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Abstract. When independent tasks are to be scheduled onto identical
processors, the typical goal is to minimize the makespan. A simple and
efficient heuristic consists in scheduling first the task with the longest
processing time (LPT heuristic), and to plan its execution as soon as
possible. While the performance of LPT has already been largely studied,
in particular its asymptotic performance, we revisit results and propose
a novel analysis for the case of tasks generated through uniform integer
compositions. Also, we perform extensive simulations to empirically as-
sess the asymptotic performance of LPT. Results demonstrate that the
absolute error rapidly tends to zero for several distributions of task costs,
including ones studied by theoretical models, and realistic distributions
coming from benchmarks.

1 Introduction

We revisit the classical problem of scheduling n independent tasks with costs
p1, . . . , pn ontom identical processors. The goal is to minimize the total execution
time, or makespan, usually denoted by Cmax. This problem, denoted P ||Cmax in
Graham’s notation [14], has been extensively studied in the literature, and greedy
heuristics turn out to have theoretical guarantees and to perform well in practice.
In particular, we focus on the Longest Processing Time (LPT) heuristic, where
the longest task will be scheduled first, on the processor where it can start the
earliest. This heuristic is very simple and has a low complexity, while exhibiting
good worst-case performance [15], and excellent empirical one. With a large
number of tasks, LPT appears to be almost optimal.

Since the worst-case performance exhibits cases where LPT is further from
the optimal, many different approaches have tried to fill the gap between this
worst-case performance and the excellent practical performance. The goal is to
provide performance guarantees of different kinds, for instance by studying the
average-case complexity, some generic-case complexity, or convergence results.

Hence, many convergence results have been proposed in the literature. They
state that LPT ends up providing an optimal solution when the number of tasks
grows towards infinity. Some of these results even provide asymptotic rates that
quantify the speed with which LPT tends to optimally. These results depend
on assumptions on the probability distribution of the costs of the tasks, and on
the definition of distance to optimality. However, the literature lacks a definitive
answer on the convergence to optimality and its rate when faced with difficult
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cost distributions. In particular, this work is the first to consider dependent
random costs with a constraint on the minimum cost.

First, Section 2 synthesizes the existing contributions and their limitations.
Then, we revisit LPT and propose an update to these asymptotic optimality
results, both from a theoretical perspective and from an empirical one. We also
consider related heuristics, in particular a novel strategy recently proposed in [7].
Our contribution is twofold:

1. We derive a new convergence (in probability) result when the distribution of
task costs is generated using uniform integer compositions, hence leading to
a novel probabilistic analysis of the heuristics for this problem (Section 3);

2. We perform a thorough empirical analysis of these heuristics, with an ex-
tended range of settings to study particular distributions but also distribu-
tions coming from real applications (Section 4).

2 Related Work

Theoretical studies. There are several theoretical works studying the rate of
convergence of LPT. Coffman et al. [3] analyze the average performance of LPT
under the assumption that costs are uniformly distributed in the interval (0, 1].
They show that the ratio between the expected makespan obtained with LPT
and the expected optimal one with preemption is bounded by O(1 + m2

n2 ), where
m is the number of processors and n is the number of tasks.

Frenk and Rinnooy Kan [13] bound the absolute error (i.e., the difference be-
tween the achieved makespan and the optimal one) of LPT using order statistics
of the processing times when the cost distribution has a cumulative distribution
function of the form F (x) = xa with 0 < a < ∞. The results also stand when
this constraint is relaxed into F (x) = Θ(xa). They prove that the absolute error
goes to 0 with speed O

(
( log log(n)

n ) 1
a

)
as the number of tasks n grows. For higher

moments, of order q, a similar technique gives a speed of O
(

( 1
n )

a
q

)
.

Frenk and Rinnooy Kan [12] also study uniform machines (Q||Cmax) in the
more general case where costs follow a distribution with finite moment and the
cumulative distribution function is strictly increasing in a neighbourhood of 0.
They show that LPT is asymptotically optimal almost surely in terms of absolute
error. When it is the second moment that is finite instead, they show that LPT
is asymptotically optimal in expectation. For the more specific cases where the
costs follow either a uniform distribution or a negative exponential distribution,
they provide additional convergence rates.

Another theoretical study is done by Loulou [19], providing a comparison
between LPT and a less sophisticated heuristic, RLP (Random List Processing),
also called LS (List Scheduling) in this paper. This heuristic is simpler than
LPT because the jobs are considered in an arbitrary order instead of a sorted
order. These algorithms are studied under the assumption that the costs are
independent and identically distributed (i.i.d.) random variables with finite first
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moment. Under this assumption, the absolute error of RLP with at least three
processors and LPT are both stochastically bounded by a finite random variable.
The author also proves that the absolute error of LPT converges in distribution
to optimality with rate O(1/n1−ε).

Coffman et al. [5] list various results and techniques that are useful for the
study of the problems of scheduling and bin packing. They consider both the-
oretical optimal results, and heuristic algorithm results. LPT is one of the al-
gorithms they study, in terms of both relative error (LPT/OPT) and absolute
error (LPT − OPT). They also reuse the specific probability distribution used
by Frenk and Rinnooy Kan [13] of the form F (x) = xa, with 0 < a < ∞.
They present a heuristic adapted from a set-partitioning problem with a better
convergence on this distribution.

Piersma and Romeijn [21] have considered the R||Cmax problem (with unre-
lated machines), and they propose an LP relaxation of the problem, followed by
a Lagrange relaxation. Assuming that the processing times are i.i.d. random vec-
tors of [0, 1]m, they prove that 1

nOPT converges almost surely to a value θ that
they give (it depends on the Lagrange relaxation). Using a previous convergence
result [13], they infer that the makespan of LPT also converges a.s. to nθ.

Dempster et al. [8] consider an objective function also depending on the
machine cost, and they propose a heuristic in two steps, where they first choose
the machines to be bought with knowledge of the distribution of the jobs, and
then schedule the jobs on the machines that were bought in the first step. For
identical machines, assuming that the processing times are i.i.d. random variables
with finite second moment, they prove that the relative error of their heuristic
converges to 0 in expectation and probability when the number of jobs goes to
infinity. For uniform machines, they need more assumptions to reach results.

Table 1 summarizes the main results that are known about LPT.

Table 1. For each main result, the problem may consider uniform processors (P ) or
processors with speeds (Q or R). A result on the absolute difference is stronger than
on the ratio. OPT is the optimal makespan, whereas OPT∗ is the optimal makespan
with preemption.

Problem Distribution Studied quantity Convergence/rate

[3] P ||Cmax U(0, 1) E[LPT]/E[OPT∗] 1 +O(m2/n2)

[13] P ||Cmax
F (x) = xa,
0 < a <∞ LPT−OPT O((log log(n)/n) 1

a )
almost surely (a.s.)

[13] P ||Cmax as above E[(LPT−OPT)q] O((1/n)
a
q )

[12] Q||Cmax finite 1st moment LPT−OPT a.s.
[12] Q||Cmax finite 2nd moment LPT−OPT in expectation
[12] Q||Cmax U(0, 1) or Exp(λ) LPT−OPT O(logn/n) a.s.
[12] Q||Cmax U(0, 1) E[LPT]− E[OPT] O(m2/n)
[19] P ||Cmax finite 1st moment LPT−OPT bounding finite RV
[19] P ||Cmax U(0, 1) LPT−OPT O(1/n1−ε) in dist.
[5] P ||Cmax U(0, 1) E[LPT−OPT] O(m/(n+ 1))
[21] R||Cmax U(0, 1) OPT nθ a.s.
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Beyond LPT. Even though LPT has interesting properties in terms of con-
vergence, other heuristics have been designed for the multiprocessor scheduling
problem. For independent tasks and makespan minimization, the problem is ac-
tually close to a bin-packing problem, where one would like to create m bins
of same size. Hence, the MULTIFIT heuristic [4] builds on techniques used in
bin-packing, and it provides an improved worst-case bound.

Then, a COMBINE heuristic was proposed [18], combining MULTIFIT and
LPT to get the best of these two heuristics. Another alternative, LISTFIT,
was proposed in [16], still with the goal to minimize the makespan on identical
machines.

Building on the Largest Differencing Method of Karmarkar and Karp [20],
a novel heuristic was proposed, outperforming LPT and MULTIFIT from an
average-case perspective.

More recently, Della Croce and Scatamacchia [7] revisit LPT to propose yet
another heuristic, SLACK, by splitting the sorted tasks in tuples of m consecu-
tive tasks (recall that m is the number of processors), and then sorting tuples by
non-increasing order of the difference between the largest and smallest task in the
tuple. A list-scheduling strategy is then applied with tasks sorted in this order.
Moreover, LPT last step is enhanced to reach a better worst-case approximation
ratio.

Empirical studies. An empirical comparison of LISTFIT with MULTIFIT,
COMBINE and LPT is proposed in [16]. Several parameters are varied, in partic-
ular the number of machines, number of jobs, and the minimum and maximum
values of a uniform distribution for processing times. No other distribution is
considered. LISTFIT turns out to be robust and returns better makespan values
than previous heuristics.

Behera and Laha [1] consider the three heuristics MULTIFIT, COMBINE
and LISTFIT, and propose a comprehensive performance evaluation. While
LISTFIT outperforms the two other heuristics, this comes at a price of an in-
creased time complexity. They do not consider instances with more than 300
tasks, and no comparison with LPT is done.

An empirical evaluation of LPT was proposed in [17], showing that LPT con-
sumes less computational time than the competitors (MULTIFIT, COMBINE,
LISTFIT), but returns schedules with higher makespan values. However, here
again, there is no study of the convergence, and no comparison of LPT with
other simpler algorithms.

Finally, an evaluation of SLACK is done in [7]: this variant of LPT turns out
to be much better than LPT on benchmark literature instances, and it remains
competitive with the COMBINE heuristic that is more costly and more difficult
to implement.

Beyond independent tasks. While we have been focusing so far on indepen-
dent tasks, there have also been some empirical analysis of list scheduling for
general directed acyclic graphs (DAGs), i.e., with dependencies. For instance,
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Cooper et al. [6] evaluate various list schedulers on benchmark codes, pointing
out cases where a basic list scheduling algorithm works well, and where more so-
phisticated approaches are helpful. In this paper, we focus on independent tasks
to study the convergence of LPT and other heuristics.

3 Convergence Results for Integer Compositions

In this section, we derive new convergence results for four heuristics that are
first described in Section 3.1. These results apply when the distribution of task
costs is generated following an integer composition method. In contrast to re-
lated work where the number of tasks n is known beforehand, this consists in
considering that the total amount of work W is fixed (costs are thus dependent
random variables). We detail how tasks are generated among possible decompo-
sitions of this work (Section 3.2). We finally perform the probabilistic analysis
in two different settings, depending whether the minimum cost of tasks is one
(Section 3.3) or greater (Section 3.4).

The proofs of the results in this section are mainly based on combinatorics
techniques. The reader is referred to [10] for more information. All the detailed
proofs are available in the companion research report [2].

3.1 Algorithms

We consider four different list scheduling algorithms: they order the tasks in some
way, and then successively assign tasks in a greedy manner, to the processor that
has the lowest current finishing time (or makespan). Hence, tasks are always
started as soon as possible, and for independent tasks, there is no idle time in
the schedule.

The four algorithms differ in the way they first order the tasks:

– LS: List Scheduling is the basic list scheduling algorithm that does not or-
der the tasks, but rather considers them in an arbitrary order. The time
complexity of LS is O(n logm).

– LPT: Largest Processing Time orders the tasks from the largest to the small-
est. The time complexity of LPT is O(n logn).

– MD: Median Discriminated is an attempt to find a intermediate solution
between LPT and LS. The tasks are not completely sorted, but the median
of the execution times is computed so that the first n

2 processed tasks are
larger than the median, while the next n

2 are smaller. The time complexity
of MD is O(n logm).

– SLACK: as defined by Della Croce and Scatamacchia in [7], it makes packs of
m tasks and defines for each of these packs the slack, which is the difference
between the largest and the smallest task of the pack. The packs are then
sorted from the largest to the smallest slack and the tasks are ordered in the
order incurred by the order of the packs. The time complexity of SLACK is
O(n logn).
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3.2 Tasks Random Generation

A W -composition is a finite sequence p1, . . . , pn of strictly positive integers such
that p1 + . . .+ pn = W .

Let DW be the uniform distribution over W -compositions and DW,pmin the
uniform distribution over W -compositions satisfying for each i, pi ≥ pmin. In
particular, DW,1 = DW . For instance, D4 is the uniform distribution over the
eight elements (1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 3), (2, 1, 1), (2, 2), (3, 1), (4); D4,2 is
the uniform distribution over (2, 2) and (4). Note that for D4, the probability
that p1 = 1 is 1/2 and the probability that p1 = 3 is 1/8.

In practice, random generation is performed using the recursive method [11].
For a list L of task costs, we denote by LPT(L,m) the makespan Cmax

returned by LPT on m machines. We define as well LS(L,m), MD(L,m) and
SLACK(L,m) for the other heuristics. The optimal (minimum) Cmax that can
be obtained by any algorithm is similarly denoted OPT(L,m).

3.3 Probabilistic Analysis of List-Scheduling Heuristics for DW

Ratio for DW . In this setting, we know the total workload W , but the num-
ber of tasks n is not fixed and there is no minimum task cost. Let L[W ] =
(p1, . . . , pn) be a sequence of positive integers such that

∑n
i=1 pi = W , hence a

W -composition.
According to [15],

LS(L[W ],m)
OPT(L[W ],m) ≤ 1 + (m− 1) pmax∑n

i=1 pi
= 1 + (m− 1)pmax

W
,

where pmax = max{pi}.
Following [10, page 310], for DW and for any y,

P (pmax ≥ 2 log2 W + y) = O

(
e−2y

W

)
. (1)

Since by definition of OPT, OPT(L[W ],m) ≤ LS(L[W ],m), for any fixed m,

P
(

LS(DW ,m)
OPT(DW ,m) ≤ 1 + 2(m− 1) log2(W )

W

)
−→

W→+∞
1. (2)

It is also known, see [10, Proposition V.I.], that for the distribution DW ,
E[pmax] ∼ log2 W . By linearity of expectations, the following result holds:

E

[
LS(DW ,m)

OPT(DW ,m)

]
−→

W→+∞
1.

The results also hold for LPT, MD and SLACK, which are particular list-
scheduling heuristics.
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Absolute error for DW . The absolute error of a heuristic is the difference
between its result and the optimal result. A first obvious upper bound is that
LS(L,m)−OPT (L,m) ≤ pmax (for any set of tasks L), and previous results on
pmax can be used to bound the error (but not proving it tends to 0). Furthermore,
we prove the following theorem:

Theorem 1. Algorithms LPT and SLACK are optimal for DW , with probability
1−O

( 1
W

)
. For any fixed m, for L generated according to DW ,

P(LPT(L,m) = OPT(L,m)) = 1−O
(

1
W

)
, and

P(SLACK(L,m) = OPT(L,m)) = 1−O
(

1
W

)
, and

P(MD(L,m) ≤ OPT(L,m) + 1) = 1−O
(

1
W

)
.

The proof is building upon two lemmas, and can be found in the companion
research report [2]. Note that the result for MD is almost similar, but up to 1 to
the optimal.

Theorem 1 can be reformulated in a convergence in probability result:

Corollary 1. For every ε > 0, for the distributions DW ,

lim
W→+∞

P(|LPT(L,m)−OPT(L,m)| ≥ ε) = 0, and

lim
W→+∞

P(|SLACK(L,m)−OPT(L,m)| ≥ ε) = 0, and

lim
W→+∞

P(|MD(L,m)−OPT(L,m)| ≥ 1 + ε) = 0.

Proof. P(|LPT(L,m) − OPT(L,m)| ≥ ε) = P(LPT(L,m) − OPT(L,m) ≥ ε) ≤
P(LPT(L,m) − OPT(L,m) > 0) = 1 − P(LPT(L,m) − OPT(L,m) = 0) =
O
( 1
W

)
. The proof is similar for SLACK and MD. ut

3.4 Analysis for DW,pmin

Let min{pi} = pmin ≥ 2. Let αW,pmin be the number of pi’s equal to pmin in a
decomposition (p1, . . . , pk) satisfying

∑
pi = W and for every i, pi ≥ pmin. The

random variable αW,pmin is studied for the DW,pmin distribution. Let also γpmin,k

be the number of pi’s greater than or equal to k (with k ≥ pmin).

Theorem 2. Let m be a fixed number of machines. One has, for L gener-
ated according to DW,pmin , P(|LPT(L,m) − OPT(L,m)| ≤ pmin) −→

W→+∞
1 and

P(|SLACK(L,m)−OPT(L,m)| ≤ pmin) −→
W→+∞

1 .
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Here again, the proof, based on two lemmas, can be found in the companion
research report [2]. Note that we do not have yet any theoretical results for
MD for DW,pmin , but experimental results explored in Section 4 are encouraging.
Finally, we obtain the following corollary:

Corollary 2. For every ε > 0, every pmin ≥ 2, for the distributions DW,pmin ,

lim
W→+∞

P(|LPT(L,m)−OPT(L,m)| < pmin + ε) = 0, and

lim
W→+∞

P(|SLACK(L,m)−OPT(L,m)| < pmin + ε) = 0.

4 Empirical Study

The objective of this section is threefold: first, evaluate the tightness of the
convergence rate proposed in [13] (Section 4.2); then, assess the performance
of the four heuristics when generating costs with the integer composition ap-
proach (Section 4.3); finally, quantifying the convergence for realistic instance
(Section 4.4). We first detail the experimental setting in Section 4.1. All the
algorithms were implemented in Python 3, and the code is available on figshare.

4.1 Experimental Setting

Synthetic Instances. We consider two kinds of synthetic instances: (1) i.i.d.
execution times with cumulative distribution function F (x) = xa for some a > 0.
This distribution has an expected value of a

a+1 and a variance of a
(a+1)2·(a+2) .

These values can be seen as a function of a in Fig. 1. Note that for a = 1,
this is a uniform distribution U(0, 1). (2) The integer composition distribution
considered in Section 3, that is to say a uniform distribution on all possible ways
to decompose a total amount of work into integer values.

0.00

0.25

0.50

0.75

1.00

1e-02 1e-01 1e+00 1e+01 1e+02
a (log)

Expected value

Standard deviaton

Fig. 1. Expected value and standard deviation of a random variable with cumulative
distribution function F (x) = xa as a function of a with 0 < a <∞.

https://doi.org/10.6084/m9.figshare.14067839.v1
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Realistic Instances. We also compare the four algorithms of Section 3.1
using real logs from the Parallel Workloads Archive, described in [9] and avail-
able at https://www.cs.huji.ac.il/labs/parallel/workload/. More specif-
ically, we took the instances called KIT ForHLR II with 114 355 tasks and NASA
Ames iPSC/860 with 18 239 tasks. The profiles of the task costs in these instances
are presented in Fig. 2.

In order to also get instances for which the number of tasks n could change,
we build new instances from these two instances. In the new instances, the tasks
are i.i.d. random variables with an empirical cumulative distribution function
that is computed from the distribution of the two original instances.

Optimality Transform. When studying the absolute error of an algorithm,
we consider the difference of its makespan to the optimal one to measure the
convergence when the number of tasks n goes to infinity. The optimal makespan
is computationally hard to get, so as a first approach, we can take a lower bound
instead of the actual optimal value. However, there is a risk of actually measuring
the quality of the lower bound instead of the quality of the algorithm.

To address this problem, we transform the instances so that we know the
optimal makespan. This transformation is described as follows:

– we take an instance with n tasks;
– we perform a random List Scheduling on this instance;
– from this schedule, we add a total of at most m− 1 tasks so that all of the

processors finish at the same time;
– we randomize the order of the tasks to avoid adding a bias to the heuristics;
– we end up with an instance with at most n+m−1 tasks such that the optimal

makespan equals the sum of the execution times divided by the number of
processors (OPT = W

m ).

As we are interested in the asymptotic behavior of the algorithms, m is small
compared to n, and we expect this transformation to alter the task distribution
only marginally. However, studying the precise distribution of the added tasks
is left to future work.

KIT ForHLR II NASA Ames iPSC/860

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
0.00

0.25

0.50

0.75

1.00

Execution time (log)
Fig. 2. Empirical cumulative distributions and histograms of task costs for the KIT
ForHLR II and NASA Ames iPSC/860 instances.

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html
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4.2 Rate Tightness

We experimentally verify the bound given in [13]: if the tasks are independent
and have cumulative distribution function F (x) = xa with a > 0, then the
absolute error is a O(( log log(n)

n ) 1
a ) almost surely.

Fig. 3 depicts the absolute error of LPT and related heuristics (LS, MD and
SLACK) for different values of n. The instance contains n−m+ 1 costs gener-
ated with the considered distribution and is then completed with the optimality
transform. Moreover, we plot C · ( log log(n)

n ) 1
a , where C is the lowest constant

such that all of LPT values are under the bound.

m = 10 m = 30 m = 100

a
=

0
.5

a
=

1
a
=

2

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
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0.0

0.1

0.2
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0.5
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0.1

0.2

0.3

0.4

0.5

Number of tasks n

C
m

a
x
−

O
P
T

Heuristic LPT LS MD SLACK

Fig. 3. Absolute error with a distribution of the form F (x) = xa with a > 0 (instances
are transformed to obtain OPT). Smoothed lines are obtained by using a rolling median
with 45 values (each value is set to the median of the 22 values on the left, the 22 on
the right and the current one). The ribbons represent the rolling 0.1- and 0.9-quantiles.
The thin line corresponds to the theoretical rate for LPT: C · ( log log(n)

n
) 1

a .
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We can see that the bound seems to be rather tight for LPT, which confirms
that the convergence rate of [13] is strong. Also, we can see that the absolute
error of SLACK seems to converge to 0 at a similar rate than LPT, but with a
lower multiplicative constant. On the other side, the absolute errors of LS and
MD do not seem to converge to 0 at all, but MD performs significantly better
than LS.

4.3 Uniform Integer Compositions

Some experiments have been performed for the distributions described in Sec-
tion 3: a total workload W is fixed as well as a fixed number m of machines.
Then, the list of task costs is uniformly picked among all the possible lists for
the distribution DW ; and among all the possible lists with a minimum cost pmin
for the distribution DW,pmin .

For DW , an instance has been generated for all W from 10 to 9999, for
m = 10, m = 30, and m = 100. Instances are not transformed to avoid changing
the total work W . Thus, we compare the makespan obtained by the heuristics
to the lower bound on the optimal value OPT: max(dWm e, pmax). In all cases
(about 30 000), LPT and SLACK always reach this bound, which indicates that
they are both optimal and the bound is tight with these instances. Results for
LS and MD are reported in Table 2. The average absolute error for MD is 0.35
for this experiment with a standard deviation of 0.6. Moreover MD is optimal
in 67.6% of the samples and up to 1 from the optimum in 98% of the samples.
LS is optimal in 3.3% of the cases and the average error is 3.75 (s.d. 2.15).

Similar tests have been done for DW,pmin with W ∈ {10, . . . , 9999}, pmin ∈
{3, 5, 7, 10} and m ∈ {10, 30, 100} (see Table 3). We now focus on the difference
δ between Cmax and the lower bound. In each case, the maximal value of δ
is reported, as well as its average and standard deviation. Note that for each
sample, both SLACK and LPT ensure that δ < pmin, and MD ensures it in
99% of cases. The LS heuristic is less effective since for pmin = 3, only 41% of
the samples satisfy δ < pmin; 49% for pmin = 5, 53% for pmin = 7 and 58% for
pmin = 10. Results for the SLACK and LPT heuristics are very close. Over the
about 120 000 samples, SLACK is strictly better than LPT only 55 times, when
LPT is strictly better than SLACK only 54 times. Each time, the difference is
either 1 or 2. On these distributions, SLACK and LPT seem to compete equally.

Table 2. Distribution of the absolute errors observed for LS and MD with W from 10
to 9999 and m ∈ {10, 30, 100}.

abs. err. LS MD abs. err. LS MD

0 3.3 67.6 6 8.9 0.04
1 10.8 30.5 7 5.0 0.02
2 17.0 0.88 8 2.7 0.01
3 18.4 0.56 9 1.2 0.01
4 17.4 0.23 10 0.6 < 0.01
5 14.0 0.09 > 10 0.7 < 0.01
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Table 3. Results on the difference between the Cmax computed by the heuristics and
a lower bound of the optimal makespan OPT. Each line is related to different DW,pmin .
The first number is the maximum difference observed for all the samples, the second one
is the average difference, and the last one is the standard deviation of this difference.
Each value is obtained with W from 10 to 9999 and for m ∈ {10, 30, 100}.

pmin LPT LS MD SLACK

3 2 – 0.92 – 0.71 16 – 2.53 – 0.92 10 – 1.47 – 0.58 2 – 0.92 – 0.71
5 4 – 1.82 – 1.23 24 – 4.28 – 1.51 10 – 2.66 – 0.90 4 – 1.82 – 1.23
7 6 – 2.69 – 1.81 26 – 5.95 – 2.15 12 – 3.63 – 1.20 6 – 2.69 – 1.81
10 9 – 3.92 – 2.67 38 – 8.32 – 3.22 15 – 5.17 – 1.86 9 – 3.92 – 2.67

m = 10 m = 30 m = 100

K
IT

N
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S
A

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

1e+01

1e+03

1e+05

1

10

100

1000

10000

Number of tasks n

C
m

a
x
−

O
P
T

Heuristic LPT LS MD SLACK

Fig. 4. Absolute error with costs derived from the KIT ForHLR II and NASA Ames
iPSC/860 instances (after optimality transformation). Smoothed lines are obtained by
using a rolling median with 45 values (each value is set to the median of the 22 values
on the left, the 22 on the right and the current one). The ribbons represent the rolling
0.1- and 0.9-quantiles.
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4.4 Realistic Workloads

In Fig. 4, we present experiments similar to those with synthetic instances in
Section 4.2, but with the realistic instances.

As we can see when comparing LS and MD, treating the n
2 largest tasks first

only marginally decreases the makespan of LS. We can also see that when n
grows, the absolute error of LPT seems to be on par with the one of SLACK.
In [7], SLACK was found to perform generally better than LPT for some syn-
thetic instances, which differs from the results we get with more realistic in-
stances. Finally, LPT seems to converge even faster to the optimal with these
instances than with the synthetic ones, as the absolute error quickly becomes
close to 0.

5 Conclusion

Given various probability distributions, we have evaluated the performance of
four heuristics, among which the classical LPT heuristic and the more recent
SLACK one. The literature already contains important theoretical results either
in the form of different kinds of stochastic convergence to optimality or with a
convergence rate. To the best of our knowledge, this paper is the first to empiri-
cally assess the tightness of a theoretical convergence rate for LPT. Furthermore,
we focus on a novel definition of uniformity for the cost distribution: for a given
total work, any integer composition can be drawn with the same probability,
which leads to dependent random costs. This distribution is further enhanced
by considering a subset of the decompositions that constrains the minimum cost.
This paper proves the convergence in probability of LPT and similar heuristics
with these distributions as well. Finally, we empirically analyze the convergence
with realistic distributions obtained through traces. All these results contribute
to understand the excellent performance of LPT in practice.

Future work will consist in obtaining stronger convergence theoretical results.
For instance, existing results only consider that the number of tasks n tends to
infinity. The impact of a varying number of processors m could be explored.
Also, this work is the first attempt to consider dependent cost distributions,
but many such distributions exist and could be explored. For instance, the same
application consisting of a given set of tasks can be executed with different input
size. The tasks could thus often have the same profile to a given multiplying
factor. Finally, the novel distribution in this paper presents a minimum cost.
Existing convergence results for independent distributions could probably be
extended to consider costs with a similar minimum value. For instance, the
worst-case ratio for LPT is achieved with costs 1

3 and 1
2 . The uniform distribution

U( 1
3 ,

1
2 ) could thus present some challenges.
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