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The development of ubiquitous and pervasive computing systems requires new approaches and
paradigms. Mobile agent based approaches have received a great attention for developing dis-
tributed applications. Agents are programs that can migrate from a machine to another in a
network and perform tasks on distant machines. However, it is difficult to estimate a priori the
appropriate number of agents allowed to be spawned in the network without any global informa-
tion or controller. Indeed, increasing agent population size, with cloning operation, will increase
resource demands in the network, which would indirectly affect the network performance. This
paper focuses on the problem of dynamic regulation of mobile agent population size in a dis-
tributed system and proposes an approach that takes inspiration from the immune system concepts.
Simulations have been conducted and results are reported to show the effectiveness of the proposed
approach. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Ubiquitous and pervasive computing is an emerging paradigm that aims to
provide users with access to services all the time, everywhere and in a transparent
way, by means of devices embedded in the surrounding physical environment and/or
carried by the user.1 The goal is to develop systems where highly heterogeneous
hardware and software resources can seamlessly and spontaneously interoperate to
provide a variety of services to users regardless of the specific characteristics of the
environment and user devices. As stated in Ref. 2 the aim of ubiquitous computing is
to provide any mobile device an access to available services in an existing network
all the time and everywhere while the main objective of pervasive computing is
to provide spontaneous services created on the fly by mobiles that interact by ad
hoc connections. In other words, pervasive computing concerns the use of mobile
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computing technology and recently data coming from social networks to enhance
people’s interactions during unexpected contexts. Interactions between users are
based on geographic proximity and context awareness and can occur in a shared
local such as in the office, in the elevator, at the grocery store, in the class, in the
library, in the pool area, and in the gym. Users live close enough so they can interact
and eventually see and meet each other in real life if they wish. Usually, interactions
can occur when users find that they share common interests, such as hobbies and jobs.

Author in Ref. 2 also point out that most of research works to date in resource
management are based on the traditional client–server paradigm (CSP). Indeed,
with the CSP, it is the user who should initiate a request, should know a priori that
the required service exists, and should be able to provide the location of a server
holding that service. However, this paradigm is impracticable in ubiquitous and
pervasive environments and cannot meet simultaneously their related needs and
requirements that are scalability and adaptability to dynamic environments. Many
efforts have been dedicated to develop decentralized architectures for resource
management. Thus, network resources must be able to scale, adapt to dynamic
conditions in the network, be highly available, and should require minimal human
configuration and management.

According to Gaber’s classification, two alternative paradigms to CSP have
been introduced to design and implement ubiquitous and pervasive applications: the
adaptive services-to-client paradigm (SCP) and the spontaneous service emergence
paradigm (SEP).3 With the alternative SCP paradigm, it is the service that comes
to the user. In other words, in this paradigm, a decentralized and self-organizing
middleware should be able to provide services to users according to their availability
and the network status. Such a middleware can be inspired, for example, from a
biological system such as the natural immune system. The second alternative SEP
paradigm is more adequate for pervasive applications. It involves the concept of
spontaneous emergence service composition that suits pervasive environments.
More precisely, spontaneous services can be created on the fly and be provided by
mobiles that interact by ad hoc connections. The SEP could be also implemented
by a natural systems that involve self-organizing and emergence behaviors.2 It is
worth noting that research works in artificial intelligence, agent-based systems,
mobile and autonomous robots, distributed systems, and autonomic systems have
focused on the development of adaptive approaches and systems that modify their
own behavior at run-time to address constantly changing environments.4 Most
approaches are inspired by features and capabilities seen in natural and biological
systems, for example, human brain, immune systems, ant colony, and flocks of
birds.5,6 The main goal is to develop run-time mechanisms so that the system
autonomously adapts its structure and its behavior during the course of operation.

In the past few years, several approaches, such as in Ref. 7, have been proposed
to implement ubiquitous and pervasive applications. For example, an agent-based
approach, with self-adapting and self-organizing capabilities, has been proposed
in Ref. 8 to implement the SCP paradigm. This approach is based on the mobile
agent paradigm and inspired by the immune system to organize resources into
communities by creating dynamic affinity relationships to represent services in the
network. In this approach, mobile agents are used as an alternative to CSP. They
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have the ability to move from location to location to meet other agents or to access
resources provided at each location.9 Furthermore, agents can clone themselves in
order to increase system robustness and performances. However, it should be noted
that increasing agent population, with cloning operation, will increase resource
demands in the network, which would indirectly affect network performance.
Since mobile agents operate in a dynamic and distributed environment, it is
difficult or even impossible to estimate a priori an appropriate number of agents
in the network.10 Also, changing the population dynamically in response to its
environment is a complex issue in the absence of central controller.

In this paper, a distributed approach for the regulation of mobile agent
population and inspired by the human immune idiotypic network is presented. In
this approach, an agent retrieves local information from its environment and makes
appropriate decision to either kill, move without cloning or clone itself and move to
another node of the network. We demonstrated through extensive simulations that
the number of agents in the network stabilize without having a global knowledge of
the network. The approach is also compared to the ant-based approach10 and results
show the effectiveness of the immune-based approach. The rest of the paper is
structured as follows. In Section 2, the related work of dynamic regulation of agent
population size is presented. Section 3 presents an approach of autonomous adaptive
mobile agent by getting inspired from immune system concepts. Simulation results
are presented in Section 4. Conclusions and future work are given in Section 5.

2. RELATED WORK

Changing the population dynamically in response to its environment requires
a high degree of coordination among agents to analyze the global environment from
local information. In Ref. 10, Amin and Mikler have proposed an approach inspired
by stigmergetic propriety of ant colony to facilitate coordination between agents.
More precisely, mobile agents with minimum cognitive capabilities communicate
with each other using pheromones that assist them to select an appropriate action.
In other words, the stigmergetic propriety may be defined as the indirect communi-
cation mediated by modifications of environmental states that are locally accessible
by the communicating agents. The intensity of pheromones disposed by agents at
each node visited is determined by the equation e−λ�t , where �t is the time since
the deposition of pheromone and λ is a constant value fixed between 0 and 1.

In this approach, the action selection algorithm for each agent is defined as
follows. An agent visiting a node at time tb extracts the value of the pheromone
that was disposed at time ta (ta < tb) using the equation e−λ�t . If this value is
above a certain termination threshold Max, the agent kills itself. On the other hand,
if the pheromone value reduces below a cloning threshold Min, the agent clones
itself. But, if the pheromone is comprised between the termination and cloning
thresholds, the agent neither clones nor kills itself. In this case, the agent migrates
to another node. This approach was proposed to implement an algorithm for agent-
based distance vector routing (ADVR).10 In ADVR, agents migrate among nodes,
thereby establishing routes for every pair of nodes in the network in a distributed
way. However, agents are homogeneous, when one or more agents are killed there
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are other agents that can achieve the objective. More precisely, in ADVR algorithm
an ideal number of agents in the network to enhance the path-cost convergence
of shortest-path routes is not required.10 Therefore, this approach is not applicable
when the agents are heterogeneous. In fact, when an agent is eliminated just after
creation and that its objective is not then accomplished, the node dispatches other
agents to accomplish it.

However, in this approach, values of λ, Min, and Max are constant and fixed
a priori for each node. Hence, the experiments conducted for this approach demon-
strate that the agent population size depends only on these global values.8,10 How-
ever, the resource utilization will change dynamically, and therefore, changing the
values of λ, Min, and Max is required. Dynamically adjusting these thresholds in a
distributed fashion is a nontrivial issue problem. Authors consider the existence of
a mechanism that map these values to the global state of the network based on local
information but this issue is not addressed in their work.10 Hence, an appropriate
mapping of these values to the resource availability must reflect the global state of the
network. To change values of λ, Min, and Max a reinforcement learning mechanism
is needed. More precisely, the reinforcement learning permits for nodes to adapt the
threshold values according to the value of �t . For example, if a node perceives that,
during an interval of time, the value of �t decreases, then that could be interpreted
by the fact that the number of agents present in the network is increased. In this case,
the node should adjust the parameter Min to reinforce the elimination of the received
agents and thus to cause the reduction in the size of the population in the network.8

To build intelligent agents capable of autonomously achieving goals in
a complex environment, several research work have been proposed.11 More
precisely, researchers address the problem of how the agent should act and adapt
to environment changes.12 For example, reinforcement learning could provide
a framework for an agent to act and adapt to its environment.12–17 In parallel,
algorithms designers have proposed several techniques that could be used to
develop algorithms with increasing level of adaptiveness18 (see Figure 1). The first
technique uses if/switch statements to evaluate the local function or expression to
select a suitable action. Another technique named online parameterized technique
is used to select an action based on inputs and parameters that can evolve over time.
The algorithm selection technique chooses the most effective algorithm among a
fixed set of available algorithms based on given properties, for a specific task or
environment state. The last technique, which recently attract researchers’ attention,
is the use of techniques and principles from natural and biological systems to select
suitable actions and generate new actions according to the environment.

It is worth noting that biological and natural systems, such as immune systems,
honey bee, and ant colonies, have several features and organizing principles that can
be exploited in designing and developing adaptive systems. These superorganisms
often use self-organizing behaviors and feedback loops that allow the system
achieving reliable and robust solutions using information gathered from entities.19

As also stated by Kholodenko,20 positive and negative feedback loops are key
elements of information processing in all biological systems. These feedback loops
allow improving information flow and decision making at multiple levels, without a
centralized control.4 For example, the biological immune system is composed of a
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Figure 1. Adaptation rules and techniques: from low to high adaptiveness.

diverse set of cells that are distributed throughout the body and are communicating
without a central controller. The immune system evolves to adapt and improve the
overall system performance (e.g., organizational memory).21–24

These natural and biological features have also inspired researchers from
the software engineering, autonomic computing, and networking communities for
building self-adaptive systems.25–27 They have also highlighted that feedback loops
are core design elements and should be made explicit in modeling, design, and
implementation of adaptive systems. In this paper, the proposed approach uses a
mechanism inspired by the immune system similar to the one used by Watanabe
et al.24 and Ishiguro et al.28 for intelligent selection of actions by a mobile robot.
This mechanism was adapted from a model proposed by Farmer et al.,22 in which
the authors describe a nonlinear dynamical model using differential equations for
the immune system based on the immune idiotypic network hypothesis proposed
by Jerne.21 The use of linear equations formulation and iterative methods, which
is preferred to a nonlinear system or coupled differential equations that can have
multiple attractors, to model adaptive behaviors was proposed in Ref. 29.

3. BIOINSPIRED AUTONOMOUS AGENTS

3.1. General Architecture

A general architecture of autonomous agents was proposed by Ranjan et al. in
Ref. 30. It consist of two modules, the interface of the agent to its environment and
the controller. The interface contains sensors that sense the environment, analyses
them, and creates a view of the environment called percept. The percept is passed
on to the controller that decides whether an action (i.e., policy) is appropriate to
the current situation. Once the action is selected, it is passed to the interface to be
carried out by effectors. As also stated in Ref. 29 to develop the actions selection
mechanism, we consider that each autonomous agent can keep track of environment
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changes, perform interactions, and communicate with others surrounding agents and
the environment. The agent’s behavior is governed by the system’s dynamics and
the peering relationships between the different action rules.

By analogy with the immune system, the current situation of the environment
(i.e., percept) detected by the interface (i.e., sensors) works as antigen, and prepared
behavior or action is regarded as a B-cell or antibody, while the interaction between
actions is considered as stimulation/suppression chain (or a feedback loop) between
B cells.31 The antibody population is represented by the concept of concentration.
In this architecture, the description of all variables is integrated and consequently,
it is not necessary to have an internal state to describe the dynamics of the system
such as in the resolution approach proposed in Ref. 12. More precisely, the agent
cannot make the difference between the stimuli and the hidden information (i.e.,
internal state) to select an appropriate action. Indeed, the differential equations,22

which describe the evolution of agent behaviors, integrate variables characteristic
of actions, the internal state, and variables describing the stimuli coming from the
environment of the agent.

It is worth noting that the pioneering work in this area was introduced by
Holland,32 which proposed the classifier system, one of the most popular approaches
to machine learning and artificial intelligence. Farmer et al.22 have explored the
similarities between the immune and classifier systems and described a nonlinear
dynamical model based on the network hypothesis of Jerne.21 Jerne has pointed
out that the immune system is a sophisticated biological system interpreted as
a network of billions of highly specialized cells that specifically stimulate and
inhibit each other, and thus exhibits powerful capability for learning, memory, and
pattern recognition. The dynamical model using differential equations formulation
described in Ref. 22 has been used in several artificial intelligence approaches such
as proposed in Refs. 24,28, and 30.

Similarly to the work in Refs. 24,28, and 33 to regulate the agent population size,
we incorporate in each agent a controller which is equivalent to the immune idiotypic
network. More precisely, each behavior (i.e., action) of the agent is a B cell and the
environment is the antigen. As described in Ref. 29, starting from the ideas under-
lying Holland’s classifier system and Farmer et al. nonlinear dynamical system, the
action–selection problem in an environment is mathematically identical to solving
simple linear systems when potential actions are arranged on an affinity network. The
agent behavior can be described by a well-defined finite set of internal actions. Each
action has a numerical weighting. Actions are connected to each other by links to en-
code stimulatory and/or inhibitory interactions. For each environment change, all the
actions whose condition matches those changes compete to be acted upon. The action
numerical weights are calculated on the basis of the action strength, that is, condition
match, and changes according to the peering interactions with the other actions, until
they settle down to stable steady values. Then, the algorithm applies the operations
that correspond to the actions that best fit the environment, for example, with the
highest values. The peering relationships between the different actions can be com-
pactly described by means of an affinity network, that is a directed weighted graph.

For regulating agent population size, mobile agent behaviors are death or
kill, move, and clone. As depicted in Figure 2, these behaviors are linked with a
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Figure 2. Stimulation/suppression chain between the three behaviors of the mobile agent.

stimulation/suppression chain or feedback loop. Formally, let consider Ac, Am, and
Ak be the concentrations associated, respectively, with the clone, move, and kill
behaviors (i.e., B cells). Their variations can be expressed as follows:

Ac(t + 1) = Ac(t) + (ak(t) − am(t) + mc − kc)ac(t)

Am(t + 1) = Am(t) + (ac(t) − ak(t) + mm − km)am(t)

Ak(t + 1) = Ak(t) + (am(t) − ac(t) + mk − kk)ak(t)

where the values kc, km, and kk are constants and denote the dissipation factor
representing the antibody’s natural death corresponding to the behaviors clone,
move, and kill, respectively. Variables mc, mm, and mk correspond to the affinity of
the antigen with the three respective behaviors (i.e., B cells). The values mc, mm,
and mk are calculated with the following logistic equation to squash the values Ac,
Am, and Ak, respectively, between 0 and 1, as in Refs. 33 and 34: ai(t) = 1

1+e(0,5−Ai (t)).

This approach controls the agent population based on the interarrival time.
If the interarrival time is small, then this could be interpreted by the fact that an
excessive number of agents are present in the system. In this case, the kill and move
behaviors should be stimulated with a higher affinity. On the other hand, if the
interarrival time is large, it implies that there are a suboptimal number of agents in
the system. In this case, the clone and move behaviors should be stimulated with a
higher affinity. More precisely, an agent visiting a node at time tb extracts the value
of the time ta of last visit to this node and calculates the value separating the two
last visits �t (tb − ta). Using this value, which corresponds to the antigen, the kill
action is stimulated with the affinity value mk equal to 1

2x, the clone action with
the affinity equal mc to 1 − x, and the move action with the affinity mm value equal
to 1

2x, where x is equal 1/(1 + e−�t ). Each behavior concentration is calculated
repeatedly (e.g., during 10 calculation steps) and the behavior with the highest
concentration is selected. The initial concentration value for each behavior (i.e.,
ai(0)) in our experiments is considered 0.01. The values of constants parameters
Kc, Km, and Kk are fixed to 0.001. It should be noted that, unlike the approach of
Amin and Mikler,10 the selection of appropriate action is not deterministic. Indeed,
behaviors of the agent are stimulated in parallel and the most appropriate behavior
to the environment state will emerge and be selected. More precisely, each mobile
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agent selects an appropriate behavior to its environment without using any global or
static thresholds parameters (i.e., Min and Max).

3.2. Specification of Agents

We have two types of agents: mobile agents (Magents) and agents that rep-
resent the nodes of networks (Nagents). In the rest of this section, we present
the specification of these agents and their behaviors using input/output automata
formalism.35 This formalism was proposed to model discrete event systems con-
sisting of concurrent and distributed components that receive inputs from and react
to their environment. Each component can be modeled as an I/O automata with an
internal state and three actions, input, output, and internal. For example, using the
I/O automata formalism, the state of an agent Nagent is described as follows:

� The address n belonging to Nodes, the set of all nodes of the network.
� The neighboring set Vn.
� The value ta that represents the time of last visit to that node by another mobile agent.

In the I/O automaton model, Nagent receives requests from mobiles agents,
via the request input action requestn(), where n is the unique identifier assigned
to each node of the network. Upon receiving the request, Nagent communicates
its neighbor Vn and the interarrival time �t to this mobile agent via the message
inf ormn(�t, Vn). It also adds the time ta of last visit of this agent. The specification
of Nagent is as follows:

Node Agent : Nagent
Signature
Input:
requestn(), the node agent receives the request from the mobile agent
initiallement : {requestn()}, initially, the node agent waits the mobile agent
requests
Output:
informn(�t, Vn), the agent communicates its neighbor set Vn and the inter-
arrival time �t
States
n ∈ Noeuds, the node address
Vn ⊆ Noeuds, the neighbors of the node
ta ∈ R

+, the time of the last visit to this node
Actions

Input requestn() Output informn(�t, Vn)
Eff: tb ← date(), Eff: tb ← ta

out ← {inf ormn(�t, Vn) : �t = (tb − ta)};

Unlike Nagent, which are stationary agents, Magent are mobile agents with the
following state:

� The current agent address location, initially, it corresponds to the address of the initiator
node.
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� A Boolean initiator initialized at T RUE to indicate that the agent is belonging to the
initial population.

� The real value Ac corresponds to clone action.
� The real value Am corresponds to move action.
� The real value Ak corresponds to kill action.
� The iteration number I terMax.
� The dissipation factor kc, km, and kk representing the antibody’s natural death of the

behavior clone, move, and kill, respectively.

The specification of Magent is as follows:

Mobile Agent: Magent
Signature
Input:
informn(�t, Vn), the agent receives the response to its request requestn()
move(n, n′), the agent moves from the node n to the node n′ randomly selected
from Vn

initialement:{move(n, n′)}, initially, upon its creation the agent should execute
this action
Output:
requestn(), the mobile agent sends its request to the node agent n
Internal:
clone(Magent), the operation that allows the agent to clone itself with initiator
variable is set to false
States:
location ∈ Noeuds, localization of Magent, initially the initiator node c
Ac ∈ R, the concentration value of clone action, initially 0
Am ∈ R, the concentration value of move action, initially 0
As ∈ R, the concentration value of kill action, initially 0
initiator ∈ Bool, boolean, initially False if the agent is a clone, True overwise
IterMax ∈ N, the maximum number of iterations

Actions:

Input informn(�t, Vn)
Eff:loop ← 1

repeat
update Ac, Am, As Input move(n, n′)
loop ← loop + 1 Eff: location ← n′

until loop = IterMax out ← requestn′();
switch (Max(Ac, Am, As)) in ← {informn′(�t, Vn′)};
case Ac: Output requestn()

int ← {clone(Magent)}; int ← {move(n, n′)}; Pre: location = n
case Am: Eff: none

int ← {move(n, n′)};
case As :

int ← ∅; in ← ∅; out ← ∅;
end switch
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Each mobile agent Magent move from one node to another node in the network,
querying each node n using requestn() action to obtain its neighbor Vn and the inter-
arrival time �t . Upon receiving these information via inf ormn(�t, Vn) action, the
behaviors clone, move, and kill are stimulated with the affinity value mc, mm, and
mk, respectively. Each behavior concentration is calculated repeatedly and the behav-
ior with the highest concentration is selected. The move(n, n′) action corresponds to
the agent migration, where n′ is the neighbor of the node n randomly selected from
the set Vn. The clone(Magent) action corresponds to cloning operation. When an
agent Magent is cloned, its clone agent moves to a node randomly selected.

4. SIMULATION RESULTS

In this section, the effectiveness of the proposed approach is demonstrated
using simulations, which were conducted using the ns2 simulator.36,37 Two network
topologies composed of 100 nodes were generated using Brite tool.38 The first
network topology was generated according to the Waxman model. This model refers
to a generation model for a random topology using Waxman’s probability model for
interconnecting the nodes of the topology, which is given by P (u, v) = αe−d/(βL),
where 0 ≤ α, β ≤ 1, d is the Euclidean distance from node u to node v, and L is
the maximum distance between any two nodes (α=0.15, β=0.2 in the generated
topology). In the generated topology, the number of bidirectional links is 201, the
average link bandwidth is 19.97 Mbps and the average node degree is 4.

The second network topology composed of 100 nodes was generated according
to BA model. This model is based on the gradual increase in the network size by
continual addition of new nodes. More precisely, at generation time, when a node i
is added to the network, the probability to connect it to a node j already belonging to
the network is P (i, j ) = dj/

∑
k∈V dk , where dj is the degree of the target node, V is

the set of nodes that have joined the network, and
∑

k∈V dk is the sum of outdegrees
of all nodes that have previously joined the network. In this topology, the number
of bidirectional links is 198, the average bandwidth is 30.14 Mbps, and the node
degree is 4.

In these two topologies, links’ bandwidth can be assigned to links using the
following distributions: uniform, exponential, and heavy. In the first one, a value
uniformly distributed between BWmin and BWmax is selected. In the second
distribution, a value exponentially distributed with mean BWmin is selected. In
the third distribution, a value heavy-tailed distributed (Pareto with shape 1.2) with
minimum value BWmin and maximum value BWmax is selected. In the simulations,
we fixed the value of BWmin to be 10 Mbps and the value of BWmax to 1024 Mbs.
Furthermore, simulation results are produced by considering these three distributions
to generate the links’ bandwidth. These two topologies have the same number of
nodes and slightly number of bidirectional links, but the degree distribution (nodes
connectivity) among nodes is different.

Figure 3 shows the evolution of dynamic agent population size during the
simulation using the ant-based approach when uniform, heavy, and exponential
distributions are applied and the topology is generated using the Waxman model.

International Journal of Intelligent Systems DOI 10.1002/int



ADAPTIVE REGULATION APPROACH OF MOBILE AGENT POPULATION SIZE 183

Figure 3. The evolution of the population of agents for uniform, exponential, and heavy distribu-
tions using the ant-based approach.

As shown in this figure, by changing the values of Min and Max, the population
size changes and mainly depends on these global values that are fixed a priori for
each node. We can also see that bandwidth assigned to links using the uniform,
exponential, and heavy distributions has no influence on the total population size.

Figure 4 shows the evolution of dynamic agent population size during the sim-
ulation using the immune-based approach when the uniform, heavy, and exponential
distributions are applied and the topology is generated using the Waxman model. We
have also considered three scenarios, similar, fixed, and random. In the first scenario,
when an agent clone itself the clone takes the same values of the parameters Ac, Am,
andAk . In the second scenario, a fixed value for these parameters was given, 0.5 in
this simulation. In the third scenario, random values are generated between 0.5 and
1.0. We can see that the population size is still similar for the three scenarios and
the three models used for bandwidth generation.

As shown in Figures 3 and 4, unlike the ant-based approach, in the immune-
based approach, the population size converges without using any global values.
Agents learns while moving in the network and select the suitable action based on
the interarrival time between agents.
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Figure 4. The evolution of the population of agents for uniform, exponential, and heavy distribu-
tions using the immune-based approach.

To show the influence of the topology on the agent population size, another
topology composed of 100 nodes was generated according to BA model. Figure
5 shows the evolution of the population size when using two topologies that are
generated using Waxman and BA models, respectively. As depicted in the figure,
the size of the mobile agent population size when the Waxman model is used
is greater than the size of mobile agent population when using the BA model.
Notice that similar simulations have been conducted using uniform and exponential
distributions and other values of min and max but have not presented because they
show similar results like the heavy distribution. To figure out the reason why this
is happened, we calculate the nodes’ degree for each topology and the standard
deviation, which are 3.59 and 2.68 for the topologies generated by BA and Waxman
models, respectively. We concluded that BA model generates a network topology that
contains relatively more nodes with high connectivity. Let us, for instance, consider
the network node with the highest degree (i.e., the largest number of neighbors).
This node, by its particular situation within the network topology, will be visited
more frequently than other nodes of the network. Therefore, the interval δt between
two successive visits could be very small, which leads these nodes to make decisions
to kill mobile agents while the network may not be loaded.
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Figure 5. The evolution of the population of agents when the heavy distribution is applied. The
topology was generated using BA and Waxman models.

Figure 6. The communication load for ants and immune approaches. The topology was generated
using BA and Waxman models.

We have also computed the communication load as depicted in Figure 6. The
communication load is a relative value of arrival rate versus departure rate on all
links and obtained as follows. Let us consider Dr as the maximum number of agents
that can possibly, under ideal circumstances, be transmitted over all links during the
simulation time (te − ts). Ar is the actual number of agents that have arrived over
all links during this period. The communication load L can be defined as the ratio
between the departure rate Dr and the arrival rate Ar as follows: L = Sa

te−ts

∑N�

i=1
A�i

R�i

,
where A�i

is the number of agents arrived to the link �i , R�i
is the bandwidth of

each link �i , N� is the number of unidirectional links, and Sa is the size of the each
agent. The actual number of agents arrived to each link was obtained by monitoring
links during the simulation, but the number of agents that can be transmitted was
calculated based on the bandwidth value of each link (400 unidirectional links in
the topology generated) and the size of agents (fixed to 1028 bytes).
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Figure 7. The evolution of the population of agents. The network with 1000 nodes generated
using the Waxman model and the heavy distribution.

Figure 6 shows that the communication load changes as we change Min and
Max values because of the number of agents in the network. Furthermore, the
communication load in the network topology generated by the BA model is slightly
smaller than the Waxman model because of the decrease in the number of agents in
the network and the greater values of links bandwidth. In the immune approach, this
decrease is due only on the links bandwidth values, which is greater for BA model
(31 Mbps on average). According to these results, we conclude that the population
size depends crucially on the topology structure given in a network.

To show the influence of the network size, we computed as shown in Figure
7 the evolution of dynamic agent population size during the simulation for both
approaches in a network of 1000 nodes. The heavy distribution was applied to
generated bandwidth values related to links. As illustrated above, these results show
that the population size depends on these global values that are fixed a priori for
each node. Furthermore, for both approaches the total population size increased
significantly and adapts to the nodes increases.

5. CONCLUSIONS AND FUTURE WORK

Regulating a mobile agent population size in a dynamically changing environ-
ment is particularly challenging. This paper describes an adaptive immune-inspired
approach for dynamic regulation of mobile agent population size in a distributed
network. In this approach, an agent retrieves local information from its environment
and makes appropriate decision to either kill, move without cloning or clone itself,
and move to another node of the network. With this approach, the number of agents
in the network stabilizes without having a global knowledge of the network. Other
approaches are under investigation, and more simulations will be conducted. An-
alytical performance analysis to study the behavior of the composed automata of
Nagent and Magent to prove safety and liveness properties is our ongoing work.
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