength of the con-
nectors of the hardware 3D Catoms. Although, the
final prototype is not yet functional, physical sim-
ulations and preliminary experiments with the elec-
trodes have shown a latching force able to carry more
than 10 robots with one connector (cf. Piranda and
Bourgeois (2016)). Varying the length of tile branches
allows control on the resolution of the target shape
and thus the speed of self-reconfiguration, as higher
b values would result in less dense shapes with fewer
modules to place but also might result in a lower fi-
delity for the details of the shape. Throughout this
paper, we will assume b = 6 as the length of the
branches, as it is a very reasonable value mechani-
cally speaking.

When necessary, we will refer to a specific mod-
ule of the tile with a name formed from its branch
followed by its order within that branch (e.g., RevZi,
where i ∈ [1, b−1]), or from S with the branch above
it in subscript for support modules (e.g. S LZ). Note
that for any branch, the module of order 0 is always
the tile root.

Furthermore, while b defines the maximum length
l of the branch of a tile, a branch can have anywhere
between 1 and b modules when part of the scaffold.
A length of 1 means that the branch should not be
grown for that tile, and only the tile root remains—
tiles can therefore have a variable number of grown
branches. A length of b means that the branch must
be grown and it is likely that another tile will be
grown from the tip of that branch once complete. A
length anywhere between the two means that due to
the geometry of the shape and placement of the tile
within that shape, the full branch must not be grown
and a child tile will not be grown from this branch.

To sum it all up, a tile always has a root mod-
ule, and can grow between 0 and 6 branches, each
between 2 (1 module + the tile root) and b mod-
ules long. Furthermore, support modules need only
be present if the upward branch below it ingoing to
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Figure 10: Anatomy of a scaffold tile: (a) Tile root and vertical entry point locations, ingoing branches from parent tiles in
transparency; (b) Supports and outgoing horizontal branches; (c) Outgoing upward branches.

its tile has been grown. Thus, a full tile (with all
branches grown), can have anywhere between 1 (the
R module), and 1 + ((b − 1) × 6) + 4 modules.

3.6.3. Connecting Tiles
Tiles assemble by connecting the tip of a fully

grown branch (i.e., where l = b) to the tile root of
another, as demonstrated in Figure 11.

Much like for the tile itself, we must enforce a
construction order for the scaffold. This construction
order follows the diagonal of the shape to be built.
This means that the first tiles to be built (named seed
tiles) will be on a corner of the base of the object,
and the last one will be the one on the opposite cor-
ner of its top layer. We arbitrarily choose this corner
as the one with minimal x and y coordinates. There-
fore, the growth of the shape will by default (there
are exceptions) proceed along the −→x and −→y axes for
a given plane, and from bottom to top. Then we can
say that a tile that has been built before another that
is connected to it (i.e., a neighbor tile) is a parent
tile of the latter — hence the other is a child tile of
the parent. A tile usually has more than 1 parent and
up to 6 (one for each outgoing branch) if all ingo-
ing branches are grown. Parent tiles are responsible
for the growth of their children tile by feeding them
modules through the connecting upward branch. A
tile will only start its construction once all incoming
branches from parent tiles are complete. This syn-
chronizes the construction of the shape according to
our rule-based construction plan.

By generalization, we can generate a polytree,

named construction polytree, representing the growth
of a scaffold into a given object, where nodes are tiles
and edges express construction precedence, with the
seed tile as the root of the underlying tree (see Fig-
ure 12).

3.6.4. Entry Points into the Tile
Module navigation from one tile to another is sup-

ported by special positions around the base of each
tile, named Entry Point Locations (EPL hereinafter).
There are 4 EPL for a tile, one on each of the in-
going upward branches (see Figure 10, with entry
points in transparent pink and ingoing branches in
transparent blue). Entry points are located over the
second-last module of the ingoing upward branches,
and right below the support module for that branch,
which guarantees the reachability of the higher por-
tion of the tile.

Any module entering a tile will do so from one
of the four EPL, that is to say, modules always flow
through the scaffold from the lower tiles to the tiles
above, and always do so through the connecting as-
cending branches—and therefore never through the
horizontal branches, except strictly within a particu-
lar tile during its construction. What motivates this
mode of operation is that it severely limits the num-
ber of possible intersecting paths along the scaffold,
which lowers the risks of motion disturbance between
modules and eases coordination. Entry points also
have a crucial functional role to play in module navi-
gation across the tiles and scaffold as a whole, which
will be addressed later on.
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Figure 11: Anatomy of the entire scaffold: (Left) Breakdown of a sample scaffold consisting of an arrangement of 8 tiles with all
branches grown, directly over the sandbox (branches from sandbox tiles in transparency). (Right) Scaffold of a pyramid with each
tile highlighted in a different color.

Figure 12: Diagram of the construction polytree of a 4 × 4 × 2-tile cube. (Left) Bottom tile layer; (Center) Top tile layer, with
green arrows the edges between the bottom and above layer. Red edges highlight a possible critical path. (Right) Polytree of a
scaffold with multiple seed tiles.

As a consequence, a tile will have a maximum of
four incoming flows of modules, which is the number
of different usable paths leading to it. One of the
main challenges is hence to coordinate these flows of
modules such that they cannot intersect and impinge
on each other’s courses.

Note that for the generalization of this construc-
tion methods to all morphologies of scaffolds, a topic
touched on in Thalamy et al. (2020b), it is possi-
ble that tiles are fed through horizontal branches, but
this can only happen if they have no ingoing vertical
branches because of concavities in the shape of the
scaffold.

3.7. A Dedicated Self-Reconfiguration Platform
This section briefly discussed the sandbox — our

dedicated self-reconfiguration platform that supports
and manages the supply and withdrawal of modules
to and from the reconfiguring ensemble. The na-
ture and features have been discussed in the intro-
duction. The design of such system will require con-
siderable future research work, which unfortunately

cannot fit into this paper. Therefore, it is impossible
to present the exact design and structure of the sand-
box at this point. We have, however, imagined that
the sandbox could be structured internally exactly as
the scaffold (with the same parameter b) and con-
tains a surplus of modules along its branches, which
can then be called in for the reconfiguration above.
Or have this sandbox scaffold connected to a mass
of modules that can climb onto the scaffold and into
the reconfiguration scene. For the purpose of this
work, we presently assume that the top of the sand-
box shares the same structure as the scaffold, and
consists in fully grown scaffold tiles and branches
meeting at the ground level, providing platforms for
starting new tiles with 4 incoming branches (and thus
feeding paths) to each platform (see Figure 11).

This work focuses on the coordinated construc-
tion of the scaffold of a shape from an ordered re-
serve of modules rather than on the transformation
of a prebuilt shape into another, which will be further
addressed. Therefore, our initial state is an empty re-
configuration scene, and all the modules taking part

16



to the reconfiguration will have to be introduced to
the growing shape through one of the ground tiles at
the top of the sandbox. The reconfiguring modules
will remain connected to the modules from the sand-
box at all times (as per the connectivity constraint),
thus sandbox modules can be attracted onto the re-
configuration scene thanks to messages propagated
through the scaffold, in the same way that modules
are attracted to various parts of scaffold in our recon-
figuration algorithms presented in the next Section.

3.8. Visual Aspect Preservation Through Coating
As stated in the introduction, we propose to com-

pensate the negative impact of scaffolding on the vi-
sual aspect of objects by covering the surface of the
porous objects formed by the scaffolding with a sin-
gle layer of modules. We call this process coating.
This scaffold and coating method can be seen as a
special case of self-reconfiguration, that takes place
among obstacles (the scaffold, constraining the mo-
tions and assembly of modules), and from a reserve
of modules,

This section introduces the coating problem and
the challenges it poses in a face-centered cubic (FCC)
lattice. It shows how a coating can be designed in
this context, before we provide a straightforward al-
gorithmic solution in Thalamy et al. (2020a).

While we have found interesting solutions for ef-
ficiently constructing the interior of objects, we have
yet to implement a coating algorithm that reaches
the same level of parallelism as our scaffolding al-
gorithms — the coating is hence the current limit-
ing factor of our method, requiring further research.
However, we are interested in this paper in showing
that even with a relatively inefficient coating method,
using a coated scaffold may well be preferable to
building the equivalent dense shape.

Given a prebuilt scaffold structure made of 3D
Catom modules in a 3D lattice environment and a
description of it, coating consists in covering the sur-
face of the shape with 3D Catom modules such that
the object appears solid while taking advantage of the
mechanical stability provided by the scaffold itself.

Then, given the geometry of the 3D Catoms, cov-
ering the surface of this scaffold using a single layer
of modules would suffice to make the object appear

solid. In that context, solid means that it would ap-
pear to be filled with matter instead of being hollow,
hence providing high fidelity to the object that is be-
ing represented.

The scaffold provides an internal structure to an
object for better mechanical stability. There are sev-
eral ways that a coating can be devised for a given
scaffold, which relates to the amount of contact be-
tween the modules of the surface of the scaffold and
those of the coating layer. This can be represented on
a spectrum, with a loose coating on one end, and a
tight coating on the other. In that case, a tight coating
means that the coating is made such that it fits to the
scaffold as closely as possible, and thus provides the
highest number of contact points between the surface
of the scaffold and the coating layer, which yields to a
maximal structural strength. A tight coating is, how-
ever, dramatically more difficult to achieve than the
alternatives (intractable even), as it is essentially a
case of reconfiguration among obstacles, which greatly
constrains the possible assembly order of the coating,
as numerous deadlocks could be created by unreach-
able cells between the growing coating and the scaf-
fold structure itself in the case of the FCC lattice. On
the other end of this spectrum, a completely loose
coating is always at a distance from the scaffolding
surface and thus provides no contact points and struc-
tural benefits (indeed, the scaffold itself adds no value
at all in such case), but greatly relaxes the constraints
imposed upon the construction of the coating, as it
can be done in isolation from the scaffold. In this
work, we propose a middle ground between these
two options, based on a loose coating, but with added
contact points between the scaffold and the coating
layer.

The contact points (or structural supports, not to
be confused with the Support modules in scaffold
tiles) are closely linked to the scaffold itself and its
b parameter, as the supports are obtained by extend-
ing the external horizontal branches of border tiles
by one module (see Figure 13.b, thus closing the gap
between the coating and the scaffold at various points
of horizontal layers every b modules in height. These
modules not added during scaffold construction but
right before starting the coating for their layer.
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Figure 13: (a) Scaffold of a cube of size 20 × 20 × 20 mod-
ules, with highlighted target volume; (b) scaffold with horizon-
tal branches extended into structural supports; (c) snapshot of
the coating phase; (d) fully assembled coating of a cube, with
scaffold inside.

4. Construction Algorithms and Evaluation

In this section, we report on the various scaffold
and coating construction algorithms that we have de-
signed and published, in order to give an account of
the performance of current implementations of our
approach.

We will sometimes be referring to a class of shapes
named semi-convex shapes. These shapes are a sub-
class of convex shapes where all branches of a scaf-
fold are vertically connected to the sandbox below,
without any hole between them and the sandbox. In
other words, the union of the scaffold and the sand-
box must be convex. This is a simplification that
yields the highest possible throughput of modules
through the scaffold, as modules are instructed to
always flow vertically in the structures as trains of
modules and without never intersecting the path of
another. This can be seen as the optimal pipelining.

4.1. Scaffold Construction Algorithm
Our scaffold construction method (Please refer to

Thalamy et al. (2020b) for an in-depth description of
the algorithm) aims to construct a goal scaffold from
an empty sandbox. In that sense, this is not yet self-
reconfiguration from one scaffold to another, but the
scaffold construction algorithm is a necessary prim-
itive that can be used as part of scaffold-to-scaffold
self-reconfiguration. Our scaffold construction algo-
rithm uses simple geometric rules to determine an
assembly order for the tiles of the scaffold so that

no deadlock can occur during construction. This re-
quires all tiles to act as synchronization points for
the construction process, by ensuring that the con-
struction of a tile is not started until its local depen-
dencies with adjacent tiles are met. Then, at a lower
level, this distributed algorithm coordinates the mod-
ules arriving from the sandbox by using message ex-
changes between modules acting as local coordina-
tors and incoming modules, to route them to where
they are needed, and ensure that construction of the
tiles themselves is done according to a feasible con-
struction plan. Finally, modules navigate the scaf-
fold using local motion rules that describe how to
explore a scaffold tile without running into obstacles,
and a message-based motion coordination protocol
ensures that modules to not collide into each other
when moving by leaving free space between mod-
ules along the same path. This motion coordination
protocol also provides robustness to stochastic vari-
ations in the rotation time of modules, which also
makes the overall algorithm asynchronous.

This scaffold construction algorithm was first in-
troduced in Thalamy et al. (2019a) and consisted in
a synchronous version of the algorithm lacking the
motion coordination protocol. It could only build
pyramidal scaffolds, and had to request modules from
the sandbox every time modules were needed, which
produced a lag during construction, resulting in an
O(N

2
3 ) reconfiguration time and using O(N

4
3 ) mes-

sage exchanges, with N the number of modules in
the pyramid.

We later introduced the motion coordination pro-
tocol in Thalamy et al. (2019c), making the construc-
tion asynchronous and more robust. We also changed
the request-based strategy from the first version of
the algorithm to a continuous flow of modules from
the sandbox and until the scaffold, and that could
be interrupted using messaging when modules were
not needed anymore — much like closing an open
faucet when the bottle is full. This resulted in an im-
provement of the reconfiguration time which is now
O(N

1
3 ) = O( 3√N) for pyramidal scaffolds.

Then, we generalized the method to all semi-con-
vex shapes in Thalamy et al. (2020b). We have anal-
ysed the scaffold construction algorithm through the
case study of the construction of a cube of dimen-
sion h scaffold tiles. We have showed that for any
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scaffold, there exists a critical path in the scaffold,
made of all tile branches that are last to arrive to a
synchronization, on which the reconfiguration time
depends. Then we demonstrated that the length of
this path is linear in the dimension of the cube in the
dimensions of the cube, that is to say that its length
is O(h), and we able to conclude that the reconfigura-
tion time for the cube in number of timesteps (where
a timestep is the average duration of a module mo-
tion), we proved that the reconfiguration time of the
cube of dimension h was also O(h).

Then, by analysing the number of modules con-
tained in a cube of dimensions h, we have showed
that the number of modules in a h-cube was O(h3).
From there, we could therefore deduce that the re-
configuration time of the construction of the scaffold
was O( 3√N), where N is the number of modules in a
cube of dimensions h.

Finally, this reconfiguration time can be general-
ized to all semi-convex shapes by showing that any
semi-convex scaffold can be enclosed in an h-cube
of higher dimension, thus yielding an O( 3√N) recon-
figuration for all shapes of this class. This means
that scaffold construction can run in sublinear re-
configuration time, which is immensely faster than
what has been achieved until now in traditional self-
reconfiguration. These results were also confirmed
in the simulations of the construction of many differ-
ent scaffolds with up to 32,000 modules.

By analysing the parallelism and convergence rate
of simulated scaffold constructions, we have showed
that scaffold construction consists in three successive
phases:

• Load phase: This is the start of the construc-
tion of the scaffold, from one or several seed
tiles placed in ground corners of the shape. Here,
the construction propagates diagonally through
the surface of the base of the object, connect-
ing sandbox entry points to existing tiles of the
scaffold, until the entire ground surface of the
scaffold is connected to the sandbox.
• Cruise phase: This is the main phase of the

construction, where modules can vertically flow
through the volume of the scaffold from the
sandbox, and during which the construction of
the shapes takes place across the entire volume

in parallel, thus producing a constant reconfig-
uration speed.
• Finish phase: This is a decreasing speed phase

that comes at the end of the construction, and
during which parts of the structure are being
gradually completed, hence stopping the flow
of modules from the sandbox in parts of the
shape, until the whole scaffold is finished.

This same three-phase convergence rate can be
observed on all semi-convex shapes. We hint in Tha-
lamy et al. (2020b) to how the current scaffold con-
struction algorithm could be generalized to all shapes
(not just semi-convex ones) by enriching the model
of a tile with downward vertical branches and addi-
tional entry point locations around the tile root of the
tile. The newly added vertical branches would allow
for tiles to supply modules to children tiles below
them that are not vertically connected to the sandbox,
and the entry point locations would enable the ex-
change of modules between horizontally connected
tiles from the same tile layer. It is unlikely that the
current level of performance will remain unaffected
however, as module flows will now have to be split,
thus reducing the module throughput on parts of the
structure.

4.2. Coating Self-Assembly Algorithm
Regarding the coating of constructed scaffold, the

main problem that we have addressed in Thalamy
et al. (2020a), is the one of finding a correct self-
assembly plan in order to construct the coating around
a scaffold without regard to the motion of the mod-
ules from the sandbox to the positions that need to be
filled. Self-assembly planning is a notoriously com-
plex problem due to the difficulty of deadlock avoid-
ance and necessary coordination between dependent
modules that are sometimes wide apart from a net-
working point a view. Tucci et al. (2018) proposed
an algorithm using simple rules and communication
to assemble 2D or 3D objects made from 3D Catoms
in an environment with no obstacles. Our current
self-assembly approach relies heavily on this Tucci
algorithm, assembling the coating of scaffolds in a
bottom-up approach, layer-by-layer. On each layer
a module on the border of the coating is chosen as
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the seed for the current layer according to its coordi-
nates, and the Tucci algorithm is then applied to at-
tract this layer. This works well for all layers do not
have structural supports presents (cf. Section 3.8),
but as structural supports can create obstacles in the
construction of the coating, the Tucci algorithm can-
not always be applied on support layers. In that case
we use an algorithm of our own, named border com-
pletion algorithm, to attract the support and modules
whose position depend on it, before filling the re-
maining positions of the border in a circular fashion
around the object.

The Tucci algorithm and our border completion
algorithm are able to assemble the coating in lin-
ear time in the number of modules in the coating.
This is a good result but the construction of scaffolds
is currently much more efficient than their coating,
due to the low parallelism of the current layer-by-
layer method on vertical borders. Furthermore, the
current assembly method is not suitable with shapes
with overhangs or bowl-like concavities. Together,
these elements hint that better self-assembly need to
be designed with parallelism in mind. This is further
discussed in Section 5.

4.3. Overall Approach
Regardless of the coating assembly method be-

ing used, by comparing the number of modules in
dense shapes and the coated scaffold version of these
same shapes (thus resulting in the exact same exter-
nal aspect of the shapes), we find that total number
of modules saved using our method is between 60%
to 80% saved modules Thalamy et al. (2020a). The
bigger the volume of the shape that one is trying to
represent, the bigger the gain in saved modules, so
extremely large shapes could in theory even use only
10% of the number of modules in their dense coun-
terpart. This is a massive gain that is not just about
saving the amount of matter user, but also time itself,
as the reconfiguration time is a function of the num-
ber of modules in the goal shape. Fewer modules that
need to be displaced mean a faster reconfiguration.

Accordingly, our approach to reconfiguration not
only is asymptotically more efficient than traditional
self-reconfiguration, thanks to its sublinear recon-
figuration time, but the speed-up is even greater thanks
to its dramatically reduced module usage.

A video presenting the main steps of the con-
struction of the scaffold and the coating is available
online3. This video also shows the construction of
many final 3D shapes, especially a large set made of
more than 35,000 3D Catoms.

5. Discussion

5.1. Improving Coating
Discarded Coating Strategies. A number of alterna-
tive coating strategies were investigated while research-
ing this work, and we explain why they have not
made the cut below.

We have not mentioned a strict top-down coating
approach in the previous section, because it does not
appear like a good strategy in the general case, since
modules would have to climb through the scaffold
and then escape it to reach the coating, but as the
coating would assemble, the coating itself could then
prevent modules from escaping the scaffold. This is
why we had to resort to using the coating itself as a
path for dispatching modules.

An open question that remains is whether the con-
struction of the coating can be done in parallel with
the construction of the scaffold. This also has the
effect of blocking many scaffold paths for the same
reason, thus decreasing the parallelism of the method,
and hindering the geometric separation of concern
enabled by pipelining, thus making planning more
complex or perhaps even impossible.

Limits of the Current Method. The current simplistic
bottom-up coating method is well suited to build the
coating of scaffolds that belong to the semi-convex
geometric class. Furthermore, while we have not
stated it explicitly until now, the class of object ge-
ometries supported by our coating method is in fact
larger than semi-convex shapes alone. Indeed, as shown
in Thalamy et al. (2020a) our algorithm was able to
build the coating of the scaffold of a chair, which
does not belong to the semi-convex class as the seat
of the chair creates a concavity with regard to the
sandbox.

As the current coating method relies on a bottom-
up layering approach, it can build all shapes where

3On line video presentation of the algorithms:
https://youtu.be/jrtuaBLXkQI.
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Figure 14: Two problematic shapes given a bottom-up coat-
ing strategy: (a) Mushroom-like shape with overhang; (b)
Spinning-top shape with a bowl-like concavity.

any disjoint portion of a coating layer is directly
adjacent (or connected) to the layer below. Other-
wise this would be akin to the construction of an un-
connected overhang in 3D printing. In our chair ex-
ample, even though the four legs are disjoint coating
parts, they all merge into the underside of the seat,
which is connected to them, so our method operates
with no hurdle. Shapes with overhangs or bowl-like
concavities such as the ones shown in Figure 14 are
therefore limit cases.

Replacing the strict bottom-up layer-by-layer ap-
proach by a construction following the surface of the
object appears promising, as any coating portion will
be supported by the one built before itself. Another
strategy could be to build temporary scaffolds to sup-
ply modules to hard-to-reach coating locations.

Towards More Efficient Coating Methods. The cur-
rent version of the algorithm might be too slow at re-
configuration time for some minor changes into the
configuration, as would be required to first disassem-
ble the coating, modify the scaffold, and then re-
assemble the coating. Otherwise, minor adjustments
could be made simply by adding coating modules,
and only when surpassing a certain threshold could
the scaffold be also altered, thus saving precious time.

While our current method of coating is quite strai-
ghtforward and by itself leads to the construction of
a coating in linear time, it is obviously unsatisfactory
that only wide or planar borders can achieve high
parallelism. An ideal coating solution would build
any layer with some degree of parallelism, truly lever-
aging the benefits of the sandbox and multiple sources
of modules.

A promising parallel and multilayer solution could

be to attract a module to a coating position as soon as
all its neighbor positions that are in the previous layer
are filled (and, of course, its horizontal dependen-
cies too). In that way, the construction of the coating
can also proceed in a vertical diagonal manner, build-
ing multiple planes at once. However, special rules
would have to be designed regarding the introduc-
tion of support modules so that they do not hamper
the construction. In a sense, this would be equiva-
lent to extending the multilayer version of the Tucci
algorithm to support the presence of obstacles.

Numerous sources of modules would however be
needed to dispatch the modules optimally, and the
concurrent planning of the motion of the modules
from their source to their destination becomes non-
trivial if there are fewer sources than coating sections
that can be built in parallel.

Module Dispatch From the Sandbox. The coating al-
gorithm introduced in this paper only addressed the
assembly strategy of the coating, that is to say the
scheduling of the construction, without regard to the
actual dispatch of modules from the sandbox. There-
fore, we touch on how modules can be routed from
the sandbox to open positions within the shape using
a gradient system below.

We have started studying a self-reconfiguration
planning method based on attraction gradients emit-
ted by modules adjacent to coating positions that is
ready to be filled. This gradient is propagated through
all the modules from the layer. Assuming there is
a single source of modules from the sandbox to the
coating, modules then move in a train-like fashion
until reaching the coating and then simply follow the
existing coating from the current layer being built.
Every time they plan a motion, they probe their neigh-
bors that are already inside the coating layer for the
attraction gradient values (essentially a pair of posi-
tions and Manhattan distances), and pick the desti-
nation with the smallest distance. The gradients are
invalidated when a module reaches an attraction po-
sition.

While this gradient is not very important on sim-
ple borders with a thickness of only one module, as
on these borders modules could have just followed
the borders until a free and ready spot is reached, it is
a lot more important on more complex borders. For
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large borders or entire planes of coating, the assem-
bly order of the coating is non-trivial and many po-
sitions can be ready to receive a module at the same
time. This thus requires some way of prioritizing the
construction and dispatching the modules to the clos-
est available coating positions — this is where the
attraction gradient and gradient descent come in.

The major challenge of this approach, however,
is to deal with sudden changes in the gradients that
could make modules abruptly change direction, which
might trigger collisions and other coordination is-
sues. This problem will become even more salient
when considering multiple sources of modules. This
motion aspect of the coating problem will require
more research, which existing work on self-reconfig-
uration and distributed motion planning can certainly
guide.

5.2. Reflection on the 3D Catom Model and Con-
straints

We have seen in Section 2 that the 3D Catom
model had a geometry that produces 3D Catom en-
sembles with an FCC lattice structure. As it turns
out, this is one of the densest possible arrangements
of matter. Coupled with the quasi-spherical geome-
try of 3D Catom, this can create a very detailed rep-
resentation of objects compared to other geometries,
with smooth curves — recall Figure 1.

The high density of this FCC lattice geometry
combined with the non-deformable nature of 3D Cat-
oms pose nevertheless serious complications with re-
gard to the motion constraints of modules as intro-
duced in Section 2.2. The bridging constraint may
be the most infamous of these constraints due to its
numerous and far-reaching effects.

We will see below that such constraint can be a
serious impediment to both parallelism, robustness,
and emergence in self-reconfiguration applications,
limiting the range of practical solutions to self-recon-
figuration problems.

We had the intuition that concave shapes were a
problem early on as their construction would limit
pipelining when building from a sandbox. For that
reason, we investigated using a temporary scaffold-
ing that would fill the concavities of the target shape
during construction, and that would then be decon-
structed at the end of self-reconfiguration. This re-

Figure 15: Original self-reconfiguration pipeline idea (artistic
impression): using a temporary scaffold (yellow modules) both
for mechanically supporting the growing structure and remov-
ing concavities during construction.

quired more modules than just building the scaffold
(though less than the dense shape in most cases), but
provided the highest reconfiguration speed through-
out the structure and, we believe, supported the me-
chanical stability of intermediate configurations dur-
ing self-reconfiguration. This is illustrated with the
yellow temporary scaffold in Figure 15. Sadly, be-
cause of the bridging constraint, the temporary scaf-
fold could never be deconstructed, and this promis-
ing idea had to be thrown away.

Furthermore, as the bridging constraint imposes a
single direction of construction, this prevents us from
starting the construction process from multiple op-
posite directions, which could further speed up self-
reconfiguration, even though it would be harder to
coordinate the construction.

The bridging constraint also limits the robustness
of 3D Catom ensembles, as it would prevent the ex-
traction of a faulty module on the scaffold without
further deconstruction, or the later insertion a replace-
ment module. Fortunately robustness mechanisms
can be added to our method to delegate the func-
tions of the faulty modules, or restore communica-
tion links of the scaffold by attracting additional mod-
ules.

A deformable catom has in fact been introduced
in the form of the Datom Piranda and Bourgeois (2020),
and whether our self-reconfiguration method can be
further improved without the bridging constraint or
not is an interesting question.

We have also seen that the bridging constraint is
not the only limit of the 3D Catom hardware, as two
problems, the motion coordination challenge and re-
mote blocking conundrum were a consequence of the
limited range of communications of 3D Catoms. We
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have already discussed in Section 2.2 the potentially
huge communication overhead that would come with
every module motion to satisfy these constraints with
only communication between neighbor modules. Build-
ing modules with a wider range of communication or
at least some sort of extended neighborhood sensing
would produce a much more powerful model for self-
reconfiguration.

Deformability and communication capabilities are,
therefore, important variables that roboticists must
take into account when designing modular robotic
systems, and this process of requirement feedback
between roboticists and computer scientists is cru-
cial for achieving more practical modular robotic ap-
plications, as discussed in Thalamy et al. (2019b).

5.3. The Elephants in the Sandbox
Ground and Underside Coating. One particularly pro-
blematic aspect of object representation in a sandbox
(and under our current model constrained under the
bridging constraint) that has remained unaddressed
up to this point is the fact that the underside of the ob-
ject cannot be coated — and in fact remains tethered
to the sandbox which might prevent manipulation by
the user. While the sandbox could provide a way to
disable the connection between the sandbox and the
scaffold on demand so that the object might be ma-
nipulated (which would require an alternative power
source if the matter is to remain active), adding the
coating to the underside of the object seems harder to
perform. The coating of the underside of the object
cannot be performed according to the same process
as the rest of the shape for two reasons: (i) because
of the bridging constraint, it would not be possible to
add all modules between the horizontal branches of
the ground layer of the object (or between the sand-
box branches if coating one layer below the scaffold
instead); (ii) even if there was a way to do it, this
would prevent any additional module from entering
the scaffold from the sandbox, so this would have to
be the last process of the construction to take place,
or the first of the deconstruction. The only realistic
way to perform that coating of the underside of the
object that we have been able to conjure would be to
manually rotate the object on the sandbox and then
perform the coating of the underside. Needless to
say, this is highly undesirable as this requires an ex-

ternal intervention, which breaks autonomy. Chang-
ing the model to get rid of the bridging constraint
could be a lot more desirable if the functional trade-
off is not too bad.

Nonetheless, for the purpose of a 3D multi-sensory
display system based on programmable matter, it might
not be necessary to allow the represented scene to
be detached from its substrate and manipulated by
hand. Such a display without the detachability fea-
tures would already be quite sufficient for providing
unprecedented sensory experiences to users.

Object Fidelity and Special Cases. On the topic of
fidelity to the target object, and besides the absence
of an underside coating, objects built using our method
will in most case appear identical to their dense coun-
terpart. When using a scaffold, however, the base
unit of the shape changes from a 1-voxel module to
a multi-voxel scaffold tile. This means that the scaf-
fold is at best an approximation of the target shape
or a lower-resolution version. In contrast, the coat-
ing preserves the original resolution of the object and
is thus a great addition to the scaffold as it restores
the original apparent resolution of the target shape.
Nonetheless, there are several caveats of our method
that need to be kept in mind when building objects in
this way:

• Very small objects (smaller or in the range of
the dimensions of a scaffold tile) will have lit-
tle to no internal structure, only coating, as
there would not be enough internal space to
fit a scaffold. The resulting object would be
even closer in density to its dense version. Fur-
thermore, the downsides of our method might
be greater than the benefits in this context, and
it is possible that a classic self-reconfiguration
would be more appropriate.
• Very detailed objects, or at least objects with

very small details will have many substructures
with low internal structure (a partial absence of
scaffold) and only coating. Much like in the
previous item, the scaffold will approximate
the shape, ignoring details smaller than a tile
(though in most cases partial tiles will be built,
but this is highly contextual), and the coating
will then restore these details.
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• In both previous cases, it remains to be de-
termined what kind of mechanical stress the
partial or total absence of scaffold would put
on the overall structure. Regarding the former
scenario, it is likely that with such small ob-
jects do not really require an internal scaffold
since it can be expected to be much more me-
chanically stable due to its size. A mechani-
cal validation would be necessary to define the
presence of a scaffold and if so to which ex-
tend.

Mechanical Validation of our Approach. The most
critical aspect of our approach that is missing from
this research is a mechanical validation of the scaf-
fold and coating. It is not sufficient that the use of
scaffolding appears mechanically equivalent, or at least
mechanically stable enough for 3D Catom-based pro-
grammable matter, this has to be mathematically and
physically proven. This depends, however on the ex-
pected weight of future hardware 3D Catoms and the
size of their electrostatic actuators, but fortunately,
the parameterizable nature of the scaffold with its tile
branch length b could give us flexibility in designing
the most stable and compact scaffold possible. We
showed it is possible to use a distributed algorithm
to assess if the configuration is mechanically sound
regarding stability and breakage conditions Piranda
et al. (2020). This information can also be part of the
assembly constraints as it is showed in Pescher et al.
(2020). As soon as the 3D Catoms will be finalized,
measurements will provide the data to feed these al-
gorithms, answering the question possible and im-
possible structures. However, for big configurations,
a simplification or an approximation will need to be
done in order to reduce the computation time.

5.4. From Scaffold Construction to Scaffold Self-Re-
configuration

Finally, while this work has laid the foundations
for a new approach to selfreconfiguration, no actual
shape-to-shape reconfiguration have has been pro-
duced yet. Therefore, we discuss in this section how
this scaffold construction and coating framework can
be extended to shape-to-shape reconfiguration.

It must be first noted that there is in principle
no reason that would prevent our scaffold construc-

tion method, from being reversible — the exact in-
verse process of the construction of the scaffold can
be used to deconstruct it, within the same algorith-
mic bounds. Similarly, while the exact reverse of
our coating algorithm would require new primitives
to replace the Tucci assembly routine, an equivalent
top-down disassembly strategy in linear time should
also in principle exist. Entirely deconstructing the
scaffold during reconfiguration seems like a redun-
dant and inefficient approach. An advantage of the
scaffold is that internal structure of any object we
could build is similar. Thanks to that, efficiently self-
reconfiguring from a shape I to a shape G could be
the following process:

1. Coating removal from I
2. Computing an optimal overlap of I and G
3. Scaffold disassembly of non-overlapping por-

tions of I
4. Scaffold assembly of non-overlapping por-

tions of G
5. Coating of the scaffold of G

In terms of complexity, this would be in the worst-
case equivalent to running our entire construction pipe-
line twice in a row (once for disassembly, once for re-
assembly), and thus would preserve of the O( 3√N) +
O(N) complexity of the construction phase alone.

The scaffold-to-scaffold self-reconfiguration prob-
lem can be thought of as a resource allocation prob-
lem, i.e., finding the optimal flow of modules be-
tween the sandbox, areas that must be grown, and
areas that must be discarded. Resource allocation
is likely to proceed both by exchanges between the
initial and goal shapes as well as between the sand-
box and the goal shape. It would also allow for re-
configuration between shapes with different cardinal-
ities, another previously unstudied aspect of the self-
reconfiguration problem.

6. Perspectives

In this final section, we compile a list of perspec-
tives for improving our work and pushing the current
limits of modular robotics systems and self-reconfig-
uration even further.
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6.1. Our Approach
Regarding our self-reconfiguration based on sand-

boxing and scaffolding, here is what must to be done
for our approach to be able to fully materialize:

Generalization, Improvements, and Self-Reconfigu-
ration.

• Regarding the current results, there are a num-
ber of optimizations that could be explored, in-
cluding prioritizing the construction of branches
that are connected to children tiles in the con-
struction scheduling of the tile, as well as in-
vestigating the impact of displacing the seed
tiles at the center of the shape, which would
lead to a centrifugal growth and might help in-
crease the parallelism of the method even fur-
ther, though this is unlikely to improve on the
current cubic root worst-case reconfiguration
time.
• Implementing the generalized version of our

scaffold-construction algorithm, as hinted in Tha-
lamy et al. (2020b), and creating a taxonomy
of scaffold geometries with a mathematical anal-
ysis of the expected worst-case reconfiguration
time for each class of shapes.
• Generalization is likely to require improvements

on the current local-rule-based local motion plan-
ning solution, with the rules required for gen-
eralization becoming too numerous, potentially
filling the scarce memory of modules, and ren-
dering the hand design of rules laborious and
troublesome. A more systematic and robust
approach is thus needed. This could either be
replaced by an alternative and better-suited mo-
tion planning method or benefit from improve-
ments in design and compactness. It would be
good to also prove the convergence and univer-
sality of the method once this is done.
• Design a coating assembly method that can coat

any shape or scaffold, preferably achieving a
high degree of parallelism in the construction
of the scaffold. Accordingly, researching an
adequate motion planning and coordination al-
gorithm for implementing this assembly plan
using sandbox-fed 3D Catoms.

• Extending our method to shape-to-shape (or
rather scaffold-to-scaffold) self-reconfiguration,
with the goal to minimize the amount of matter
that has to be displaced. Once this is done, per-
form a thorough comparison of the results of
this method to state-of-the-art self-reconfigu-
ration algorithms, studying metrics such as re-
configuration time, number of individual mod-
ule motions, communication volume, raw mat-
ter usage (number of modules), and robustness.
• It would also be useful to study how this ap-

proach can be adapted to other models and in
systems that reside in different lattices. This
would maximize the usefulness of this approach,
and perhaps show that it is preferable with some
models but not others. Accordingly, it would
be interesting to research whether the method
can be made even more parallel and efficient
when considering FCC lattice modular robots
that do not have a bridging constraint such as
the Datom Piranda and Bourgeois (2020), and
how a coating can be built under these assump-
tions.

Feasibility.

• A mechanical validation of our scaffold model
and a study of the stability of a scaffold-based
object made of 3D Catom compared to its dense
counterpart.
• Accordingly, determining the range of realistic

values for the parameter b of our scaffold.
• Engineering research on the feasibility and de-

sign of a sandbox system has described in our
work.

6.2. General Perspectives
Regarding the general self-reconfiguration prob-

lem, researching the overlap problem between the
initial and goal shape, and studying the impact of
these hyper-parameters and others on the ensuing self-
reconfiguration are essential. We have also provided
in Thalamy et al. (2019b) a number of guidelines
and perspectives for the field of 3D self-reconfig-
uration algorithms that we hope will be helpful to
guide future research. Nonetheless, we would like
to reiterate here that in order to accelerate progress
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the field will need a real benchmark to test out and
compare self-reconfiguration algorithms, as it is still
extremely tricky to produce meaningful comparisons
between published research works on the topic.
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