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Abstract—Global pandemics such as Covid-19 have led to mas-
sive loss of human lives and strict lockdown measures worldwide.
To return to a certain level of normalcy, community awareness on
avoiding high population density areas is significantly important
for infection prevention and control. With the availability of
new telecommunication technologies, it is possible to provide
highly informative population clustering data back to people
using wireless aerial agents (WAAs) placed in a local area.
Hence, a service architecture that allows users to access the
localization of population clusters is proposed. Further, a convex
hull-based clustering method, enhanced population clustering (E-
PC), is proposed. This method refined the result of conventional
clustering methods such as K-means and Gaussian mixture model
(GMM). Moreover, the potential in E-PC to achieve the same or
higher results compared to the original K-means and GMM, while
consuming lesser data points, is demonstrated. On average, E-PC
improved the cluster detection performance in both K-means and
GMM by 18.93% under different environments such as remote,
rural, suburban, and urban in terms of silhouette score. Further,
E-PC allows a 15% data reduction which results in decreasing
the computational cost and energy consumption of the WAAs.

Index Terms—pandemic prevention, population clustering,
convex hull, K-means, Gaussian mixture model

I. INTRODUCTION

Crowd monitoring is an active research area that is used
for different applications such as behavior analysis, intelligent
surveillance systems, public riots detection, and congestion
avoidance [1]. A high population congestion is one of the
main reasons for infectious diseases such as Covid-19 to
spread fast and over a large geographical area [2]. Physical
distancing has been argued as one of the effective means
to combat the spread of such pandemics before vaccines or
therapeutic drugs becomes available. Thus, the knowledge on
population cluster centers in local areas, e.g., small cities,
shopping complexes, schools, is important in avoiding over-
crowded areas and preparing for current and future pandemics
[3]. A variety of wireless communication and positioning
technologies, including drones, cellular positioning systems,
and global positioning systems (GPS), can be used to monitor
the crowd gatherings outdoors [4].

Table I: The list of symbols and notations used in this paper

Symbol Description

Nl Number of total UE locations,Nl

χ Convex hull of the total UE locations

ε∗ Maximum volume inscribed ellipse inside χ

B Deformation matrix from unit circle to an ellipse

d Vector representing the orientation of the ellipse

ρ2 Volume of a planar unit circle

Kopt Optimum number of clusters

M Set of 4G/5G D2D enabled UEs

cc Cluster centers

ua Wireless aerial agent (WAA) that computes cc locations

Tw Periodic time delay of updating location data to the ua

T0 Maximum time period of storing the received location data

TM Fixed time period used to compute the average number of requests

RR Average number of requests per Tw during the last TM period

din Total number of data points in the dataset of UE locations

dε∗ Number of data points which are only inside the ε∗

dr Data size reduction

drm Maximum data size reduction possible

Further, D2D introduced in 4G enables UEs to establish
a direct communication link with another UE [5]. Thus, D2D
technology allows wireless aerial agents (WAAs) to reach UEs
in the network edge or out of coverage areas, which may not
be captured under the cellular network infrastructure [6].

Techniques used for crowd monitoring could be mainly
classified into supervised or unsupervised approaches. Su-
pervised learning methods are used for applications such
as behavior detection, density estimation, etc. Unsupervised
learning methods are used for crowd clustering where clusters
are detected via distance-based algorithms [7]. Meanwhile,
recent trends in convex hull based methods for clustering have
paved the way to simplify and enhance the performance in



clustering algorithms [8].
The main contributions of this work are:
• Propose a service architecture that allows users to access

the localization of population clusters
• Provide a novel method to improve population cluster

detection and decrease computational cost in a local D2D
network by adopting the maximum volume inscribed
ellipse in a convex hull (MVIE) principle [9] in unsu-
pervised learning.

• Comparison of the proposed method with two baseline
clustering methods: K-means and GMM, in network
regions with different population sizes such as remote,
rural, suburban, and urban.

The remainder of this paper is organized as follows, Section
II provides an overview of other related works, while Section
III details the system model and the design of the proposed
algorithm. In Section IV, the performance analysis of the
method is conducted. Further, Table I provides the list of
symbols and notations applied in this paper.

II. RELATED WORK

Clustering is a data processing algorithm that classifies a
set of entities based on proximity between cluster members,
the concentration zones of the data, and their statistical distri-
butions [10]. The purpose of clustering is both to minimize
the intra-cluster distance and to maximize the inter-cluster
distance.

K-means and GMM are two of the most conventional
clustering methods [11]. K-means approach groups data into
clusters by minimizing the distances between data points and
their cluster’s centroid [12]. To that end, in iterative way, k
initial points (k is an input parameter of K-means method)
from the dataset are randomly selected as cluster centers.
Then the other dataset points are assigned to the closest
cluster center. The sum of the intra-cluster distance is then
computed. The process is repeated a given number of iterations
to minimize the sum of intra-cluster variations.

In contrast, GMM identifies clusters using an expectation-
maximization (EM) algorithm assuming that all data points
are generated from a mixture of a finite number of Gaussian
distributions. Further, it has been shown that GMM is a
complex classification method and has a higher computation
time compared to K-means [13]. Hence, GMM may be less
energy efficient, limiting its use for low computing capacity
in WAAs. The unawareness of the number of clusters in the
input data represents one of the issues with the unsupervised
learning clustering approaches. Several techniques such as
elbow method, silhouette method and gap statistics method
have been proposed to compute the optimal number of clusters
in the data [14].

Comparative studies show that gap statistics method pro-
vides better performance concerning the identification of the
optimal number of clusters [15]. In gap statistics method
different values for the number of clusters, k are evaluated.
For each k value, the clustering algorithm is run, then the
sum of intra-cluster variation, Wk, over the generated clusters

is computed. Thereafter, a set B of uniformly distributed
points are generated and clustered. Finally, sum of intra-cluster
variation over clusters of the set B, W ∗k , is computed and
compared with Wk [16]. Hence, gap statistics for a particular
k, is mathematically defined as:

Gapk = log(W ∗k )− log(Wk), (1)

Finally, the k value that maximizes Gapk is selected as the
optimal k.

Meanwhile, research works in [8], [17] have proposed
methods to incorporate convex hull principles to improve
performance in clustering algorithms. Convex hull of a planar
set of points P is the smallest convex set enclosing P [18].
The convex hull is obtained in practice using facet enumeration
techniques. Quickhull algorithm is such a facet enumeration
method, which is considered an efficient and practical method
for convex hull computation [19].

The Quickhull algorithm is based on the divide-and-conquer
algorithm that divides the input data into subsets and re-
cursively evaluate such subsets [20]. It is started by first
computing the maximum and minimum points of P . Secondly,
the horizontal and vertical lines passing through these points
are found to form a bounding rectangle, which forms the initial
hull. Next, the points lying within such a quadrilateral are
eliminated from further consideration. Finally, as the algorithm
executes, a convex hull is formed once the set of points outside
each edge of the polygon is zero [19].

In addition, by adopting the maximum volume inscribed
ellipse in a convex hull (MVIE) principle [9] in unsupervised
learning, an understudied method of population clustering in
a local D2D network is proposed.

III. METHODOLOGY

In this paper, a novel method for population cluster detection
called enhanced population clustering (E-PC) under a local
D2D network, where users’ phones reside within the coverage
range of the WAA, is proposed. A MVIE based K-means
clustering is used in E-PC to identify more than one cluster.

Let M be a set of 4G/5G D2D enabled UEs that have
subscribed to the population clustering service provided by
a WAA, namely ua, which is hovering above a specific height
in the local area (Figure. 1). Each m ∈M utilizes a physical
sidelink control channel (PSCCH) and a physical sidelink
shared channel (PSSCH) to establish a D2D link with ua.
Two D2D modes are distinguished according to the coverage
status of the user device and WAA [21]. In in-coverage
D2D communication mode, one of the two devices is under
the coverage of a given gNB station. However, in out-of-
coverage mode [22], the synchronization of the two devices
is made using the primary synchronization signals (PSSs) and
secondary synchronization signals (SSSs).

Once a D2D link is established with the ua, the device
m ∈ M transmits its location information to ua every Tw
period. The ua stores the received location data for a maximum
time period T0 > Tw. If the location data of a given mobile
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Figure 1: WAA ua collecting location data from Nl number of
UEs in a local region to identify the population clusters using
the proposed algorithm.

m is not updated after the T0 period (e.g. the mobile switches
off), the location data of the mobile is removed.

The ua works in two modes according to the clustering
requests rate. The ua counts the number of requests received
each Tw. In each period TM , the ua computes the average
number of requests per Tw during the last TM period, RR. If
this average exceeds 1, then the ua switches to the periodic
clustering mode. While if the requests rate RR is lower than
1, the ua uses the on-demand clustering mode.

In the periodic clustering mode, the ua computes the cluster
centers in each Tw. Once a clusters’ localization request is
received, ua sends the coordinates of the last computed cluster
centers. Since the number RR is higher than 1, the periodic
mode allows to limit the amount of energy consumed by ua. In
contrast, in on-demand mode, the clusters are only computed
when a new request is received. Consequently, the ua does
not waste energy by computing the clusters when there is no
request.

To compute the cluster centers cc, ua uses the last received
location data, Nl, from M during the last T0 period. The
mobile device localization is referenced by its geographical
coordinates: longitude and latitude. Once a clusters’ centers
request is received, the response is sent to the user device m
through the D2D sidelink channels. The clustering procedure
in both on-demand mode and periodic mode, involves three
main steps: convex hull computation, maximum volume in-
scribed ellipse optimization, and cluster centers computation.

A. Convex hull computation

The convex hull of the set Nl is computed by calling a
facet enumeration algorithm called Quickhull algorithm [19].
The convex hull of a set of points corresponds to the smallest
convex 2D area that covers the set of points (see Figure 3).
Formally, the convex hull area of Nl, χ, contains the set of
points, x, respecting the following p inequalities:

χ = {x ∈ R2 | aT
i x ≤ bi, i = 1, ..., p}, (2)

Each equation ai,1 × x + ai,2 × y = bi corresponds to a
line segment forming the convex hull boundary of Nl, where
a ∈ R2×p, b ∈ Rp.

B. Maximum volume inscribed ellipse optimization

During the second step of the clustering procedure, ua
computes the ellipse included in the convex hull with the
maximum volume. Let’s assume that the maximum volume
inscribed ellipse, inside χ (Figure 3) contains the major part
of the localized mobiles M . Therefore, regions outside the
ellipse while being inside the convex hull represent negligible
clustering areas. The area inside an ellipse ε could be defined
as follows:

ε = {x | x = Bu + d ,u ∈ R2, ‖u‖2 ≤ 1}, (3)

B ∈ R2×2 is a symmetric positive definite matrix that rep-
resents the deformation matrix from a unit circle to an ellipse
and d ∈ R2 is the vector that gives the orientation of the
ellipse.

Maximum volume inscribed ellipse ε∗ is obtained by deter-
mining the ellipse parameters, B and d, that maximizes the
ellipse volume given in (5), and ensures that the ellipse is
included in the convex hull (ε∗ ⊆ χ). Such constraint can be
represented as the set of inequalities provided in (4).

‖Ba i‖+ aT
i d ≤ bi, i = 0, ..., p. (4)

The volume of an ellipse with parameters B and d is given
by:

V ol(B,d) = ρ2

√
det(BTB), (5)

ρ2 gives the volume of a planar unit circle [9]. Hence, the
maximum volume inscribed ellipse optimization is formulated
as follows:

min
B,d

−
√
det(BTB)

s.t. ‖Ba i‖+ aT
i d ≤ bi, i = 0, ..., p

B � 0.

(6)

Noting that the objective function det(BTB) in (6) is a non-
convex function. The non convexity of the objective function
leads to some problem of optimization convergence. To over-
come this problem, the maximum volume inscribed ellipse
is reformulated as a negative log determinant maximization
problem [9], [18]. Log of determinant is used to ensure
convexity of the objective function. This new problem is
formulated as follows:

min
B,d

− log det(B)

s.t. ‖Ba i‖+ aT
i d ≤ bi, i = 0, ..., p

B � 0.

(7)

In this work, CVXOPT solver was used to solve the MVIE
optimization problem given in (7). CVXOPT is a convex op-
timization solver based on the Python programming language.



C. Cluster centers computation

The goal is to detect cluster centers formed by the UEs
and consequently avoid dense zones. It was assumed that
UEs form clusters around the cluster centers following a
Gaussian multivariate density function [23] with a µ 2D mean
vector, and Σ2 covariance matrix, given by (8). The graphical
representation of UE locations following such a Gaussian
density function is illustrated in Figure. 2.

f(x|µ,Σ) =
1√

(2π)|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

(8)
where x denote the coordinates of the UE locations.
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Figure 2: UEs forming clusters around three centers following
a Gaussian multivariate density function, given in (8), each
with a cluster variance of 0.3.

The UEs with a location outside the maximum volume
inscribed ellipse ε∗, are more sparse and may decrease the
clustering performance. Hence, in our proposed method, K-
means is applied only on the locations inside ε∗.

The optimal number of clusters Kopt inside ε∗ are computed
using the gap statistics method [16] discussed in the related
works section. Kopt corresponds then to the cluster number
which has the highest gap statistic value. Finally, the set of the
Kopt cluster centers cc are detected as shown in Figure 3. The
location of cc of each cluster is computed by the arithmetic
mean of all data points that belong to that cluster [24].

Once a request is received, ua sends the set of coordinates
of the cc to the corresponding mobile. The procedure followed
by ua for computing the cluster centers is summarized in
Algorithms 1, 2 and 3.

IV. PERFORMANCE ANALYSIS

A. Numerical simulations

The proposed algorithm was implemented in the Google
Colab online platform [25]. The simulation parameters used
are presented in Table II. For each scenario, a sample dataset
was generated containing nac

isotropic Gaussian clusters with
the same variance S2 using the make blobs Python function
[26].

Figure 3: Proposed method: First, the optimal number of
clusters, Kopt, in the UE locations inside the maximum
volume inscribed ellipse ε∗ is computed. Next, a conventional
clustering method is used to detect Kopt in the total UE
locations in the network area. Distinct colors represent the
different clusters. The red crosses denote the cluster center
locations, cc.

Algorithm 1: Procedure run every Tw on ua
1 Input UE locations Nl

2 Output cluster centers cc
3 if RR >= 1 then
4 for every Tw period do
5 Compute convex hull boundary of Nl, χ, locations
6 Selecting the locations inside ε∗ from Nl

7 Determine Kopt using gap statistics method
8 Use a conventional clustering method to find cc
9 end

10 end

The clustering procedure on the generated dataset was
started by calculating the convex hull, χ, of the points. Then
using the optimization tool, CVXPY [27], the maximum
volume inscribed ellipse, ε∗, was computed. Next, the gap
statistics method was applied to determine the optimal number
of clusters K∗opt. Indeed, since that gap statistics method
is not deterministic (see Section II), the obtained Kopt can
change on different runs. Hence, gap statistics method was
applied for a given number of iterations, rkm, and the obtained
Kopt with the highest gap statistics was selected as the most
suitable K∗opt. It should be noted, that the gap statistics method
was applied only on points of the dataset that are inside
the ε∗s. Once K∗opt was computed, a conventional clustering
method, i.e., K-means, GMM, was applied on the Nl points to
determine the cluster centers cc.

To ensure the relevance of the comparison, every method
was run rd times using the same simulation parameters but
with different datasets. The results shown below correspond
to the average evaluation of the method for each scenario.



Algorithm 2: Procedure run every TM on ua
1 Input list of received requests
2 Output average number of requests per Tw during the

last TM period, RR
3 Compute the average number of requests per Tw

Algorithm 3: Procedure run on reception of new
request

1 Input mobile sender m, UE locations Nl

2 Output cluster centers cc
3 if RR < 1 then
4 Compute convex hull boundary of Nl, χ, locations
5 Selecting the locations inside ε∗ from Nl

6 Determine Kopt using gap statistics method
7 Use a conventional clustering method to find cc
8 else
9 Use the last computed cc in Algorithm 1

10 end
11 Communication of cc to m

B. Evaluation parameters

Silhouette score and data size reduction were used to
evaluate the clustering in proposed and baseline approaches.
The cluster detection performance was evaluated using the
silhouette score [28]. Such a score was computed to study
the separation distance between the resulting clusters [29].
Silhouette value of one data point, p, is defined as:

S(p) =
(b(p)− a(p))

max(a(p), b(p))
, (9)

where a(p) is the mean distance between p and all other data
points in the same cluster called mean intra-cluster distance,
and b(p) is the mean distance between p and all the points of
the nearest cluster, called mean nearest-cluster distance [30].
Silhouette score computation returns a value between -1 and
1 that measures the quality of the clusters. More specifically,
the higher the silhouette score, the better the cluster detection
[28].

The data size reduction, dr, was computed as:

dr = din − dε∗ , (10)

Table II: Simulation parameters

Parameter Value

Number of clusters in original data, nac 3
Variance of each cluster 0.12
Network area 7× 7 km2

Minimum and maximum limits of Kopt [2,...,15]
Total UE number (cluster points), Nl variable [100,1000,104, 105]
Number of iterations, rkm 10
Number of different datasets, rd 3

where din, dε∗ denotes respectively, the total number of data
points in the dataset of UE locations and the number of data
points that are inside the ε∗.

C. Results

The performance of the proposed approach E-PC applied
on conventional clustering methods, was compared with two
conventional methods: K-means and GMM clustering. The
difference in the approaches is that, in the conventional clus-
tering, the gap statistics method is applied on the total UE
locations dataset, whereas in E-PC, the gap statistics method
is applied only on points of the dataset that are inside the ε∗.

Figures 4 and 5 present the silhouette score against the
variance, S2, of the generated clusters. It can be seen that,
when the cluster variance S2 = 0.12, silhouette score is
lower with E-PC compared to only GMM. In this instance, the
percentage of data reduction is 21.5% of the initial 104 data
points. Since the sparsity of the data points is low, the impact
of the data points situated outside the ellipse is considerable.
Hence, when the data points are less sparsely scattered and
the data size reduction exceeds more than 15%, the optimal
number of data points required for the proposed approach has
not been met as described in detail in Section IV-D.

In general, E-PC has achieved the same or higher per-
formance compared to the conventional clustering methods
while considering only the data inside ε∗ to compute Kopt.
Such performance can also be seen in Figures 6 and 7, where
the silhouette score variation against the number of generated
clusters is presented. In this case, the silhouette score has
incremented by 34.45%, after applying E-PC on GMM. As the
number of clusters increase, the existence of clusters inside ε∗

has increased and enabled E-PC to detect clusters notably.
The average silhouette scores achieved for different popula-

tion sizes with original K-means, GMM, and after applying E-
PC on such approaches are presented respectively in Figures.
8 and 9. On average, E-PC has provided a silhouette score
performance improvement by 18.93% compared to using only
K-means and GMM. The ability of cluster detection has
increased when the UE locations outside the ε∗ are excluded
from consideration. The presence of clusters has become
higher inside the ε∗. The selection of UE locations inside the
ε∗ in E-PC has enabled achieving the same or improved cluster
detection using a reduced data size.

D. Data size and silhouette score trade off

The maximum data size reduction possible (drm ), which
withholds the performance of E-PC, under different environ-
ment types are given in Table. III. On average, concerning
all the environment types, the highest possible data reduction
while maintaining the proposed approach performance above
the baseline methods was 15% out of the total data points.
It should be noted that energy consumption is directly pro-
portional to the data size [31]. Hence, the proposed method
improves the energy efficiency at ua significantly, since the
data volume used by the proposed approach was lesser than
the baseline approaches.
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Figure 4: Comparison of silhouette scores obtained with
original K-means and after applying E-PC on K-means under
several cluster variances in a sub-urban region with 10,000
UEs.
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Figure 5: Comparison of silhouette scores obtained with orig-
inal GMM and after applying E-PC on GMM under several
cluster variances in a sub-urban region with 10,000 UEs.
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Figure 6: Comparison of silhouette scores obtained with
original K-means and after applying E-PC on K-means against
number of clusters in a sub-urban region with 10,000 UEs.
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Figure 7: Comparison of silhouette scores obtained with orig-
inal GMM and after applying E-PC on GMM against number
of clusters in a sub-urban region with 10,000 UEs.
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Figure 8: Comparison of silhouette scores obtained with
original K-means and after applying E-PC on K-means against
several environment types, i.e. rural, remote, sub-urban, urban.
It is considered that respectively, rural, remote, sub-urban and
urban regions contain 102, 103, 104, 105 UEs.
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Figure 9: Comparison of silhouette scores obtained with
original GMM and after applying E-PC on GMM against
several environment types, i.e. rural, remote, sub-urban, urban.
It is considered that respectively, rural, remote, sub-urban and
urban regions contain 102, 103, 104, 105 UEs.

V. CONCLUSION

With global pandemics such as Covid-19, awareness of
population clusters has increased. First, a service architecture

that allows users to access the localization of clusters was pro-
posed. The proposed service works under two different modes:



Table III: Data size reduction

Environment drm

remote (100 UEs) 30.33%
rural (1000 UEs) 24.70%
sub-urban (104 UEs) 25.37
urban (105 UEs) 15.24%

periodic and on-demand mode according to the service load.
The objective was to preserve the energy of the wireless aerial
agent (WAA) and to increase the system responsiveness. Also
a convex hull-based clustering method in local D2D networks
was proposed, for population cluster detection. The proposed
algorithm considered the region inside the ε∗, to obtain a
same or higher performance in cluster detection compared to
conventional methods such as K-means and GMM methods
while considering lesser data points than such conventional
methods. This clustering algorithm was performed at the WAA
that covered the studied local region. The results showed that
the proposed method outperformed the original K-means and
GMM clustering performance by 18.93% under different envi-
ronments such as remote, rural, suburban, and urban in terms
of silhouette score. Moreover, the proposed approach allowed
a 15% data reduction, thereby reducing the computational cost
and energy consumption of the WAA. On the other hand, in
the proposed method, UE locations within a cluster followed a
Gaussian distribution. Hence, the performance of the proposed
method for other distributions of UE locations corresponding
to non-open areas, i.e., streets, indoor areas, remains to be
evaluated. In addition, our approach is less efficient when the
number of points outside ε∗ exceeds a threshold of 15% of
the total data. Therefore, the approach can be enhanced by
switching to the conventional clustering methods in such a
situation.
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