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Abstract. Distributed key-value stores employ replication for high avail-
ability. Yet, they do not always efficiently take advantage of the availabil-
ity of multiple replicas for each value, and read operations often exhibit
high tail latencies. Various replica selection strategies have been proposed
to address this problem, together with local request scheduling policies. It
is difficult, however, to determine what is the absolute performance gain
each of these strategies can achieve. We present a formal framework al-
lowing the systematic study of request scheduling strategies in key-value
stores. We contribute a definition of the optimization problem related to
reducing tail latency in a replicated key-value store as a minimization
problem with respect to the maximum weighted flow criterion. By using
scheduling theory, we show the difficulty of this problem, and therefore
the need to develop performance guarantees. We also study the behavior
of heuristic methods using simulations, which highlight which properties
are useful for limiting tail latency: for instance, the EFT strategy—which
uses the earliest available time of servers—exhibits a tail latency that is
less than half that of state-of-the-art strategies, often matching the lower
bound. Our study also emphasizes the importance of metrics such as the
stretch to properly evaluate replica selection and local execution policies.

Keywords: Online Scheduling· Key-Value Store· Replica Selection· Tail
Latency· Lower Bound

1 Introduction

Online services are used by a large number of users accessing ever-increasing
amounts of data. One major constraint is the high expectation of these users
in terms of service responsiveness. Studies have shown that an increase in the
average latency has direct effects on the use frequency of an online service, e.g.,
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experiments at Google have shown that an additional latency of 400 ms per
request for 6 weeks reduced the number of daily searches by 0.6 % [6].

In modern cloud applications, data storage systems are important actors in
the evolution of overall user-perceived latency. Considerable attention has been
given, therefore, to the performance predictability of such systems. Serving a
single user request usually requires fetching multiple data items from the storage
system. The overall latency is often that of the slowest request. As a result, a very
small fraction of slow requests may result in overall service latency degradation
for many users. This problem is known as the tail latency problem. In large-scale
deployments of cloud applications, it has been observed that the 95th and 99th

percentiles in the query distribution show latency values that can be several
orders of magnitude higher than the median [1, 8].

In this study, we focus on the popular class of storage systems that are
key-value stores, where each value is simply bound to a specific key [9, 16].
These systems scale horizontally by distributing responsibility for fractions of
the key space across a large number of storage servers. They ensure disjoint-
access parallelism, high availability and durability by relying on data replication
over several servers. As such, read requests may be served by any of these replica.

Replica selection strategies [13, 15, 23] dynamically schedule requests to dif-
ferent replicas in order to reduce tail latency. When the request reaches the
selected replica, it is inserted into a queue and a local queue scheduling strat-
egy may decide to prioritize certain requests over others. These combinations of
global and local strategies are well adapted to the distributed nature of key-value
stores, as they assume no omniscient or real-time knowledge of the status of each
replica, or of concurrently-scheduled requests. It remains difficult, however, to
systematically assess their potential. On the one hand, there is no clear upper
bound on the performance that a global, omniscient strategy could theoretically
achieve. On the other hand, it is difficult to determine what is the impact of
using only local or partial information on achievable performance. Our goal in
this paper is to bridge this gap, and equip designers of replica selection and local
scheduling strategies with tools enabling their formal evaluation. By modeling
a corresponding scheduling problem, we develop a number of guarantees that
apply to a variety of designs.

Outline. We make the following contributions:
– a formal model to describe replicated key-value stores and the scheduling

problem associated to the minimization of tail latency (Section 3);
– a polynomial-time offline algorithm, a (2− 1

m )-approximation guarantee and
a NP-completeness result for related scheduling problems (Section 4);

– online heuristics to solve the online optimization of maximum weighted flow,
representing compromises in locally available information at the different
servers of the key-value store (Section 5);

– the comparison of these heuristics in extensive simulations (Section 6).

The algorithms, the related code, data and analysis are available online5.
5 https://doi.org/10.6084/m9.figshare.14755359

https://doi.org/10.6084/m9.figshare.14755359
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2 Related Work

We provide here a short review of related studies. An extended survey can be
found in our companion research report [3].

Key-value stores. Key-value stores implement data partitioning for horizontal
scalability, typically using consistent hashing. This consists of treating the output
of a hash function as a ring; each server is then assigned a position on this
circular space and becomes responsible of all data between it and its predecessor
(the position of a data item is decided by hashing the corresponding key) [9,16].
Replication is implemented on top of data partitioning, by duplicating each data
item on the successors of its assigned server.

Replica selection strategies [13, 15, 23] generally target the reduction of tail
latency. They seek to avoid that a request be sent to a busy server when a more
available one would have answered faster. The server receiving a request (the
coordinator) is generally not the one in charge of the corresponding key. All
servers know, however, the partitioning and replication plans. Coordinators can,
therefore, associate a key with a list of replicas and select the most appropriate
server to query. Cassandra uses Dynamic Snitching [16], which selects the replica
with the lowest average load over a time window. This strategy is prone to insta-
bilities, as lowly-loaded servers tend to receive swarm of requests. C3 [23] uses an
adaptive replica selection strategy that can quickly react to heterogeneous ser-
vice times and mediate this instability. Dynamic snitching and C3 both assume
that values are served with the same latency. Héron [13] addresses the problem of
head-of-line blocking arising when values have heterogeneous sizes: requests for
small values may be scheduled behind requests for large values, increasing tail
latency. It propagates across the cluster the identity of values whose size is over
a threshold, together with load information and pending requests to such large
values. Size-aware sharding [10] avoids head-of-line blocking on a specific server,
by specializing some of its cores to serve only large values. Other systems, such
as REIN [22] or TailX [14], focus on the specific case of multi-get operations,
whereby multiple keys are read in a single operation. We intend to consider
multi-get queries in our future work, as an extension of our formal models.

All the solutions mentioned above empirically improve tail latency under
the considered test workloads. There is, however, no strong evidence that no
better solution exists as the proposed heuristics are not compared to any for-
mal ground. In contrast, and similarly to our objective, Li et al. [21] propose
a single-node model of a complete hardware, application and operating sys-
tem stack using queuing theory. This allows determining expected tail latencies
in the modeled system. The comparison of the model and an actual hardware
and software stack shows important discrepancies. The authors were able to
identify performance-impacting factors (e.g. request re-ordering, limited concur-
rency, non-uniform memory accesses, etc.) and address them, matching close to
optimal performance under the knowledge of predictions from the model. Our
goal is to be an enabler for such informed optimization and development for the
case of distributed (multi-node) storage services.
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Flow minimization in scheduling. Minimization of latency—the time a request
spends in the system—is commonly approached as the optimization of flow time
in theoretical works, and a great diversity of scheduling problems deal with this
criterion. The functions that usually constitute the objective to minimize are the
max-flow (Fmax) and the sum-flow (

∑
Fi). It is well-known that the max-flow

criterion is minimized by the FIFO (First In First Out) strategy on a single-
machine, and it has also been proven (3− 2

m )-competitive on m machines [4].
Sometimes the maximum weighted flow maxwiFi is considered in order to

give more importance to some requests. For example Bender et al. introduced the
stretch, where the weight is the inverse of the request serving time (wi = 1/pi),
to express and study the notion of fairness for scheduling HTTP requests in web
servers [4]. Bender et al. derive an O(

√
∆)-competitive algorithm from the EDF

(Earliest Deadline First) strategy, with ∆ being the ratio between the largest
processing time to the smallest one (∆ = max pi

min pi
). Later, Legrand et al. presented

a polynomial-time algorithm to solve the offline minimization of max weighted
flow time on unrelated machines when preemption is allowed [18].

Optimizing the average performance is obtained through minimizing the sum
flow time criterion. However, this optimization objective may lead to starvation:
some requests may be infinitely delayed in an optimal solution [4].

Replication in scheduling. An important consequence of replication is that a
given request cannot be executed by any server; it must be processed by a server
in the subset of replicas able to handle it. This constraint is commonly known
as “multipurpose machines”. Brucker et al. proposed a formalization and ana-
lyzed the complexity of some of these problems [5]. They show for example that
minimizing the sum flow on identical multipurpose machines can be solved in
polynomial time. To the best of our knowledge, there exists no work considering
replication for the minimization of the maximum (weighted) flow.

3 Formal Model

We propose a formal model of a distributed and replicated key-value store. This
section describes the theoretical framework and states the optimization problem
related to the minimization of tail latency.

Application and platform models. We start by defining a key-value map (K,V )
as a set of associations between keys and values. We associate c keys K =
{K1, . . . ,Kc} to c values V = {V1, . . . , Vc}: each unique key Kl refers to a unique
value Vl whose size is zl > 0.

The considered problem is to schedule a set of n requests T = {T1, . . . , Tn}
on m parallel servers M = {M1, . . . ,Mm} in a replicated key-value store. The
set K is spread over these servers. For one server Mj , the function Ψ gives the
subset of keys Ψ(Mj) ⊆ K that is owned by Mj . Each request Ti carries a key
that will be used to retrieve a specific value in the store. For one request Ti, the
function ϕ gives this key ϕ(Ti) = Kl. The same key can be carried by different
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requests. Fig. 1 shows the relationship between requests, keys and values. A
server Mj may execute a request Ti if and only if ϕ(Ti) ∈ Ψ(Mj), i.e., Mj holds
the value for the carried key of Ti.

All requests are independent: no request has to wait for the completion of
another request, and no communication occurs between requests. We limit our-
selves to the non-preemptive problem, as real implementations of key-value stores
generally do not interrupt requests.

In addition, each request Ti has a processing time pi = αzl+β, where α, β > 0
(with ϕ(Ti) = Kl). Processing time is equal to the average network latency β
plus data sending time, which is proportional to the size of the value this request
is looking for (factor α represents the inverse of the bandwidth). A request is
also unavailable before time ri ≥ 0 and its properties are unknown as well.

As a serverMj may execute a request Ti only if it holds the key ϕ(Ti), we treat
the multipurpose machines scheduling problem where the setMi ⊆M represents
the set of machines able to execute the request Ti, i.e., Mi = {Mj | ϕ(Ti) ∈
Ψ(Mj)}. In the Graham α|β|γ notation of scheduling problems, this constraint
is commonly denoted by Mi in the β-part. This aspect of the problem models
data replication on the cluster. Key-value stores tend to express the replication
factor, i.e., the number of times the same data is duplicated, as a parameter k
of the system. Therefore, we have |Mi| = k.

Problem statement. There is no objective criterion that can straightforwardly
represent the formal optimization of tail latency, as there is no formal definition
of this system concept. Different works consider the 95th percentile, the 99th

percentile, or the maximum, and it should be highlighted that we do not want
to degrade average performance too much. We propose to approach the tail
latency optimization by minimizing a well-known criterion in online scheduling
theory: the maximum time spent by requests in the system, also known as the
maximum flow time maxFi, where Fi = Ci−ri expresses the difference between
the completion time Ci and the release time ri of a request Ti.

However, it seems unfair to wait longer for a request for a small value to
complete than for a large one: for example, we know that a user’s tolerance for

V1
V2 V3

V4

K1 K2 K3 K4

T1 T2 T3 T4 T5 T6

Value
Key
Request

Fig. 1. A bipartite graph showing relations between requests, keys and values. Different
requests may hold the same key (e.g. K4).
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the response time of a real system is greater when a process considered to be
heavy is in progress. Hence, the latency should be weighted to emphasize the
relative importance of a given request; we are looking for a “fairness” property.
To formalize this idea, we associate a weight wi to each Ti. The definition of
this weight is flexible, in order to allow the key-value store system designer to
consider different kinds of metrics. We focus on two weighting strategies in our
simulations. First, the flow time (wi = 1) gives an importance to each request
that is proportional to its cost, which favors requests for large values. Second,
the stretch (wi = 1

pi
) gives the same importance to each request, but this favors

requests for small values because they are more sensitive to scheduling decisions.
In summary, our optimization problem consists in finding a schedule minimiz-

ing the maximum weighted flow time maxwiFi under the following constraints:

– P : there are m parallel identical servers.
– Mi: each request Ti is executable by a subset of servers.
– online-ri: each request Ti has a release time ri ≥ 0 and request characteristics

(ri, pi and wi) are not known before ri.

A solution to this problem (P |Mi, online-ri|maxwiFi) is to find a schedule Π,
which, for a request Ti, gives its executing server and starting time. Then we
define a pair Π(Ti) = (Mj , σi), where the server Mj executes Ti at time σi ≥ ri.
Server Mj must hold the required value (Mj ∈ Mi), and there are no simulta-
neous executions: two different requests cannot be executed at the same time on
the same server.

As mentioned earlier, we are also interested in minimizing the average latency
(
∑
wiFi) as a secondary objective; even if the main goal is to reduce tail latency,

it would not be reasonable to degrade average performance doing so. This bi-
objective problem could be approached by the optimization of the more general
`p-norm function of flow times [2], but it is left for future work.

4 Maximum Weighted Flow Optimization

In order to evaluate the performance of replica selection heuristics, it would be
interesting to derive optimal or guaranteed algorithms for the offline version of
our problem, namely the minimization of the maximum weighted flow time of
requests, or even for restricted variants. We show here that we can derive optimal
or approximation algorithms when tasks are all released at time 0, but as soon
as we introduce release dates, the problem gets harder to tackle. Nevertheless, a
lower bound can be computed.

Without release times. We first focus on the non-preemptive problem of minimiz-
ing the maximum weighted flow time on a single server when there is no release
times, i.e., all requests are available at time 0. Remark that in this case, the
more common completion times equivalently replace flow times (i.e., Ci = Fi).
We consider a simple algorithm named Single-Simple which schedules requests
by non-increasing order of weights wi, to solve this scheduling problem.
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Theorem 1. Single-Simple solves 1||maxwiCi in polynomial time.

Proof. Let OPT be an optimal schedule. If all requests are ordered by non-
increasing weight, then Single-Simple is optimal. If they are not, we can find
two consecutive requests Tj and Tk in OPT such that wj ≤ wk. Then, their
contribution to the objective is C = max(wjCj , wk(Cj + pk)) = wk(Cj + pk)
because wjCj ≤ wj(Cj + pk) ≤ wk(Cj + pk). If we swap the requests, then the
contribution becomes C′ = max(wkC

′
k, wj(C ′k + pj)) where C ′k is the completion

time of request Tk in this new schedule. By construction, Cj + pk = C ′k + pj .
We have wkC

′
k ≤ wk(C ′k + pj), wj(C ′k + pj) ≤ wk(C ′k + pj) and wk(C ′k + pj) =

wk(Cj + pk) = C. Therefore, max(wkC
′
k, wj(C ′k + pj)) = C′ ≤ C.

It follows that if two consecutive requests are not ordered by non-increasing
weight in OPT , we can switch them without increasing the objective. By re-
peating the operation request by request, we transform OPT in another optimal
schedule where requests are sorted by non-increasing wi. Hence, Single-Simple
is optimal. ut

Single-Simple does not extend to m parallel machines in the general case.
However, it solves the case where all requests have homogeneous size p. The proof
of this result (available in the companion report [3]) follows a similar argument
as the previous proof.

Theorem 2. Single-Simple solves P |pi = p|maxwiCi in polynomial time.

For m machines when processing times are not identical, the problem is
trivially NP-hard even with unit weights because P ||Cmax is NP-hard [19]. We
prove that Single-Simple is an approximation algorithm.

Theorem 3. Single-Simple computes a (2− 1
m )-approximation for the prob-

lem P ||maxwiCi, and this ratio is tight.

Proof. Let us consider a schedule S built by Single-Simple and an optimal
schedule OPT . We denote by Tj the request for which wjCj = maxwiC

S
i , i.e.,

the request that reaches the objective in S. Then we remove from S and OPT all
Ti such that wi < wj (it does not change the objective maxwiC

S
i in S and can

only decrease maxwiC
OPT
i in OPT ). Let C∗max denote the optimal makespan

when scheduling only the remaining requests. As S is a list-scheduling (in the
sense of Graham), we have CS

max ≤
(
2− 1

m

)
· C∗max [12], where CS

max is the
completion time of the last request in S (i.e., Cj = CS

max). Let Tk be the last
completed request in OPT , such that Ck = COPT

max . This makespan is bounded
by the optimal one (i.e., C∗max ≤ COPT

k ). Therefore,

maxwiC
S
i = wjC

S
j = wjC

S
max ≤

(
2− 1

m

)
· wjC

∗
max ≤

(
2− 1

m

)
· wjC

OPT
k

≤
(

2− 1
m

)
· wj

wk
· wkC

OPT
k ≤

(
2− 1

m

)
· wj

wk
·maxwiC

OPT
i .
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As we removed all requests weighted by a smaller value than wj , we have
wj

wk
≤ 1 and it follows that maxwiC

S
i ≤

(
2− 1

m

)
·maxwiC

OPT
i . We now prove

that this bound is asymptotically tight, by considering the instance with m
machines and n = m(m− 1) + 1 requests T1≤i≤n with the following weights and
processing times:
– wi = W + 1, pi = 1 for all 1 ≤ i < n;
– wn = W , pn = m.
Request Tn will be scheduled last in S, which gives an objective of maxwiC

S
i =

(2m − 1)W , whereas an optimal schedule starts this request at time 0 and has
an objective of maxwiC

OPT
i = m(W + 1). On this instance, the approximation

ratio
(
2− 1

m

)
· W

W +1 tends to 2− 1
m as W →∞. ut

Offline problem with release times. Legrand et al. solved the scheduling prob-
lem R|ri, pmtn|maxwiFi in polynomial time using a linear formulation of the
model [18]. This offline problem is very similar to the one we are interested
in, as the platform relies on unrelated machines, which generalizes our paral-
lel multipurpose machines environment (P |Mi|maxwiFi is a special case of
R||maxwiFi [20]). In fact, it only differs on one specific aspect: it allows pre-
empting and migrating jobs, which we do not permit in our model.

We establish below the complexity of the problem P |ri, pmtn
∗|maxwiFi,

where non-migratory6 preemption is allowed. Interestingly, preventing migra-
tion makes the problem NP-complete. The proof of this result (available in the
report [3]) consists in a reduction from the NP-complete problem P ||Cmax [19].

Definition 1 (NonMigratory-Dec(T,M,B)). Given a set of requests T , a
set of machines M and a bound B, if we define the deadline di = ri + B

wi
for all

Ti, is it possible to build a non-migratory preemptive schedule where each request
meets its deadline?

Theorem 4. The problem NonMigratory-Dec(T,M,B) is NP-complete.

Online problem. We now study problems in an online context, where proper-
ties of requests are not known before their respective release time. We prove
that there exists no optimal online algorithm for the minimization of maximum
weighted flow even on the very simple case of a single machine and unit request
sizes, as outlined in the following theorem. The corresponding proof (available
in the companion report [3]) consists in a well-chosen example for which no al-
gorithm can make an optimal choice without knowing the tasks that will be
submitted in the future.

Theorem 5. No online algorithm can be optimal for the scheduling problem
1|online-ri, pi = 1|maxwiFi.

We now present an adaptation of Single-Simple to the online case, re-
stricted to unit tasks, Single-Unit: at each time step, we consider all submitted
6 We express non-migratory preemption as pmtn∗ in the β-part, not to be confused
with the classic pmtn constraint.
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requests at this time and schedule the one whose flow (if processed now) is the
largest. This gives priority to the currently most impacting requests. Unfortu-
nately, even on unit size tasks, this strategy does not lead to an approximation
algorithm, as outlined by the following theorem (see proof in the report [3]).
Theorem 6. The competitive ratio of Single-Unit is arbitrarily large for the
scheduling problem 1|online-ri, pi = 1|maxwiFi.

Lower bound. We have seen that our initial scheduling problem, with heteroge-
neous processing times, no preemption and in an online setting is far from being
solvable or even approximable. This motivates the search of lower bounds to
constitute a formal baseline and derive performance guarantees. The solution to
R|ri, pmtn|maxwiFi provides such a lower bound, which is found by performing
a binary search on a Linear Program [18], followed by the reconstruction scheme
from Lawler et al. [17]. The whole process is detailed in the companion report [3].
This bound is used to assess the performance of practical heuristics in Section 6.

5 Online Heuristics
We recall that a solution to our problem consists, for each request, in choosing
a server among the ones holding a replica of the requested data as well as a
starting time for each request. These two decisions appear at different places in
a real key-value store: the selection strategy R used by the coordinator gives a
replica R(Ti) = Mr, whose execution policy Er defines the request starting time
Er(Ti) = σi. This section describes several online replica selection heuristics and
execution policies that we then compare by simulation.

5.1 Replica Selection Heuristics
We consider several replica selection heuristics with different levels of knowledge
about the cluster state. Some of these levels are hard to achieve in a real system;
for instance, the information about the load of a given server will often be slightly
out of date. Similarly, the information about the processing time can only be
partial, as the size of the requested value cannot be known by the coordinator for
large scale data sets, and practical systems generally employ an approximation
of this metric, e.g., by keeping track of size categories of values using Bloom
filters [13]. However, we exploit this exact knowledge in our simulations to es-
timate the maximal performance gain that a given type of information allows.
We now describe selection heuristics, whose properties are shown in Table 1.

Random. The replica is chosen uniformly at random among compatible servers:
Mr = randMi. This strategy has no particular knowledge.

LeastOutstandingRequests (LOR). Let R(Mj) be the number of out-
standing requests sent to Mj , i.e., the number of sent requests that received
no response yet. This strategy choses the replica that minimizes R(Mj). It is
easy to implement, as it only requires local information; in fact, it is one of the
most commonly used in load-balancing applications [23].
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Héron. We also consider an omniscient version of the replica selection heuris-
tic used by Héron [13]. It identifies requests for values with size larger than a
threshold, and avoids scheduling other requests behind such a request for a large
value by marking the chosen replica as busy. When the request for a large value
completes, the replica is marked available again. The replica is chosen among
compatible servers that are available according to the scoring method of C3 [23].

EarliestFinishTime (EFT). Let FinishTime(Mj) denote the earliest time
when the serverMj becomes available, i.e., the time at which it will have emptied
its execution queue. The chosen replica is the one with minimum FinishTime(Mj)
among compatible servers. Knowing FinishTime is hard in practice, because it
assumes the existence of a mechanism to obtain the exact current load of a
server. A real system would use a degraded version of this heuristic.

EarliestFinishTime-Sharded (EFT-S). For this heuristic, servers are spe-
cialized: we define small servers, which execute only requests for small values,
and large servers, which execute all requests for large values and some requests
for small values when possible (similarly to size-aware sharding [10]). Once the
server is chosen, each request is scheduled using the EFT strategy.

For the following experiments, we define large servers as the set of servers
{Mb}1≤b≤m such that b mod k = 0 (recall k is the replication factor). This makes
sure that one server in each intervalMi is capable of treating requests for large
values. We define a threshold parameter ω to distinguish between requests for
small and large values: requests with duration larger than ω are treated by large
servers only, while others can be processed by all available servers. We derive
the threshold ω from the size distribution, by choosing the parameter ω so that
the total work is k times larger than the work on large servers on average (see
details in the companion research report [3]).

5.2 Local Queue Scheduling Policies

We now present scheduling policies locally enforced by replicas. Each replica
handles an execution queue Q in which coordinators send requests, and then
decides of the order of executions. In a real key-value store, these policies should
be able to extract exact information on the local values, and in particular their
sizes, as a single server is responsible for a limited number of keys. We consider
the following local policies, summarized in Table 1.

FirstInFirstOut (FIFO). This is a classic strategy, which is commonly used
as a local scheduling policy in key-value stores (e.g., Cassandra [16]). The re-
quests in Q are ordered by non-increasing insertion time, i.e., the first request
that entered the queue (the one with the minimum ri) is the first to be executed.

MaxStretch. We propose another strategy, which locally reorders requests.
When a server becomes available at time t, the next request Ti to be executed is
the one in Q whose stretch (t+pi−ri)/pi is the highest. This favors requests for
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Table 1. Properties of replica selection and local queue scheduling heuristics.
ACK-Done denotes the need to acknowledge the completion of sent requests.
FinishTime is the knowledge of available times of each server. pi denotes the pro-
cessing times of local requests and ri their release times. N is the number of local
requests in Q and m is the total number of servers.

Replica Selection Local Policy

Heuristic Knowledge Complexity Heuristic Knowledge Complexity

Random None O(1) FIFO None O(1)
LOR ACK-Done O(m) MaxStretch pi, ri O(N)

Héron ACK-Done, pi ≥ ω O(m)
EFT FinishTime O(m)

EFT-S FinishTime, pi ≥ ω O(m)

small values in front of requests for large ones, and thus is a way to mitigate the
problem of head-of-line blocking. Note that in any case, starvation is not a con-
cern: focusing on the maximum stretch ensures that all requests will eventually
be processed [4].

6 Simulations

We analyse the behavior of previously described strategies and compare them
with each other in simulations. We built a discrete-event simulator based on
salabim 21.0.1 for this purpose, which mimics a real key-value store: coordina-
tors receive user requests and send them to replicas in the cluster, which execute
these requests. Each request is first headed to the queue of a server holding
a replica of the requested data by the selection heuristic. Then, the queue is
reordered by the local execution policy and requests are processed in this order.

Workload and settings. We designed a synthetic heterogeneous workload to eval-
uate our strategies: value sizes follow a Weibull distribution with scale η = 32 000
and shape θ = 0.5; these parameters yield a long-tailed distribution that is con-
sistent with existing file sizes characterizations [11]. User requests arrive at coor-
dinators according to a Poisson process with arrival rate λ = mL/p̄, where m is
the number of servers, L is the wanted average server load (defined as the average
fraction of time spent by servers on serving requests), and p̄ is the mean process-
ing time of requests. Each key has the same probability of being requested, i.e.,
we do not model skewed popularity. The cluster consists in m = 12 servers and
we set the replication factor to k = 3, which is a common configuration in real
implementations [9, 16]. The network bandwidth is set to 1/α = 100 Mbps and
the average latency is set to β = 1 ms. The threshold between small and large
values is set to ω = 26 ms, resulting in a proportion of 5 % of requests for large
values in the workload. Each experiment is repeated on 15 different scenarios;
a given scenario defines the processing times pi, the release times ri, and the
replication groupsMi according to described settings.

https://www.salabim.org
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Fig. 2. Distributions of the objective functions for 5 replica selection heuristics. For
Fig. (a), (b) and (d), simulations run over 120 s. For Fig. (c), simulations are launched
over 1000 requests.

Results. Fig. 2(a) shows the 99th quantile of read latency (in milliseconds) as
a function of average server load for each selection heuristic and for load val-
ues ranging from 0.5 to 0.9, with FIFO as local policy. In this context, the
maximum of the distribution is impacted by rare events of varying amplitude,
which makes this criterion unstable. The stability of the 99th quantile allows
comparing more confidently the performance between scenarios with identical
settings. For an average load L = 0.9, Fig. 2(b) shows Empirical Cumulative
Distribution Functions (ECDF) of read latencies for each selection heuristics.
The dashed horizontal lines respectively represent median, 95th and 99th per-
centile. The comparison of selection heuristics with the lower bound introduced
in Section 4 is shown in Fig. 2(c). We normalize the max-latency obtained by a
selection heuristic with this lower bound. Each boxplot represents the distribu-
tion of these normalized maximums among the 15 different scenarios. Horizontal
red line locates the lower bound. Fig. 2(d) illustrates the effect of different lo-
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cal execution policies on the 99th quantile of stretch. Horizontal lines represent
median values.

We see in Fig. 2(a) that the choice on selection heuristic is critical for read
latency, as the 99th quantile can often be improved by a factor 2 compared
to state-of-the-art strategies LOR and Héron, without increasing median per-
formance as confirmed in Fig. 2(b). This highlights the fact that knowing the
current load of a server, and thus its earliest available time, as used in the EFT
strategy, allows to get very close to the lower bound. Fig. 2(c) also shows that
EFT yields the most stable maximums between scenarios, as more than 50 %
of normalized values range from 1.0 to 1.15. This improves the confidence that
this strategy will perform well in a majority of cases. For the stretch metric,
where latencies are weighted by processing times, EFT-S performs even better
than EFT (Fig. 2(d)), yielding a 99th quantile of 30 (resp. 18) when coupled with
FIFO (resp. MaxStretch). This is due to the nature of EFT-S that favors re-
quests for small values, which are in majority in the workload. However, EFT-S
does not perform well for the last quantiles in the latency distribution; this cor-
responds to the 5 % of requests for large values that are delayed in order to avoid
head-of-line blocking situations. Fig. 2(d) also illustrates the significant impact
of local execution policies on the stretch metric: local reordering according to
MaxStretch favors requests for small values, which results in an improvement
for all selection strategies, even on the median values. Note that this does not
necessarily improve latency, as FIFO is well-known to be the optimal strategy
for max-flow on a single machine [4].

7 Conclusion

This study defines a formal model of a key-value store in order to derive maximal
performance achievable by a real online system, and states the associated opti-
mization problem. We also provide theoretical results on various problems related
to our main scheduling problem. After showing the difficulty of this problem, we
describe some investigations on a lower bound. We develop online heuristics and
compare them with state-of-the-art strategies such as LOR, Héron [13] or size-
aware sharding [10] using simulations. This allows understanding more finely the
impact of replica selection and local execution on performance metrics. We hope
that our work will help practitioners draw new scheduling strategies. We plan to
continue to improve on a lower bound, for example by using resource augmen-
tation models,and we propose to formally analyze EFT with various techniques
such as competitive analysis. We wish to study the effect of various assumptions
on scheduling, e.g., the impact of skewed key popularity, and to extend the model
with multi-get operations [14,22].
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