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Abstract—Untethered small-scale robots can be potentially
used in medical applications such as minimally invasive surgeries
and targeted drug delivery. This paper introduces a new local-
ization method using Electrical Impedance Tomography (EIT),
which is an emerging medical imaging technique, to dynamically
track small-scale robots. The proposed approach provides the
electrical conductivity distribution within the robot workspace
from a set of electrical stimulations and voltage measurements
gathered from eight electrodes placed at its boundary. The
position of the robot can be deduced from the conductivity map
that is reconstructed with the contrast in electrical properties
between the robot and the background medium. This method is
experimentally validated by successfully tracking the 2D motion
of 4 different magnetically actuated robots within a cylindrical
arena (30 mm in diameter and 4.2 mm high). The smallest
detected robot is 1.5 × 1.5 × 1 mm3. The proposed tracking
method provides a non-invasive technology with low-cost and
high-speed potential that would be significant and useful for the
position feedback control of untethered devices for biomedical
applications in the future.

Index Terms—Microrobotics, position tracking, electrical
impedance tomography, magnetic actuation.

I. INTRODUCTION

SMALL robots (i.e., robots < 1 cm) capable of navigating
in a controlled manner through confined and enclosed

spaces have been extensively studied in recent years to enable
applications in various domains such as micromanipulation
[1], [2] and healthcare [3], [4]. Among magnetic [2], optical
[5], acoustic [6] and biological [7] actuation approaches used
for mobile small-scale robots, the magnetic actuation method
becomes more prominent for medical applications due to its
potential usage inside nontransparent environments, and deep
penetration capability in any nonmagnetic media [8]. After a
rapid development in the past decade and the demonstration
of applications in optically transparent environments, the sci-
entific interest in deploying such small-scale robots into other
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workspaces is strong and growing [9]. However, ensuring the
efficiency of delicate tasks at small scale requires a precise
control over robot motion and positioning. Achieving such
a fine and consistent control in spite of perturbations and
model uncertainties implies the need of a position feedback.
Therefore, the potential of untethered small robots to become
a real breakthrough in applied medicine strongly depends on
the ability to provide suitable localization techniques.

To address this challenge, several methods have been
studied in the last few years. These methods are extensively
reviewed by recent articles reflecting the interest of the com-
munity in the subject [10]–[12]. Various technologies that are
well-established in biomedical imaging have been explored for
the tracking of small-scale robots such as magnetic field-based
techniques [13]–[15], ultrasound [16], [17], optical techniques
[18], [19] and ionizing radiation-based methods [20], [21].
Although these solutions are promising, a large part of the
existing technologies still exhibit some limitations in terms
of cost, scanning speed, penetration depth, and adverse health
effects [10]–[12].

Alternatively to these conventional methods, the exploitation
of electrical impedance variations has recently shown to be
relevant for localization purposes at small scale [22], [23]. At
the macroscopic level, simulation results from Snyder et al.
[24] suggest that Electrical Impedance Tomography (EIT)
would be of interest to track underwater objects. EIT exploits
electrical stimulations and measurements made through the
surface of an object to non-invasively image the interior of a
domain by estimating the internal distribution of the electrical
properties. The underlying principles of this technique were
first applied in geophysical exploration to detect conductive
ore or liquids in the ground [25]. Thereafter, EIT has been
used in medicine to image various physiological phenomena
such as breathing [26], cardiac function [27], or brain activity
[28]. These applications show that EIT is a safe imaging
technique, unlike the prolonged use of ionizing radiations (eg.,
X-rays). It also illustrates the possibility to image deep tissues,
contrary to optical techniques that are limited to superficial
areas [10]. Moreover, EIT systems can provide high-speed
imaging [29] with low-cost [30], and high portability [31]
(ie., no cumbersome equipment). These aspects make EIT
an attractive technique toward microrobot localization in the
context of biomedical applications.

While the exploitation of electrical impedance variations
in robotics had been so far limited to tactile human-robot
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interactions [32], [33] and on-board deformability sensing
[34], [35], this article describes a new robot tracking system
based on EIT. The possibility to localize untethered small-
scale robots in 2D using EIT is demonstrated through in vitro
experiments, where the actuation of the robot is achieved by
an external magnetic field and a camera is used to verify the
tracking performance. It is shown by static experiments that
the EIT tracking system and the applied magnetic field do not
interfere. Moreover, to evaluate the influence of the size of the
robot on the tracking accuracy, multiple robots in changing
sizes are fabricated and tested. The primary contributions of
this work are:

• The first use of EIT to track the dynamic motions of
small-scale robots.

• A tracking system decoupled from magnetic actuation.
• A method suitable for localization in non-homogeneous

environments.
• The study of the tracking accuracy and the determination

of the smallest detectable robot.
This paper is organized as follows. Section II introduces

the working principle of the EIT technique. In Section III, the
experimental platform including the robot design, actuation
and optical tracking system is presented. Section IV provides
a detailed description of the proposed EIT localization system.
Section V introduces the results of the robot tracking experi-
ments and analyzes the accuracy of the developed system ac-
cording to the size of the robot, EIT reconstruction parameters,
and different environments. Section VI discusses the capacity
of the proposed system and presents challenges and future
possibilities in the use of EIT technology for monitoring and
tracking micromachines.

II. ELECTRICAL IMPEDANCE TOMOGRAPHY

Tomography is a technique used to estimate the internal
structure of an object from signals emitted and measured
outside the analyzed domain [36]. Among various tomographic
methods based on different physics, EIT relies on electricity to
non-invasively reconstruct the interior of the target. The elec-
trical measurements and excitations (i.e., voltages or currents)
are typically performed by means of multiple electrodes placed
on the surface of the system to be imaged. This set of signals
is then used to determine the distribution of the absolute
conductivity (absolute EIT) within a 2D or 3D domain, or
the distribution of the conductivity changes with respect to
a reference state (difference EIT) [36]. This section presents
the theoretical fundamentals of EIT. It enters the category of
inverse problems, which require finding the model parameters
(causes) that correspond to the observations (effects) as well
as possible (Fig. 1).

A. EIT Forward Problem

The forward problem reflects the influence of the model
parameters on the measurements. It determines the electrical
voltages Vi measured at different positions i on the boundary
of the system from the knowledge of the internal conductivity
distribution σ and the stimulating current injection.

Fig. 1. Principle of EIT. An electrical stimulation is applied through the
boundary of the studied domain and the resulting voltages are measured.
The forward problem provides the measurements from the knowledge of the
medium properties, while the inverse problem estimates the medium properties
from the measurements.

From Maxwell’s equations, it is possible to show that the
electrical potential u inside the domain studied Ω is governed
by [37]:

∇ · γ(x, ω)∇u(x) = 0, (1)

where x is a point in Ω, ω is the angular frequency of
the applied current, and γ is the electric admittivity given
by γ(x, ω) = σ(x, ω) + iωε(x, ω), where σ is the electric
conductivity and ε is the permittivity. In the conventional
frequency range at which EIT systems operate, the imaginary
part of the admittivity is usually negligible [36]. Therefore, γ
is approximated to the conductivity σ.

In addition to (1), the formulation of the forward problem
includes conditions on the current density j which is related
to the potential by Ohm’s law j = σ∇u, and satisfies:∫

∂Ω

jdS = 0, (2)

which implies that electrical charges do not accumulate locally
within the medium. In other words, all the currents injected
into Ω necessarily flow out.

Additional boundary conditions are set to account for the
known electrical stimulation at given electrodes. Their for-
mulation depends on the modeling of the electrode-medium
interface. This interface can be modeled in a multitude of ways
with varying degrees of precision and complexity [38].

The forward problem can be solved using standard numeri-
cal methods including the Finite Element Method (FEM) [39].
The goal in EIT is to find a conductivity distribution in Ω such
that the resulting forward solution is as close as possible to the
signals measured experimentally. This corresponds to solving
the inverse problem.

B. Inverse Problem and Image Reconstruction

Solving the inverse problem requires finding a value of the
conductivity σ that minimizes the data mismatch between the
electrical measurements y and their estimates via the forward
solution F (σ) [36]

‖y − F (σ)‖2 . (3)

However, unlike the forward problem, EIT inverse problem
is ill-posed, which means that it is particularly complex to
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Fig. 2. (a) Photo of the magnetic actuation system with 5 electromagnetic coils (4 of them placed on XY-plane, while the 5th is below the test area), the
test area surrounded by the 8 electrodes of the EIT system and a high-speed camera that allows generating the ground truth data. (b) Top view photo and
drawing of the test area showing the electrode positions and a sample robot in the test fluid. (c) Uniform magnetization profile of the magnetic small-scale
robot along its body (blue arrows). (d) Sample movement of the magnetic small-scale robot by applying a rotating magnetic field B shown by red arrows.
(e) Illustration of the full scan EIT stimulation scheme. All electrode pairs are successively selected as driving electrodes.

solve because of the non-uniqueness and the instability of the
solution [38].

Although the determination of an inverse solution remains
an open subject, various resolution approaches have been
proposed [40]. The most popular is based on the linearization
and the regularization of the problem to get an approximated
well-posed problem. The equation to minimize becomes [36]

‖y − F (σ)‖2W + λ2 ‖σ − σ0‖2Q , (4)

where W is a data weighting matrix representing the inverse
covariance of measurements, σ0 is an a priori estimate of
the solution, Q is the regularization matrix that can contain
certain prior assumptions about the solution, and the 2-norm
represented as ‖a‖2A = aTAa. The regularization process
introduces extra information to promote some credible solu-
tions. It involves a trade-off between the prior solution and
the exact solution based on the measured data. The balance of
this trade-off is controlled by the hyperparameter λ.

Interestingly, the regularization process can also be defined
such that both spatial and temporal information are added. This
is possible in the case of non-stationary applications, when
successive frames are not independent provided the acquisition
rate is sufficient with respect to the dynamic of the observed
phenomenon. Such a spatio-temporal resolution approach has
been developed in [41].

This is particularly relevant for robot tracking purposes (see
Section V). Herein, the solver developed in [41] is utilized
for the proof-of-concept of an EIT-based position sensor for
untethered small-scale robots.

III. EXPERIMENTAL ROBOT SYSTEM

The applicability of the proposed EIT-based tracking
method on the untethered small-scale robots is tested by using
the experimental setup and the small-scale robot design shown
in Fig. 2.

A. Robot Design, Fabrication and Gait Definition

The magnetic small-scale robots used in this study are
fabricated following the methods reported in [42] and [43]. To
start with, Ecoflex 00-30 (Smooth-On Inc.) and neodymium-
iron-boron (NdFeB) magnetic particles with 5 µm diameter
(MQFP-15-7, Magnequench) are mixed with a 1:1 body mass
ratio. Then, the pre-polymer mixture is poured on a methyl
methacrylate plate and two sets of six robots (dimensions are
provided in Table I) are cut out of the cured polymer sheet
using a high-resolution laser cutter (LPKF Protolaser U4). The
first set of robots are kept non-magnetized and used to avoid
any influence of the motion of the robot in the experiments
studying the impact of the magnetic field on the EIT data
(Section V-A). The second set of robots, on the other hand,
are put into flat molds and magnetized within a magnetic field
with a magnitude of 1.8 T pointing parallel to the vertical
axis of the robots. Once the robots are taken out of the molds,
the magnetic particles maintain their magnetization orientation
forming a uniform profile along the longitudinal axis of the
robot body as shown in Fig. 2c.

To test the accuracy of the proposed tracking method for
dynamic cases in Section V-B, fabricated robots are magneti-
cally actuated to move in the workspace by rolling locomotion.
Each cycle of the applied rotating magnetic field B around

TABLE I
DIMENSIONS OF THE SMALL-SCALE ROBOTS

L (mm) w (mm) h (mm) V (mm3)

R1 5.23 2.12 1.00 11.09

R2 3.70 1.50 1.00 5.55

R3 2.77 1.12 1.00 3.10

R4 1.50 1.50 1.00 2.25

R5 1.12 1.12 1.00 1.25

R6 0.75 0.75 1.00 0.56
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an axis orthogonal to the vertical axis of the robot (Fig. 2d)
generates a complete turn of the robot around the same axis.
Direction of robot’s motion is controlled by manipulating the
angle between the rotation axis of the B field and the x-axis
of the workspace.

B. Actuation and Feedback Setup

As the aim of this study is to use EIT to dynamically
track untethered magnetic small-scale robots, the workspace is
designed as a circular arena with 30 mm diameter considering
the average abdomen size of the mice used in preclinical
studies. It is surrounded by 8 electrodes positioned equidis-
tantly as shown in Fig. 2b. After filling the test area with
3 mL Phosphate Buffered Saline (PBS, P-5368 with pH 7.4,
SIGMA), corresponding to a 4.24 mm liquid level, which is
twice the width of the biggest robot in Table I, the magnetic
small-scale robot is placed into this solution. To apply an
external magnetic field, the test area is placed in the center
of the magnetic coil setup (Fig. 2a) that can generate a 3D
magnetic field within a 4×4×4 cm3 workspace with a maxi-
mum strength of 15 mT. The magnetic field is modulated in
3D space by controlling the electric currents running through
the electromagnetic coils via motor driver units (SyRen25) and
an Arduino microcontroller running at 1.2 kHz. To maintain
reliable and repeatable experiments, the mapping between the
applied electric currents and the generated magnetic field is
calibrated regularly.

The ground truth data required to evaluate the accuracy of
the proposed tracking method is collected by a high-speed
camera (Basler aCa2040-90uc, shown in Fig. 2a) running
at 90 fps and positioned orthogonal to the xy-plane of the
workspace. Collected data (Fig. 2b) is first processed to correct
the distortions and misalignments in the images, and then the
position of the robot’s centroid is extracted as the ground truth
data.

A master PC is used to run the image processing code
and the Robot Operating System (ROS), which handles all
the communication tasks between different elements of the
experimental setup (e.g., image capture, electric current control
and EIT data collection), and allows clock synchronization
between all these components.

IV. EIT TRACKING SYSTEM

A. Stimulation and Measurement Scheme

As described in Section II, EIT reconstructs the internal
conductivity distribution of the test domain from electrical
measurements taken at its surface for a given electrical stim-
ulation. The stimulation pattern influences the measured data,
and thereby the reconstructed images. For the sake of simpli-
fying the implementation of EIT, drive patterns involving a
single current source and sink can be preferred to strategies
using multiple current sources simultaneously [38]. Bipolar
drive patterns consist in injecting the current through a pair
of electrodes while taking potential measurements at the
remaining adjacent electrode pairs. In this work, the recently
developed full scan scheme [44] is used (Fig. 2e). This
scheme uses successively all possible stimulation electrode

Fig. 3. a) Instrumentation used in the proposed EIT system. A real-time
operating system (RTOS) controls the FPGA-based I/O module. This module
both generates the stimulation sequence and measures the electrical potential
of the electrodes. A 10 Ω sense resistor is used to deduce the stimulating
current and normalize the measurements. All the data are sent to the host
system through a high-speed buffer. b) Typical analog input readings recorded
in the experiment. The combination of driving electrodes is changed every
500 µs, which corresponds to 5 periods of the signal. The amplitude of the
measured potentials changes accordingly. c) The sampling rate is 100 kHz,
which provides 10 data points per period. On the whole, 50 data are taken
at each electrode for each combination of driving electrode-pairs. To avoid
any influence of possible transient effects, the DFT is calculated over the 3
central periods only.

pairs to maximize the number of measurements. It has been
shown to provide improved EIT images compared to the
conventional adjacent and opposite strategies that rotate the
current carrying electrodes through all successive adjacent and
opposite electrode pairs respectively [45].

B. EIT Instrumentation

As sketched in Fig. 2(b, e), the workspace is surrounded
by 8 evenly distributed electrodes, determined by the number
of analog input channels available on the data acquisition
system. The electrodes are 0.8 mm diameter rods made out
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of platinum and connected by shielded wires to a custom-
designed electronic platform (Fig. 3a) integrating two 8-to-
1 multiplexers (ADG708, Analog Devices, USA). This mul-
tiplexing circuit allows to select different combinations of
current carrying electrode-pairs (source and sink) to execute
the entire stimulation and measurement strategy. As shown in
Fig. 3a, the multiplexers are controlled by means of the digital
output channels of an I/O module (PXIe-7847R, National
Instruments, USA) integrating an FPGA system. The analog
output and input channels of the device are respectively
dedicated to the generation of the electrical stimulation and the
simultaneous acquisition of the resulting electrical potentials.
As previously demonstrated in [44], the stimulation signal can
be an AC voltage, while the current is measured by means of a
sense resistor. In the proposed system, this stimulation signal
has an amplitude of 1 V and a frequency of 10 kHz. The FPGA
is controlled by a real-time module (PXIe-8840 Quad-Core,
National Instruments, USA) and sends the recorded data to
this real-time target through a Direct Memory Access (DMA)
buffer. Both the I/O module and the real-time target are placed
in a PXIe-1078 chassis (National Instruments, USA).

C. Signal Acquisition Procedure

While the electrical stimulation is continuously generated by
the analog output of the I/O module, the digital outputs were
controlled by the built-in blocks in a LabView environment
to switch from a stimulation/measurement pattern to the other
every 500 µs. This corresponds to 5 periods of the excitation
signal for each of the 28 different stimulation combinations
provided by the full-scan strategy in an 8-electrode EIT
system. In parallel, the electrical potential measurements are
performed via the analog input channels at a sampling rate of
100 kHz (Fig. 3b, c).

D. Data Processing

The data are subsequently processed using the built-in
libraries in the open-source software EIDORS [39]. For
each stimulation combination, the Discrete Fourier Transform
(DFT) of the recorded signal is determined over the 3 central
periods of the recording (Fig. 3c). The first and last periods
are ignored to avoid any influence of possible transient effects
due to the switching from a stimulation electrode to another.
The filtering of the signal is performed by taking only the
element of the DFT that provides the amplitude corresponding
to the excitation frequency [44]. As the amplitude of the
adjacent voltages involving a current carrying electrode can be
biased by the electrode polarization, these data are discarded
in EIDORS. In addition, as the first analog input channel of
the I/O module is used to monitor the voltage across the sense
resistor and deduce the flowing current, the adjacent voltages
involving E1 are not measured. Therefore, in each stimulation
combination, 2, 3, 4 or 5 relevant output adjacent voltages can
be obtained. These voltages are normalized by the amplitude
of the injected current. Going over the 28 stimulation com-
binations, a total of 90 (= 2 × 5 + 8 × 4 + 12 × 3 + 6 × 2)
normalized voltages are obtained and taken as input of the EIT
image reconstruction process.

As this work uses difference EIT to reconstruct conduc-
tivity changes rather than the absolute conductivity map, two
datasets are needed for image reconstruction. One set is taken
before the robot is inserted into the workspace, which will be
referred as ”homogeneous dataset”. To reduce the influence
of measurement noise in this reference dataset, it is averaged
over 356 vectors of data points taken from the homogeneous
medium. The other set is taken from the inhomogeneous
system containing the small-scale robot, which will be referred
as ”inhomogeneous dataset”.

The homogeneous and inhomogeneous datasets are taken
as input of the reconstruction algorithm developed in [41]
and implemented in the open-source package EIDORS [39].
This solver involves different image reconstruction parameters,
which are indicated and studied in the next section. In the
images generated by the reconstruction code, the workspace is
discretized into multiple elements. An estimated conductivity
change σel is assigned to each element and the image is
generated by converting the conductivity values to a colormap.

Since the robot is known to be more resistive than the PBS
solution, it is expected to correspond to a region with a highly
negative conductivity change. To improve its distinguishability
in the image, a threshold is imposed to the conductivity change
values of the elements appearing in the reconstructed image.
In other words, only significant negative conductivity changes
are shown in the image, while the estimated conductivity
changes σel that are positive or above the threshold are set
to 0 (no color). The threshold δσ is defined as

δσ = σel − Sdσ, (5)

where σel is the average of the estimated conductivity value
over all the elements composing the workspace and Sdσ is the
standard deviation. The thresholded image is then binarized to
mark the significant elements. The center of mass of the robot
is detected on the binarized image by simple shape detection
after basic image processing (dilation and erosion). Remain-
ing small isolated regions (significant negative conductivity
changes) are ignored by just selecting the biggest blob in the
image.

Next section describes the experiments performed to eval-
uate the potential of this EIT-based system for the 2D local-
ization of a small-scale robot and presents the results of this
first proof-of-concept.

V. RESULTS

A. Effect of external magnetic field on the EIT-based localiza-
tion system

As a preliminary study, the compatibility of the proposed
EIT-based localization approach with the magnetic actuation
system has been investigated. To identify the influence of the
external magnetic field on the voltage readings, the tests have
been performed using the non-magnetized set of robots (i.e.,
the first set of robots) whose sizes are given in Table I. Accord-
ingly, the influence of the magnetic field on the reconstructed
EIT image is analyzed while avoiding any robot motion due
to magnetic actuation.
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Fig. 4. Actual images (first and third rows) and the reconstruction results
generated by the collected EIT data (second and fourth rows) for the static
tests done with the non-magnetized robot R1 in Table I and |B| = 0 mT. For
all robots with and without external magnetic field, camera and EIT images
are presented in the Supplementary Material.

For this purpose four different test cases were studied: (1)
|B| = 0 mT, without robot; (2) |B| > 0 mT, without robot;
(3) |B| = 0 mT, with a robot; and (4) |B| > 0 mT, with
a robot. In these experiments, the external magnetic field is
defined as a rotating field with five different amplitude and
frequency sets from 3 mT to 9 mT and from 1 Hz to 10 Hz.
Moreover, throughout the experiments including a robot, the
robot is placed into five different positions inside the test area
(Fig. 4 a-c and g-i) and each experiment is repeated five times.
All EIT images are reconstructed using the solver in [41]. The
resolution parameters used are p = 0.5, γc = 0.9, λ = 0.05,
and d = 5, whose influence is explained and studied in the
next subsection.

Two metrics have been used to explore the impact of the
magnetic field on the EIT-based localization system. Firstly,
in the experiments with the robot, the position estimations
obtained from the EIT images are compared to the ground truth
data obtained from the camera (Fig. 4). The position detection
accuracy of the EIT system is reported in Table II with median
and interquartile range (IQR) for each robot with B-Field (B =
3 mT, f = 1 Hz) and no B-Field. The camera and EIT images
for each robots, and the position detection accuracy for the
remaining B-Field cases are presented in the Supplementary
Material. Results for both test cases show that the average
localization error is the lowest for R2, and it increases as the
size of the robot gets smaller except for R1 and R6. Moreover,

TABLE II
POSITION DETECTION ACCURACY OF THE EIT SYSTEM FOR EACH

NON-MAGNETIZED ROBOT IN TABLE I THROUGHOUT THE STATIC TESTS
SHOWN IN FIG. 4.

No B-Field B-Field (3mT 1Hz)

Robot Median (mm) IQR (mm) Median (mm) IQR (mm)

R1 0.61 0.08 0.55 0.26

R2 0.38 0.21 0.45 0.40

R3 0.56 0.33 0.54 0.51

R4 0.70 0.61 0.58 0.74

R5 8.66 0.42 6.63 8.40

R6 3.80 13.03 7.00 4.96

TABLE III
AVERAGE CONDUCTIVITY AND CONDUCTIVITY THRESHOLD VALUES FOR
THE FOUR DIFFERENT TEST CASES USED TO IDENTIFY THE INFLUENCE OF

MAGNETIC FIELD ON THE EIT SYSTEM.

B-Field Robot Avg. Conductivity
(σel ± Sdσ)

Conductivity
Threshold δσ

Rel. Cond.
Threshold

5 5 6.17±6.93 -0.76 Ref.

3mT 1Hz 5 1.67±3.23 -1.56 106.28%

3mT 5Hz 5 -0.59±0.75 -1.33 76.36%

3mT 10Hz 5 -0.93±0.99 -1.92 153.13%

6mT 1Hz 5 -1.22±1.21 -2.43 221.07%

9mT 1Hz 5 -1.42±1.37 -2.79 268.76%

5 3 -0.89±3.89 -4.78 531.26%

3mT 1Hz 3 -0.10±5.53 -5.63 643.58%

3mT 5Hz 3 -0.75±3.86 -4.61 508.94%

3mT 10Hz 3 -0.63±4.40 -5.03 564.15%

6mT 1Hz 3 -0.61±4.37 -4.98 557.93%

9mT 1Hz 3 -0.61±4.39 -5.00 560.25%

due to their small size, the localization of R5 and R6 results
in high error values considering the size of the workspace.

Secondly, the estimated average conductivity variation in
the workspace and the conductivity threshold values (δσ) are
computed for all test cases. Table III reports the obtained
values. The comparison of δσ values for each test case with the
Case-1 given in the last column shows that application of the
external magnetic field without a robot in the test area causes
a maximum increase in the conductivity threshold value by
268.76%, whereas the existence of the robot without external
magnetic field causes 531.26% increase. Therefore, the impact
of the magnetic field on the reconstructed EIT images is shown
to be smaller than the impact of the robot itself. Furthermore,
the existence of the robot minimizes any visible effect of the
external magnetic field on δσ .

To summarize, the results in Table II and Table III show
that the EIT-based localization system is barely affected by
the magnetic field, whose influence on the reconstructed EIT
images is minor compared to the presence of the small-scale
robot itself. Given the current results, the decoupling could
be explained by the 4 order of magnitude difference between
the frequency of the actuation signals and the frequency of
the electrical signals used for localization (1 Hz and 10 kHz
respectively).
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Fig. 5. Influence of the hyperparameter on the accuracy of the EIT-based
tracking system. (a) Evolution of the position error over the whole trajectory
as a function of the reconstruction hyperparameter λ. The whiskers represent
the 2nd and 98th percentiles, while the boxes indicate the IQR and contain
the median position error (blue line). The points noted b, c and d refer to
the subfigures below (b, c, d) showing the position data obtained from the
camera (red) and the position estimated from the electrical signals (blue).
In (b), a small hyperparameter generates noise in the reconstructed trajectory.
(c) Increasing the hyperparameter improves the tracking accuracy until a local
optimum. (d) A smoother reconstructed trajectory is obtained using a larger
hyperparameter, however at the cost of spatial resolution.

B. Dynamic Object Detection

Since the magnetic actuation and the electrical localization
have been shown to be compatible within the presented
experimental system, the next study uses magnetized robots
(Table I) and compares the EIT-based tracking to the ground
truth data obtained from the images of the camera.

1) Reconstruction parameters: As mentioned in section II,
the spatio-temporal solver developed in [41] is used in this
work to get EIT images of the robot moving within the
workspace. Several reconstruction parameters defined therein
have to be set such as the NOSER exponent p, the inter-frame

Fig. 6. Influence of the reconstruction temporal width on the accuracy of the
EIT-based tracking system. While the position error (top plot) decreases with
the extension of the temporal window, the delay induced in the localization
increases (bottom plot).

correlation γc, the hyperparameter λ, and the half-width d
of the temporal window. In EIT, solving the inverse problem
involves a trade-off between the exact solution based on the
measurements and a prior information. The exponent p is
related to the spatial part of the regularization term. It tends
to push the noise toward the center (p = 1) or the edges
(p = 0) of the arena [41]. The parameter γc is involved
in the temporal part of the regularization term. It reflects
the correlation between successive frames. The number of
frames considered in a reconstruction is determined by d.
The hyperparameter λ determines the trade-off between the
measurements and the known spatio-temporal information. A
high value of λ increases the weight of the spatio-temporal
prior information with respect to the electrical measurements,
whereas a low value of λ provides an estimated conductivity
closer to the exact solution based on the measurements,
however at the cost of a higher sensibility to measurement
noise.

The first parameter was set using a standard value from
the literature [41] p = 0.5. γc = 0.9 is chosen because the
data acquisition is known to be fast (14 ms) with respect to
the dynamic of the robot. A parametric study is performed to
set λ and d and highlight their impact on the accuracy of the
EIT tracking. These parameters are successively varied, while
reconstructing multiple times a rectangular-shaped trajectory
of the robot R2. The impact of the hyperparameter λ on
the tracking accuracy is shown in Figure 5a, while d = 10.
A small hyperparameter degrades the tracking accuracy by
generating noisy reconstructed images. On the opposite, a
smooth reconstructed trajectory is obtained using a large
hyperparameter, however at the cost of the spatial resolution.
These results are illustrated by the trajectories obtained in
the two extreme cases considered λ = 0.005 (Fig. 5b) and
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λ = 1 (Fig. 5d), while the local optimum in terms of position
accuracy is obtained with λ = 0.05 (Fig. 5a, c).

With λ = 0.05, the influence of the temporal window d
can also be studied by a parametric sweep. Although a
large temporal window provides a more accurate tracking,
it induces a higher temporal delay of the obtained position
information (Fig. 6). This effect is due to the fact that the
reconstruction of the frame ft uses the concatenated sequence
of measurements [yt−d, ..., yt, ..., yt+d] [41]. In this respect,
considering the 14 ms per frame required by the data acqui-
sition procedure, the delay [ms] induced by this approach is
14× d.

By choosing d = 5 the induced delay remains below the
100 ms which are induced by a position feedback system
operating at 10 Hz. This frequency is higher than the frequency
reached in some recent microrobotic studies using Magnetic
Resonance Imaging (MRI) as localization modality [12].

2) Tracking of different sized robots: To evaluate the ca-
pability of the proposed system to track different untethered
magnetic robots, each robot (Table I) is actuated to generate 5
different trajectories. These trajectories are monitored by both
the camera and the EIT tracking system. The EIT reconstruc-
tion hyperparameter λ = 0.05, which is the local optimum
found in the above parametric study, while d = 5. Other EIT
reconstruction parameters are kept same as presented above.
In the Supplementary Video, one trajectory per robot is shown
together with the corresponding live EIT reconstruction.

For each experiment, the median EIT-tracking error and the
number of recorded positions composing the trajectory are
reported in Table IV. These results show that R4 is the smallest
robot that can be detected with a reasonable accuracy. Until
R4, the median tracking error is lower than the length of the
robot, whereas it increases significantly when the size of the
robot further decreases. The results of the localization of R5
and R6 are consistent with the results of the static experiments
in Section V-A (high error values). It is likely that their small
size makes them undetectable by our EIT system.

Although it is bigger, R1 generates a higher tracking error
than the one obtained for R2 and R3. This can be due to the
bigger wavelets that are created by the motion of the robot
at the surface of the liquid. These wavelets can change the
local propagation of the electrical signal within the PBS, thus
degrading the measurements and the reconstructed images.
Besides, the setting of the hyperparameter has been done in
the light of a parametric study performed using a trajectory
of R2. The parameter found to be optimal may have been
different if the study was done using another robot.

3) Tracking of the magnetic robot R2 in non-homogeneous
environments: To evaluate the tracking performance of the
EIT system for non-homogeneous cases, R2 is tested for three
different scenarios (Figure 7). In each of them, two trajectories
are performed and monitored by both the camera and the
EIT system to quantify the tracking performance as before.
The EIT reconstruction result and ground truth data of one
trajectory for each test case are presented in the Supplementary
Video. The EIT tracking error reported in Table V shows
that the proposed tracking method can localize the robot
when stationary objects are in the environment (Figure 7a, b)

TABLE IV
POSITION DETECTION ACCURACY OF THE EIT SYSTEM GIVEN BY THE

MEDIAN AND IQR FOR EACH MAGNETIZED ROBOT IN TABLE I
THROUGHOUT THE DYNAMIC TESTS.

Robot Path
Number

Path Error (mm) Robot Error (mm) #
Recorded
PositionsMedian IQR Median IQR

R1

P1 0.93 0.58

0.99 0.84

3887

P2 1.21 0.74 2974

P3 0.66 1.37 3169

P4 1.03 0.76 3361

P5 0.93 0.79 2224

R2

P1 0.68 0.67

0.75 0.67

2234

P2 0.65 0.65 2058

P3 0.68 0.50 2236

P4 0.86 0.77 2237

P5 0.93 0.62 2536

R3

P1 0.82 0.81

0.87 0.79

1938

P2 0.86 0.92 1963

P3 0.89 0.73 2135

P4 0.94 0.87 2279

P5 0.82 0.64 1932

R4

P1 1.01 1.05

1.11 1.14

2260

P2 1.44 1.38 1940

P3 1.26 1.03 2014

P4 0.74 0.62 1565

P5 0.92 0.81 1644

R5

P1 6.49 2.15

6.87 2.16

2118

P2 6.57 2.24 2194

P3 6.79 2.31 1892

P4 6.92 1.73 2126

P5 7.91 2.24 2213

R6

P1 14.75 9.20

7.36 9.62

2821

P2 8.10 7.30 2553

P3 4.07 3.84 2003

P4 4.92 5.13 2061

P5 8.04 13.71 2230

with a similar performance as in the homogeneous test cases.
Moreover, promising results are obtained in the third test
scenario (Figure 7c), where the chicken flesh covers the elec-
trodes. Although it is necessary to tune the EIT reconstruction
parameters to achieve better localization performance as in
the previous test cases, these results open the door to the
application of the proposed method for medical applications.

VI. DISCUSSION AND OUTLOOK

This paper introduces a method based on EIT to dy-
namically track small-scale robots. The proposed approach
provides the electrical conductivity distribution within the
robot workspace from a set of electrical stimulations and
voltage measurements gathered from 8 electrodes placed at
its boundary. The position of the robot can be deduced from
the reconstructed EIT image with the difference in electrical
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Fig. 7. Dynamic test cases with R2 used to evaluate the tracking accuracy
of the EIT system in non-homogeneous environments. (a) Single circular
stationary object in the test area, (b) multiple stationary objects with different
shapes in the test area, and (c) electrodes covered by the chicken flesh.

TABLE V
POSITION DETECTION ACCURACY OF THE EIT SYSTEM GIVEN BY THE

MEDIAN AND IQR FOR R2 IN TABLE I THROUGHOUT THE DYNAMIC TESTS
IN NON-HOMOGENEOUS ENVIRONMENTS.

Test Case
Path Error (mm) Robot Error (mm) #

Recorded
PositionsMedian IQR Median IQR

Circular Object-1 0.76 0.68
0.92 0.78

2573

Circular Object-2 1.09 0.86 3328

Multiple Object-1 0.89 0.58
0.82 0.61

2206

Multiple Object-2 0.77 0.61 2990

Tissue-1 1.27 1.43
1.24 1.26

3304

Tissue-2 1.20 1.02 2872

properties between the robot and the background medium.
Moreover, the tracking system developed in this work has been
shown not to interfere with the magnetic actuation applied to
the robot by testing the system with different magnetic field
strengths and actuation frequencies. Multiple robots in chang-
ing sizes were fabricated and tested, while the performance of
the EIT-based tracking was verified using a camera throughout
the experiments. It turned out that the smallest robot that can
be tracked in the cylindrical arena (30 mm in diameter) with
a median position error lower than its length is 1.5 × 1.5 ×
1 mm3.

Multiple factors influence the results obtained by the pro-
posed system in terms of tracking accuracy and smallest
detectable size. As highlighted in this work, the reconstruction
parameters can have a significant impact. In particular, the
hyperparameter has been determined based on multiple recon-
structions of a trajectory of robot R2 with a varying hyper-
parameter. As the optimal hyperparameter can be different for
the other robots, a systematic parametric optimization can help
improving the tracking accuracy. Beyond the heuristic method
used herein, existing advanced methods can be implemented
for tuning the hyperparameter such as the popular L-curve
method [46], and Bayesian Optimization [43]. Similarly, rather
than setting p and γc from standard values in the literature,
these parameters could be determined from a parametric
optimization.

The spatial resolution of the EIT images is also known to
be strongly dependent on the number of measurements which
is related to the number of electrodes [38]. Even though many
EIT systems in the literature involve at least 16 electrodes [38],
[44], we decided to use 8 electrodes for the sake of keeping
the circuitry and the software as simple as possible. As our

data acquisition system has 8 analog input channels, providing
more electrodes would require to redesign the proposed EIT
system. This new version would involve either using additional
multiplexers, or replacing the data acquisition card by one
offering more input channels, which would be more expensive.
In either case, this modification would be beneficial for the
spatial resolution, at the expense of the robot localization speed
since the full scan scheme would involve more successive
configurations. For example, using 16 electrodes leads to 120
successive configurations inducing an increase by a factor
greater than 4 of the acquisition time compared to the 28
configurations obtained with 8 electrodes.

Another factor that influences the resolution and the ca-
pacity to detect a robot is the contrast in electrical properties
between the robot and the background medium. The current
system uses PBS whose conductivity is 1.6 S m−1. Although,
this value is in the same order of magnitude as the conductivity
of blood [47] and other physiological fluids [48], it would
be interesting to evaluate the performance of our localization
method in application-relevant medium in the future.

Beside its conductivity property, the liquid level also has
a critical effect on the tracking performance. Throughout the
preliminary tests, we observed that out of PBS motion of the
robot would lead to lower tracking accuracy, as any part of the
robot moving outside the liquid does not affect the impedance
readings. Because of this, and to keep the experiments as sim-
ilar to the desired biomedical robotic applications as possible,
we determined the height of PBS used in the experiments twice
the width of the biggest robot in Table I.

Although optical imaging remains the standard for in vitro
experiments thanks to its ease of use and high resolution,
the tracking accuracy obtained in this first study using EIT
as a localization method in microrobotics (e.g., 0.75 mm and
1.24 mm median position errors for robot R2 in homogeneous
test area and test area covered by chicken flesh, respectively)
makes us believe that this technique could be significant and
useful for the position feedback control of untethered devices
for biomedical applications in the future. Moreover, it is a
non-ionizing imaging method (unlike X-rays), it is portable
and non-interfering with magnetic actuation (unlike MRI).

We will focus on using it together with the magnetic actu-
ation to perform some closed-loop control inside completely
enclosed spaces. As the feedback control performance depends
partly on the tracking accuracy, we consider combining the
EIT data to the knowledge of the expected displacement
induced by the actuation (state model) by using a subsequent
Kalman filter. With a data acquisition time of 14 ms, our
EIT system has the potential to provide a position feedback
at a frequency of 71 Hz. The frequency of the control loop
will depend on coding aspects and the computing capacities
available.

In the future, the application of this method to detect a
small-scale robot in biomedical robotics raises new challenges
such as the scale-up from a centimeter scale workspace to
the human body, and the optimization of the number and the
arrangement of the electrodes due to the complex anatomy.
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