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Abstract—Scheduling independent tasks on a parallel plat-
form is a widely-studied problem, in particular when the goal
is to minimize the total execution time, or makespan (P ||Cmax
problem in Graham’s notations). Also, many applications do
not consist of sequential tasks, but rather parallel moldable
tasks that can decide their degree of parallelism at execution
(i.e., on how many processors they are executed). Furthermore,
since the energy consumption of data centers is a growing
concern, both from an environmental and economical point of
view, minimizing the energy consumption of a schedule is a
main challenge to be addressed. One can then decide, for each
task, on how many processors it is executed, and at which
speed the processors are operated, with the goal to minimize the
total energy consumption. We further focus on co-schedules,
where tasks are partitioned into shelves, and we prove that
the problem of minimizing the energy consumption remains
NP-complete when static energy is consumed during the whole
duration of the application. We are however able to provide an
optimal algorithm for the schedule within one shelf, i.e., for a
set of tasks that start at the same time. Several approximation
results are derived, and simulations are performed to show the
performance of the proposed algorithms.

I. INTRODUCTION

We consider the problem of scheduling independent tasks.
Even though this problem has already been widely studied,
in particular when aiming to minimize the total execution
time (or makespan) for sequential tasks, there remain av-
enues for improvement for variants of the problem. Using the
Graham notations [14], the typical problem that is studied
is P ||Cmax, i.e., the goal is to minimize the makespan
when scheduling independent sequential tasks on a set of
identical processors. The decision version of this problem
in its simplest form is already NP-complete (it is indeed
identical to 2-Partition [13] when considering two proces-
sors). However, several well-known heuristics lead to very
good approximation algorithms, as the classical Longest
Processing Time (LPT) heuristic, or even some PTAS or
FPTAS algorithms [16].

The problem becomes more complicated when dealing
with parallel tasks. Now, each task i is a parallel task
that executes concurrently on pi processors. The greedy list
scheduling algorithm that gives priority to longest jobs is
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then known to be a 2-approximation when tasks are rigid
(pi is given and fixed) [12].

In order to ease the scheduling, it can be useful to group
tasks by shelves (or batches, packs, levels, etc.), and then
the shelves are scheduled one after the other. Each task in
a same shelf starts its execution at the same time, and the
next shelf starts only when all tasks of the previous shelf
are done. This is typically referred to as shelf-scheduling
or co-scheduling. Of course, one may then waste time, due
to idle resources if tasks do not all take the same time.
However, such schedules are easy to implement and they
also may have some theoretical guarantees. Indeed, the list
scheduling that gives priority to longest jobs is known to be
a 3-approximation when imposing to use shelves [28] (recall
that it is a 2-approximation without this restriction).

Such co-schedules are also very useful for moldable tasks,
i.e., tasks whose degree of parallelism pi can be chosen at
execution. For such parallel moldable tasks, an easy way to
proceed is to execute tasks sequentially, each task using the
whole platform. However, it may be more efficient to group
tasks by shelves, since the execution profile of a task may
lead to less efficiency when using many processors. While
the general problem is NP-hard, Aupy et al. [3] propose an
optimal polynomial-time algorithm to decide the processor
assignment that minimizes the makespan when there are at
most two tasks in a shelf.

While most scheduling problems are focusing on
makespan minimization, another core problem is the energy
consumption. In order to optimize this energy consumption,
modern processors can run at different speeds, and their
power consumption is then the sum of a static part (the
cost for a processor to be turned on) and a dynamic part,
which is a strictly convex function of the processor speed.
Indeed, the execution of a given amount of work costs
more power if a processor runs at a higher speed [17].
More precisely, a processor running at speed s dissipates s3

watts [18], [25], [9], [4], [10] per time-unit, hence consumes
s3 × d joules when operated during d units of time. Faster
speeds allow for a faster execution, but they also lead to
a much higher (supra-linear) power consumption. A more
general model states that the power can be in sα, where
2 ≤ α ≤ 3 [5]. While minimizing the makespan helps



reducing the energy consumption, which increases with
execution time, to the best of our knowledge, no study has
been aiming at minimizing the energy consumption for shelf
schedules.

For the static energy consumption, it depends on the
time during which processors are powered. We consider
two models: in the independent model, each processor is
independently powered and can be turned off when not
computing, hence the static power is paid only while proces-
sors are running. However, in the simultaneous model, the
platform is turned on as long as one processor is running,
hence the static power must be also paid for idle processors.

Our main contributions are the following:
• We formalize the problem of scheduling independent
moldable tasks to minimize energy consumption (MINE-
MOLD problem), with various model variants.
• We prove that MINE-MOLD-INDEP can be solved in
polynomial time when processors are independently pow-
ered (with or without co-schedules), while the problem
becomes NP-complete with simultaneously powered proces-
sors (MINE-MOLD-SIM).
• We establish multiple approximation ratios for both clas-
sical list scheduling algorithms, and shelf-based schedules.
• We provide an optimal dynamic programming algorithm
to minimize the energy consumption of a single shelf: the
goal is to decide on how many processors to execute each
task of the shelf, and at which speed to operate the task.
•We perform an empirical study and we show that, for most
instances, a single speed can be used for all tasks without
increasing the energy consumption. Also, as expected, shelf-
based solutions consume more energy, but they are easier
to implement and solutions are derived with a much lower
complexity.

We first discuss related work in Section II. Next, we detail
the model (platform, tasks, energy consumption) and sched-
ules, and we introduce the target optimization problems in
Section III. The complexity of the problems is established
in Section IV. Approximation ratios for MINE-MOLD are
derived in Section V, and optimal algorithms for a single
shelf are provided in Section VI. Finally, a comprehensive
empirical study is proposed in Section VII. We conclude and
give hints for future research directions in Section VIII.

II. RELATED WORK

Although the problem of minimizing the energy con-
sumption of parallel platforms has been extensively studied,
few works propose guaranteed scheduling algorithms for
moldable tasks. We first cover approximation algorithms for
the problem of minimizing the makespan because our ap-
proach relies on such results. We then proceed on heuristics
proposed for real-time systems.

Classical list scheduling algorithms, LISTBASED, consti-
tute the simplest and first heuristic proposed for the rigid

case. Tasks are ordered in a priority list and are then
scheduled by order of priority, as presented by Garey and
Graham [12]: any time a processor is idle, the list is scanned
in order and the first task that can be executed is started.
Another way to say it, the principle of the algorithm is as
follows: when resources are released, we see if a task can
be started right now. If it is the case, we start it. If several
tasks can be started, we take the one with the highest priority,
given by an ordering of the tasks in a list. LISTBASED is
a 2-approximation for the makespan. More precisely, it is a
2 · max(Wp , tmax)-approximation, where W

p is the average
work and tmax is the execution time of the longest task.

Coffman et al. [11] made a landmark paper proving the
approximation ratio of several shelf-based algorithms when
considering rigid tasks only. They introduce the problem as
a two-dimensional packing problem and focus on asymptotic
performance bounds for the makespan. They show that
the performance bounds of classic bin-packing heuristics
Next-Fit Decreasing and First-Fit Decreasing are 3 and 2.7,
respectively.

In [20], Krishnamurti et al. study a problem similar to
ours: processors are partitioned and each task is submitted
to one such partition with the objective to minimize the
execution time. The number of partitions is bounded, which
limits the maximum number of simultaneous tasks. Although
it is similar when considering a single shelf, it differs from
our problem with multiple shelves.

In [28], Turek et al. study the multi-shelves problem.
They first offer an allocation strategy for rigid tasks, and
then use this strategy on several “allocation candidates” for
the moldable case. This first strategy involves co-schedules,
SHELFBASED [28, LTF], where rigid tasks are partitioned
into shelves, and all the tasks in a same shelf begin their
execution at the same time (this is equivalent to Next-
Fit Decreasing). Tasks are sorted in order of decreasing
execution times. Then, tasks are inserted iteratively in the
current shelf until the next task cannot be inserted. At this
point, a new shelf is created and the process continues. A
possible extension consists in allowing backfilling of previ-
ous shelves (which is done in Section VII). SHELFBASED
is a 3-approximation for the makespan. More precisely, it
is a

(
2 · Wp + tmax

)
-approximation. To deal with moldable

tasks, the authors also present an overall design [28, GF] that
works as follows. First, a task and a number of processors
are selected. We assume that for a given speed, all tasks
will have a shorter execution time than this one. Next, for
each other task, we select the number of processors such
that the work is minimized. Finally, we solve this instance
with rigid tasks and repeat the process for all pairs of tasks
and number of processors.

The same year [27], Turek et al. give a 2.7-approximation
for the multi-shelves problem, with a fixed number of
shelves. However, this algorithm is exponential in the num-



ber of shelves.
Aupy et al. tackle the problem of optimizing the power

consumption, the makespan and the reliability with depen-
dent non-parallel tasks [2]. They show that most problems
are NP-hard and propose heuristics. This paper focuses on
moldable tasks.

Finally, many similar works have been proposed in the
context of real-time systems with moldable tasks, power
constraints and deadlines. The closest considers level-based
scheduling (similar to shelves) with rigid or moldable
tasks [19]. They propose heuristics that extend bin-packing
ones such as First-Fit Decreasing, Best-Fit Decreasing, etc.
Most other works related to real-time systems propose
heuristics [29], [30], [21]. In this paper, we do not consider
deadlines and we investigate algorithms with guarantees.

III. MODEL

We first describe the platform model (Section III-A), the
task model (Section III-B), the energy model (Section III-C),
before formally defining general schedules, single-speed
schedules and co-schedules in Section III-D. Finally, we
introduce the target optimization problems in Section III-E.

A. Platform

The target platform consists in p identical processors,
whose frequency can be scaled using DVFS (Dynamic
Voltage and Frequency Scaling).

These processors have a static power Pstat and a set
S = {s1, s2, . . . , sk} of possible speeds (or frequencies).
For convenience, we let smin = s1 and smax = sk be the
minimum and maximum speeds. Indeed, current processors
have a set of predefined speeds (or frequencies), which
correspond to different voltages that the processor can be
subjected to [23]. Switching frequencies is usually not al-
lowed during the execution of a given task, but two different
tasks scheduled on a same processor can be executed at
different frequencies.

B. Tasks

We consider n moldable tasks {T1, T2, . . . , Tn} with
execution profiles (wi,j)i∈J1,nK,j∈J1,pK, where wi,j is the
total work required to execute Ti on j processors. The work
is the total number of elementary operations to be executed
by the processors. If executed at a speed of 1, the time per
processor is then ti,j =

wi,j
j .

We assume that:
• ∀i, (ti,j)j is non-increasing in j (the more processors

there are, the less time it will take per processor);
• ∀i, (wi,j)j is non-decreasing in j (when using more

processors, there is more overhead due to the paral-
lelization, which is a common assumption [8], [7]).

Furthermore, for task Ti (1 ≤ i ≤ n),
• pi is the number of processors allocated to Ti;

• si is the speed of the processors during their execution
of Ti;

• ti,pi,si = ti,pi/si =
wi,pi
si×pi is the execution time of the

task;
• ai,pi,si = ti,pi,si×pi =

wi,pi
si

is the area of the rectangle
representing the task.

C. Energy consumption

The energy consumption consists first of a static part,
which corresponds to the power consumed when processors
are turned on. The static power is denoted Pstat, and the
corresponding static energy is tstatPstat, where tstat is the
duration during which the processor is powered.

There is also a dynamic energy consumption, directly
related to the speed s at which the processor operates, and
the time tdyn spent computing (which may be equal to or
smaller than the time tstat). A general model states that
the dynamic energy consumption is tdynsα [5]. Hence, for
task Ti, the dynamic energy consumption on each processor
is ti,pi,sis

α
i (since tdyn = ti,pi,si ), and the total dynamic

energy consumption for the task is ai,pi,sis
α
i (the same

energy is consumed by each of the pi processors operating
task Ti) with α > 1.

The case where tstat = tdyn is the independent model,
where each processor is independently powered, and hence
turned off when it is not computing. We also consider
the simultaneous model, where the whole platform remains
powered as long as at least one processor is executing
(tstat = Cmax).

D. Schedules

Given a computational platform and a set of moldable
tasks as described above, a schedule λ is a function that
maps each task Ti to a tuple (Mi, si, δi), where Mi is the set
of processors assigned to Ti (hence the number of processors
assigned to the task is pi = |Mi|), si is the speed of these
processors to execute Ti, and δi ≥ 0 is the starting time
of Ti. Moreover, λ must verify the following conditions:
• There exists i such that δi = 0 (there is a task starting

at time 0);
• If tasks Ti and Ti′ (1 ≤ i, i′ ≤ n and i 6= i′) are such

that Mi ∩ Mi′ 6= 0, then [δi, δi + ti,pi,si ] ∩ [δi, δi +
ti′,pi′ ,si′ ] = ∅ (a processor cannot be used for two
different tasks at the same time).

We also have the following aggregated quantities depend-
ing on a schedule λ:
• Cmax(λ) = maxi{δi + ti,pi,si}, is the makespan (or

total execution time);
• W (λ) =

∑n
i=1 wi,pi is the cumulative work;

• Tdyn(λ) =
∑n
i=1 ti,pi,si is the cumulative execution

time of all tasks;
• Adyn(λ) =

∑n
i=1 ai,pi,si is the cumulative execution

time on all processors;



• Astat(λ) is the cumulative time on all processors dur-
ing which they are powered. It is either Adyn(λ) in
the independent model, or it is p × Cmax(λ) in the
simultaneous model.

We can then express the total energy consumption of a
schedule λ as:

E(λ) =

n∑
i=1

ai,pi,si × sαi +Astat(λ)× Pstat.

If there is no ambiguity on λ, we write Cmax for Cmax(λ);
and similarly for W , Tdyn, Adyn, Astat and E.

Finally, we pay a particular attention to two classes of
particular schedules:
• Single-speed schedules are schedules such that all the
speeds are equal for all tasks, i.e., for 1 ≤ i ≤ n, si = s ∈ S.
• Co-schedules are organized as shelves, as motivated in
Section I. A co-schedule consists of a partition of the tasks
into shelves and such that:

• if two tasks are in the same shelf, then they start their
execution at the same time;

• if two tasks are not in the same shelf, then one finishes
its execution before the other one starts.

E. Optimization problems

The general problem is MINE-MOLD: Given n moldable
tasks and p processors, the goal is to find a schedule that
minimizes the total energy consumption. The processors can
either be considered to be simultaneously powered (SIM),
or to be independently powered (INDEP). Hence, MINE-
MOLD-SIM (resp. MINE-MOLD-INDEP) is the problem
with simultaneously-powered (resp. independently-powered)
processors.

We also consider the variant of the problem with rigid
tasks, i.e., when the number of processors per task pi is
fixed (MINE-RIG problem).

Finally, since we are interested in co-schedules, we con-
sider the more constrained problem with a single shelf, i.e.,
all tasks must start at time 0 and be executed concurrently.
The corresponding problem is MINE-ONESHELF: Given a
set of n tasks and p processors, the goal is to minimize the
energy consumption knowing that all tasks start at time 0
(δi = 0 for 1 ≤ i ≤ n). Solving this particular problem
will help us derive efficient co-schedules for the general
MINE-MOLD problem. More precisely, a solution to MINE-
ONESHELF is an assignment ((pi)i∈J1,nK, (si)i∈J1,nK) such
that:

• ∀i ∈ J1, nK, task Ti is executed on pi ≥ 1 processors
at speed si ∈ S;

•
n∑
i=1

pi ≤ p (at most p processors are used, since all

tasks execute concurrently).

IV. PROBLEM COMPLEXITY

We prove that MINE-MOLD-INDEP can be solved in
polynomial time (Section IV-A), while MINE-MOLD-SIM
is NP-complete (Section IV-B).

A. Optimal algorithm for MINE-MOLD-INDEP

In the independent model, the total energy consumption
is the sum of the individual energy consumption of each
task. We can therefore optimize the energy consumption
of each task independently, and execute the tasks one after
the other. This is done by executing each task on a single
processor, since (wi,j) is non-decreasing in j, and hence
ai,1,si ≤ ai,pi,si for all 1 ≤ pi ≤ p. Here, we focus solely
on energy optimization, and the time to completion might
be very large (a single processor is used).

There is a tradeoff between executing the task fast to re-
duce the static energy consumption of the task, and running
at a slower speed to reduce the dynamic energy consumption.
In fact, for each task Ti, we choose the same speed si ∈ S
that minimizes sα−1

i + Pstat
si

, since the energy consumption
of the task is ti,1,si(s

α
i + Pstat), and ti,1,si =

wi,1
si

. Finally,
we obtain the optimal value of si in Θ(|S|), by comparing
the value for every possible si ∈ S.

The optimal solution to this problem can therefore be
found in polynomial time. In the rest of this paper, unless
otherwise stated, we focus on simultaneously powered pro-
cessors (Astat = p× Cmax).

B. NP-completeness of MINE-MOLD-SIM

When moving to the simultaneous model, it becomes cru-
cial to also minimize the total execution time. We show that
the MINE-MOLD-SIM problem actually is NP-complete,
even when a single speed is available.

Theorem 1. The decision problem associated to MINE-
MOLD-SIM is NP-complete.

Proof: We first prove that the decision problem as-
sociated to MINE-MOLD-SIM is in NP: a certificate is a
schedule, i.e., the number of processors and the speed of
each task, as well as the starting time of each task, and it
is easy to check in polynomial time whether the bound on
energy consumption is achieved.

To prove that MINE-MOLD-SIM is NP-hard, we do the
reduction from the problem of 3-PARTITION [13]: Given
3n integers {a1, . . . , a3n} whose sum is nB =

∑3n
i=1 ai

and with B
4 < ai <

B
2 for 1 ≤ i ≤ 3n, does there exist a

partition of {1, . . . , 3n} into n subsets S1, . . . , Sn, such that∑
i∈Sj ai = B for 1 ≤ j ≤ n?

Let I1 be an instance of 3-PARTITION. We create an
instance I2 of MINE-MOLD-SIM with n processors, and 3n
tasks that cannot be parallelized, i.e., their execution time is
not improved when using more than one processor. Hence,
task i (1 ≤ i ≤ 3n) is such that ti,j = ai for 1 ≤ j ≤ n.



Furthermore, there is a single speed S = {1}, and we have
Pstat = 1 and α arbitrarily set to 3.

Therefore, it is always better to execute each task on
a single processor, hence leading to a dynamic energy
consumption of ai for task i, and a total dynamic energy
consumption of nB. The static energy consumption depends
on the total execution time t, and it is t×n. Finally, we set
the bound on energy consumption for I2 to 2nB.

If I1 has a solution, we execute tasks of a same subset
Sj onto processor j, for 1 ≤ j ≤ n. Each processor
completes in time B, and the static energy consumption is
nB, hence a total energy consumption of 2nB (static energy
plus dynamic energy). Therefore, I2 has a solution.

If I2 has a solution, we define Sj as the set of tasks
executed on processor j. Since the energy consumption is
not greater than 2nB, the total execution time is such that
t ≤ B, and the sum of ai’s in each subset Sj cannot
exceed B. Therefore, I1 has a solution, which concludes
the proof.

V. APPROXIMATION RATIOS FOR MINE-MOLD-SIM

To solve MINE-MOLD-SIM, we extend a strategy [28,
GF] that transforms a moldable instance into multiple rigid
ones by fixing the number of processors (and possibly the
speed) of each task. Then, each rigid instance is solved
with a heuristic such as LISTBASED or SHELFBASED. We
thus start by considering the rigid case. Moreover, we first
consider a simplified version of the problem where all tasks
have the same speed in Section V-A, before moving to the
general case in Section V-B.

A. Processors with a single speed (si = s)

We first consider the case where the speed must be the
same for all tasks, i.e., si = s for 1 ≤ i ≤ n. The energy
simplifies as:

E = sα
n∑
i=1

ai,pi,si +Astat × Pstat,

with α > 1.
1) Rigid case: We start with the rigid case, which means

that, for 1 ≤ i ≤ n, the number of processors pi for task i is
fixed. Hence, the workload for task i is also known (wi,pi ).
Moreover, for a given schedule λ, all the si’s are equal to sλ.
The tuple λ(i) is hence denoted as (Mi, sλ, δi).

Given any ρ > 0, we denote by ρλ the schedule
associating to each task i the tuple (Mi, ρsλ,

δi
ρ ), i.e.,

the speed is scaled by a factor ρ, and the starting times
are adjusted accordingly, without any modification in the
processor allocation. One can easily check that ρλ is also a
rigid single-speed schedule.

Two schedules λ1 and λ2 are equivalent, denoted λ1 ∼ λ2,
if there exists ρ > 0 such that λ1 = ρλ2. The relation ∼ is an
equivalence relation. The equivalence class of λ is denoted
[λ].

Recall that Cmax(λ) = Astat(λ)
p is the makespan: it is the

total duration during which the whole system is powered.
For convenience, we define K[λ] = sλ × pCmax(λ). It is
easy to see that this is a constant for the equivalence class
of λ; indeed, given any ρ > 0, Cmax(ρλ) = Cmax(λ)

ρ , and
sρλ = ρ× sλ.

The goal of this section is to prove the following theorem.
The idea consists in considering algorithms with a given
approximation ratio on the makespan and show how these
ratios extend to the energy minimization.

Theorem 2. In the rigid single-speed context (MINE-RIG-
SIM with a single speed) and assuming that there exists an
algorithm A that yields a c-approximation of the optimal
makespan, then one can compute in polynomial time a
schedule consuming at most c times the optimal energy.

Proof: In the rigid case, we have
∑n
i=1 ai,pi,si =∑n

i=1
wi,pi
si

. Let us denote W =
∑n
i=1 wi,pi , which is

independent of the schedule λ. We can then write the energy
as:

E(λ) = Wsα−1
λ +Astat(λ)× Pstat (1)

= Wsα−1
λ + Cmax(λ)× p× Pstat. (2)

The problem can be split as two decisions to take:
• the choice of speed s;
• the actual scheduling, i.e., the choice of the moment at

which we start each task.
We start with a preliminary lemma comparing the energy

consumption of two schedules using the same speed:

Lemma 1. Let λ1, λ2 be two single-speed schedules such
that sλ1 = sλ2 . If E(λ1) ≤ E(λ2), then for any ρ > 0,
E(ρλ1) ≤ E(ρλ2).

Proof: Using Equation (2),

E(λ2)− E(λ1) = p× Pstat × (Cmax(λ2)− Cmax(λ1)).

Furthermore, Cmax(λ1) = ρCmax(ρλ1) and Cmax(λ2) =
ρCmax(ρλ2). It follows that:

E(λ2)− E(λ1) = p× Pstat × ρ(Cmax(ρλ2)− Cmax(ρλ1))

= ρ(E(ρλ2)− E(ρλ1)),

hence proving the lemma.
Note that if λ∗ is a single-speed schedule minimizing the

makespan (necessarily sλ∗ = smax), then for any single-
speed schedule λ with sλ = smax, Cmax(λ∗)smax ≤
Cmax(λ)smax. It follows that K[λ∗] ≤ K[λ].

Let us denote by λA the schedule returned by A. Let
s∗[λA] ∈ S be a speed for which minλ∈[λA]E(λ) is attained.
Let λOPT be a single-speed schedule minimizing the energy.
From Equation (2), we have:

EOPT = Wsα−1
λOPT + pCmax(λOPT)× Pstat.



By definition of λ∗, EOPT ≥Wsα−1
λOPT + pCmax(λ∗)× Pstat.

Now, by optimality of s∗[λA] and since K[λA] ≤ cK[λ∗] ≤
cK[λOPT] and c ≥ 1:

min
λ∈[λA]

E(λ) = W (s∗[λA])
α−1 +

K[λA]

s∗[λA]

· Pstat

≤W (sλOPT )α−1 +
K[λA]

sλOPT

· Pstat

≤W (sλOPT )α−1 + c
K[λOPT]

sλOPT

· Pstat

≤ cW (sλOPT )α−1 + c
K[λOPT]

sλOPT

· Pstat
≤ c ·Wsα−1

λOPT + c · p · Cmax(λOPT) · Pstat
≤ c · EOPT,

thus proving the theorem.
2) Moldable case: We present the overall design of the

algorithm MINE-MOLD-SIM:
• First, we select one task Ti′ , a number of processors pi′

for this task, and we assume that for any given speed s,
all tasks will have an execution time at most tmax

∆
=

ti′,pi′ ,s (ti,pi,s ≤ ti′,pi′ ,s = tmax for 1 ≤ i ≤ n). There
are np such assumptions to consider.

• For each value of (Ti′ , pi′), we select the number of
processors of each other task to be associated with the
lowest work such that ti,pi ≤ ti′,pi′ still holds: pi =
arg min1≤j≤p jti,j such that ti,pi ≤ tmax.

Intuitively, we analyze the approximation ratio of any
moldable scheduling algorithm with the following approach
based on [28, GF]:
• For a given tmax, we bound the cumulative work to

be executed assuming all task execution duration is
bounded by tmax.

• We then bound the maximum makespan achievable
with a heuristic for MINE-RIG-SIM.

• Finally, we bound the maximum total energy consump-
tion during this duration.

We can state the main result of this section.

Theorem 3. In the moldable single-speed context (MINE-
MOLD-SIM), we assume that there exists a polynomial-time
algorithm A for MINE-RIG-SIM that returns a schedule
λA such that K[λA] ≤ a · W ([λA])

p + b · tmax(λA) (resp.

K[λA] ≤ max
(
a · W ([λA])

p , b · tmax(λA)
)

), where a and b

are constants satisfying a + b ≥ 1. One can compute in
polynomial time a schedule λ• such that λ• running at a
speed that minimizes the energy consumption consumes at
most a+ b (resp. max(a, b)) times the optimal energy.

Proof: The proof is done for K[λA] ≤ a · W ([λA])
p +

b · tmax(λA) · sλA . The other case (max of the two terms
instead of sum) is similar.

Let λOPT be a schedule minimizing the energy (for MINE-
MOLD-SIM with a single speed).

Let G =
{
wi,p′

p′ | 1 ≤ i ≤ n, 1 ≤ p′ ≤ p
}

.
For any task i and any number k ≤ m of processors,

we denote by λi,k the schedule returned by A on the (rigid)
instance: for all i′, pi′ is the integer in {1, . . . , p} minimizing
wi′,` under the constraint

wi′,p`
p`
≤ wi,k

k . There are at most
pn different λi,k. Let λ• be a schedule minimizing the
E(λi,k).

Denoting by iOPT and piOPT respectively the task and the
number of processors such that tmax(λOPT) = tiOPT,piOPT , one
has by construction of the λi,k, W (λiOPT,piOPT ) ≤ W (λOPT).
Set λgOPT = λiOPT,piOPT .

Running λi,k at a speed si,k ∈ S that minimizes the
energy, we have

E(λ•) ≤ E(λgOPT ) ≤ E(
sOPT

sλgOPT

λgOPT )

≤W (λgOPT )α−1 +
K[λgOPT ]

sOPT

≤ (WOPT )α−1 + (a+ b) ·
K[λOPT]

sOPT

≤ (a+ b) · (WOPT )α−1 + (a+ b) ·
K[λOPT]

sOPT

≤ (a+ b) · E(λOPT),

which concludes the proof.
Recall that LISTBASED is an algorithm with a max and

a = 2 and b = 2 [12], hence it is a 2-approximation
algorithm. SHELFBASED, an algorithm with a sum and
a = 2 and b = 1 [28, LTF], is thus a 3-approximation
algorithm.

B. Processors with different speeds for each task

When generalizing to multiple speeds, the approach is
close to the one used for the single-speed problem where
all tasks are executed at the same speed.

Theorem 4. In the moldable context (MINE-MOLD-SIM),
we assume that there exists a polynomial-time algorithm A
for MINE-RIG-SIM that returns a schedule λA such that
Cmax(λA) ≤ a · Adyn(λA)

p +b ·tmax(λA) (resp. Cmax(λA) ≤
max

(
a · Adyn(λA)

p , b · tmax(λA)
)

), where a and b are con-
stants satisfying a ≥ 1. One can compute in polynomial
time a schedule λ• such that: E(λ•) ≤ (a + b)EOPT (resp.
E(λ•) ≤ max(a, b+ 1)EOPT).

Proof: We consider in this proof the max case for A.
The proof is similar for the sum.

Let G = {ti,p′,s | 1 ≤ i ≤ n, 1 ≤ p′ ≤ p, s ∈ S}. Note
that G can be computed in polynomial time. For a schedule
λ, set Xi(λ) = sαi ak,pi,si + Pstatak,pi,si .

For any i, p′, s we consider the rigid instance defined by:
pi′ , si′ in order to minimize sαi′ai′,pi′ ,si′ + Pstatai′,pi′ ,si′
under the constraint ti′,pi′ ,si′ ≤ ti,p′,s. The schedule re-
turned by A for this problem is denoted λi,p′,s. There are a
polynomial number of such schedules, and each one can be
computed in polynomial time.



Let λ• be a scheduled among the λi,p′,s minimizing the
energy. Let λOPT be a schedule minimizing the energy for
the main problem. Let also iOPT, siOPT and piOPT satisfying
tmax(λOPT) = tiOPT,piOPT ,siOPT .

By construction, one has:∑
i

Xi(λiOPT,piOPT ,siOPT ) ≤
∑
i

Xi(λ
OPT). (3)

To simplify the notation, we denote λiOPT,piOPT ,siOPT by λg .
Now,

E(λ•) ≤ E(λiOPT,piOPT ,siOPT ) = E(λg)

≤
∑
i

Xi(λg) + Pstat · p · Cmax(λg)

≤
∑
i

Xi(λ
OPT) + Pstat · p · Cmax(λg)

≤
∑
i

Xi(λ
OPT) + Pstat · p ·max(a ·

Adyn

p
, b · tmax(λg))

≤ max(
∑
i

Xi(λ
OPT) + aPstatAdyn,∑

i

Xi(λ
OPT) + bpPstattmax(λg))

≤ max(a
∑
i

Xi(λ
OPT) + aPstatAdyn,

EOPT + bpPstatCmax(λ
OPT))

≤ max(aEOPT, (b+ 1)EOPT)

≤ max(a, b+ 1)EOPT,

which concludes the proof.
In this case, the bound is 3 for both LISTBASED and

SHELFBASED algorithms.

VI. OPTIMIZING FOR A SINGLE SHELF

We propose to further optimize co-schedules by design-
ing a polynomial-time algorithm for the MINE-ONESHELF
problem, i.e., to optimize the execution of a single shelf.
Formally, given a set of n tasks and p processors, the goal
is to find an assignment ((pi), (si))1≤i≤n that minimizes
E =

∑n
i=1

(
piti,dyns

α
i + piti,statPstat

)
, where

• ti,dyn = ti,pi,si =
ti,pi
si

, and
• ti,stat = max1≤i≤n ti,dyn (simultaneous model).

A. Preliminaries

Since the static energy spent depends on the total length
of the shelf (max1≤i≤n ti,pi,si ), the algorithm proceeds by
fixing the shelf length to T , and aims at finding the optimal
number of processors and speed for each task, such that the
time bound T is respected and the total energy consumption
is minimized.

Hence, for a single processor, given an amount of work w
to complete and a length of shelf of T , we consider the
function OptS(w, T ) that returns the optimal speed such
that ws ≤ T and the energy consumption wsα−1 +TPstat is
minimized. Since the energy consumption is an increasing
function of s for s ≥ 0, the optimal speed is the smallest
speed such that the shelf length is not exceeded. Therefore,

OptS(w, T ) = min
{
s ∈ S | s ≥ w

T

}
. In the case no such

speed exists, the function returns None.
Note that this function can be computed in Θ(log(|S|))

by doing a binary search within values of S.

B. Optimal algorithm for MINE-ONESHELF-SIM

The idea is to try every possible duration of the shelf:
all possible durations are recorded in the set T , and then
for a given duration T ∈ T , we compute the solution for
each set of tasks T1, . . . , Ti, i ∈ J1, nK and each number of
processors q ∈ J1, pK.

Let ei,q be the minimum energy consumed by task Ti on
q processors, while not exceeding time T . It is computed by
using the function OptS(ti,q, T ), since ti,q is the amount of
work on one processor if task Ti is executed on q processors.

We then proceed with a dynamic programming algorithm,
to compute Ei,q , the minimum energy consumption for the
first i tasks, when using a total of q processors. The goal is
to compute En,p (using all tasks and all processors). Ei,q is
recursively defined for 1 ≤ i ≤ n and 1 ≤ q ≤ p as:

Ei,q = min
1≤k≤q−i+1

Ei−1,q−k + ei,k,

with E0,q = 0. If there are no tasks left, the energy
consumption is null; otherwise we try all possible numbers
of processors k for task i, while keeping at least one
processor for each of the remaining tasks.

We then take the best possible solution amongst the
different possible durations in the set T , and Algorithm 1
provides the corresponding pseudo-code of this dynamic
programming algorithm.

Theorem 5. MINE-ONESHELF-SIM can be solved opti-
mally in polynomial time.

Proof: Let us prove by induction over i ∈ J0, nK that
for all q ∈ J1, pK, Ei,q is the minimum energy consumed to
process the i first tasks with q processors.

Base case: ∀q ∈ J0, pK, the energy consumed to handle
no task on q processors is 0, meaning that the E0,q values
for q ∈ J0, pK are correct.

Inductive step: Let i ∈ J0, n − 1K, and we assume
that ∀q ∈ J1, pK, Ei,q is correct. The expression of Ei+1,q

is min1≤k≤q−iEi,q−k + ei+1,k. If task Ti+1 is given k
processors, then the i first tasks will be handled by q − k
processors. As the task i + 1 must be given a number of
processors k ∈ J1, q − iK, the expression gives the correct
value for Ei+1,q .

It means that En,p is correct, and therefore that the
algorithm is also correct.

The number of total durations is at most np|S|, because
we must choose a task, the number of processors allocated
for this task, and its speed. The complexity of the algorithm
is thus O(n2p3|S|).



VII. EMPIRICAL STUDY

A. Experimental setup

All the base algorithms rely on the global mechanism pre-
sented in Section V-A2 [28, GF] with either a single speed
or multiple speeds. It is then combined with the strategies
presented in Section II: LISTBASED and SHELFBASED (for
a total of four heuristics). Moreover, we also implemented
two optimization algorithms that can only be applied to an
output of SHELFBASED:
• OPTISHELF, which optimizes each shelf once each task

has been allocated to a shelf using the algorithm from
Section VI (this may change the number of processors
used for each task);

• DE-SHELF, which takes a SHELFBASED solution and
starts each task as soon as possible by removing the
shelf constraint while keeping the allocations and the
order in which the tasks are started.

For both of these optimizations, the energy consumption can-
not be worse after the optimization than before. When both
optimizations are selected, OPTISHELF would be performed
first but we discarded this combination because it did not
outperform DE-SHELF in practice. This represents a total of
ten heuristics.

To compare the different heuristics, we implemented them

Algorithm 1: Optimal algorithm for MINE-
ONESHELF-SIM

1 T ← ∅ ;
2 for i← 1 to n do
3 for q ← 1 to p do
4 for s ∈ S do
5 T ← T ∪ { ti,qs } ;
6 res←∞ ;
7 for T ∈ T do
8 for i← 1 to n do
9 for q ← 1 to p do

10 si,q ← OptS(ti,q, T ) ;
11 if si,q = None then
12 ei,q ←∞ ;
13 else
14 ei,q ← qti,qs

α−1
i,q + qTPstat ;

15 for q ← 0 to p do
16 E0,q ← 0 ;
17 for i← 1 to n do
18 for q ← i to p do
19 for k ← 1 to q − i+ 1 do
20 if Ei−1,q−i + ei,k < Ei,q then
21 Ei,q ← Ei−1,q−k + ei,k ;
22 if En,p < res then
23 res← En,p
24 return res ;

in C++17 compiled with gcc 9.3.0 with optimization option
-O3.

We rely on Python 3.8.5 to generate the instances and to
analyze the results. The code of these experiments can be
found on Figshare1.

B. Instance generation

The following characteristics were extracted from a realis-
tic platform [22], [6]: p = 32 Intel Xscale with Pstat = 6

155 ,
α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}.

The number of tasks varies from 20 to 1000, with a step
every 20 tasks. The workload was generated as follows:
• half of the task profiles are generated with Amdahl’s

law [1] [26] (wi,pi = wi,1 · β +
wi,1·(1−β)

pi
, where wi,1

and β are chosen through uniform distribution U(0, 1));
• half of the task profiles are generated with the Power

law [24] [15] [26] (wi,pi =
wi,1

pβi
where wi,1 and β are

chosen through uniform distribution U(0, 1)).

C. Results

In order to evaluate the performance of the various
heuristics and show whether they return results close to the
optimal, we compare the results with a lower bound that
consists in an optimal execution in the MINE-MOLD-INDEP
case (Section IV-A). In that case, the static energy is paid
only while a task is executed, and any solution to MINE-
MOLD-SIM will consume at least as much energy as this
lower bound.

Figure 1 presents an overview of the results for all
heuristics, for the case with n = 500 tasks. We report both
the ratio between the energy consumption of each heuristic
with the lower bound (the lower the better), and also the
execution time of the heuristics. For convenience, SS refers
to the single-speed variants, and MS to the multiple-speed
ones. A first remark is that single-speed and multiple-speed
variants give very similar results. Indeed, in practice, the
multiple-speed heuristics give the same speed to most tasks.

In Figure 2, we compare the most efficient heuristic,
LISTBASED-MS, with the fastest one, SHELFBASED-SS.
We can see that LISTBASED-MS provides schedules with
lower energy than SHELFBASED-SS, but at the cost of a
much larger execution time for the algorithm2.

In Figure 3, we use the solution delivered by SHELF-
BASED with a single speed for all tasks, and pass this
solution through two possible optimizations: OPTISHELF
or DE-SHELF. With this comparison, we can see that both
optimizations increase the quality of the solution, but OP-
TISHELF does it at the cost of a very large increase in the

1https://doi.org/10.6084/m9.figshare.14854395
2LISTBASED could be implemented in a faster way with a segment tree

to compute which task can be started, making this operation logn instead
of n. However, this complex data structure would probably not be included
in most implementations.
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Figure 1. Output energy consumption and execution time to compute the solution for all ten heuristics with n = 500 mixed power and Amdahl’s tasks
and p = 32 processors (with Pstat = 6
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, α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).
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Figure 2. Output energy consumption and execution time to compute the solution for LISTBASED-MS and SHELFBASED-SS for instances with mixed
power and Amdahl’s tasks and p = 32 processors (with Pstat = 6
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, α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).
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Figure 3. Output energy consumption and execution time to compute the solution for SHELFBASED-SS and optimizations (OPTISHELF and DE-SHELF)
for instances with mixed power and Amdahl’s tasks and p = 32 processors (with Pstat = 6
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, α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).

execution time. On the other hand, the overhead of DE-
SHELF is small, allowing to get a solution of better quality

at a small cost.
Finally, in Figure 4, we compare LISTBASED with mul-

tiple speeds to SHELFBASED with a single speed, with



0 200 400 600 800 1000
Number of tasks

100

1.1× 100

1.2× 100

1.3× 100

1.4× 100

1.5× 100

1.6× 100

1.7× 100
R

at
io

b
et

w
ee

n
th

e
en

er
gy

fo
u

n
d

b
y

th
e

al
go

ri
th

m
an

d
th

e
co

m
p

u
te

d
lo

w
er

b
ou

n
d

ListBased-MS

De-shelf-SS

0 200 400 600 800 1000
Number of tasks

0

1

2

3

4

5

E
x
ec

u
ti

on
ti

m
e

of
th

e
al

go
ri

th
m

,
in

se
co

n
d

s

ListBased-MS

De-shelf-SS

Figure 4. Output energy consumption and execution time to compute the solution for LISTBASED-MS and DE-SHELF-SS for instances with mixed power
and Amdahl’s tasks and p = 32 processors (with Pstat = 6
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, α = 3, S = {0.15, 0.4, 0.6, 0.8, 1}).

DE-SHELF, which we found to be the best optimization
for SHELFBASED. For small instances, LISTBASED still
performs better than SHELFBASED with DE-SHELF. How-
ever, when n grows larger, SHELFBASED with DE-SHELF
performs as well as LISTBASED, but with a lower time
complexity.

VIII. CONCLUSION

With the growing concern regarding the energy consump-
tion of current parallel platforms, it is crucial to bound the
worst-case performance. This paper is the first to propose
such bound on the energy consumption when scheduling
moldable tasks. We highlight the relation between the energy
and the completion time (determined by the DVFS mecha-
nism) and rely on the numerous approximation algorithms,
which have already been proposed to minimize the comple-
tion time. This leads to a general mechanism to bound the
energy consumption of such existing approximation algo-
rithms for the completion time. In particular, we show that
a shelf-based approach is a 3-approximation algorithm for
the energy. Empirical results reveal that such an approach,
when combined with a fast optimization post-operation, is
beneficial in practice because of its low cost. This paper also
contributes to the optimization of a single shelf by providing
a polynomial algorithm.

To complete this study, we could consider variations of
the power model. In particular, we assume that changing
frequencies with the DVFS mechanism does not incur any
energy cost or delay, which may not be accurate in practice.
Also, we assume that the set of available frequencies is finite
and discard continuous frequencies even though they may
provide insights or lead to optimal solutions, which may
then be used as a basis for the finite case.

Overall, this paper aims at providing the theoretical
foundations to the problem. Since current task systems do
not yet have moldable task profiles that can be used, we
have focused on classical models that have already been
largely considered in the literature. As soon as moldable

task profiles are available, it would be very interesting to
conduct experiments on real HPC systems.
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